An Equivalence Relation between Morphological Dynamics and Persistent Homology in 1D - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

An Equivalence Relation between Morphological Dynamics and Persistent Homology in 1D

Résumé

We state in this paper a strong relation existing between Mathematical Morphology and Discrete Morse Theory when we work with 1D Morse functions. Specifically, in Mathematical Morphology, a classic way to extract robust markers for segmentation purposes, is to use the dynamics. On the other hand, in Discrete Morse Theory, a well-known tool to simplify the Morse-Smale complexes representing the topo-logical information of a Morse function is the persistence. We show that pairing by persistence is equivalent to pairing by dynamics. Furthermore, self-duality and injectivity of these pairings are proved.
Fichier principal
Vignette du fichier
boutry.ismm.2019-2019-01-11-2.pdf (393.44 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01978607 , version 1 (11-01-2019)

Identifiants

Citer

Nicolas Boutry, Thierry Géraud, Laurent Najman. An Equivalence Relation between Morphological Dynamics and Persistent Homology in 1D. 2019. ⟨hal-01978607⟩
126 Consultations
221 Téléchargements

Altmetric

Partager

More