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HERMITE DENSITY DECONVOLUTION

OUSMANE B SACKO

Abstract. We consider the additive model:

Z = X + ε,

where X and ε are independent. We construct a new estimator of the density of X from n
observations of Z. We propose a projection method which exploits the specific properties of
the Hermite basis. We study the quality of the resulting estimator by proving a bound on the
integrated quadratic risk. We then propose an adaptive estimation procedure, that is a method
of selecting a relevant model. We check that our estimator reaches the classical convergence
speeds of deconvolution. Numerical simulations are proposed and a comparison with the results
of the method proposed in Comte and Lacour (2011) is performed.

Keywords: Deconvolution, Hermite basis, model selection, projection estimator.
2010 Mathematics Subject Classification: 62G05-62G07.

1 Introduction

Consider the additive noise model:

(1) Zk = Xk + εk, k = 1, . . . , n

where
(H1) (Xk)k≥1 are independent and identically distributed (i.i.d.) with unknown density f ,

with respect to the Lebesgue measure.
(H2) (εk)k≥1 are i.i.d. with known common density fε, with respect to the Lebesgue mea-

sure.
(H3) (Xk)k≥1 and (εk)k≥1 are independent.

We observe n copies Z1, . . . , Zn. We want to estimate f , the distribution of X1, using Z1, . . . , Zn
only. Under (H3), if we denote by fZ the density of Z1, we can write

(2) fZ = f ∗ fε,

where u ∗ v(x) =

∫
R
u(u)v(x − u)du is the convolution product of the functions u and v under

adequate assumptions. Formula (2) explains the term of "deconvolution" for density estimation
in model (1). Two factors influence the rate of convergence: the regularity of f and the regularity
of fε, with slower rate of convergence if fε is more regular. Two types of errors are considered:
errors are called ”ordinary smooth" errors, when the Fourier transform of fε is polynomially
decaying near infinity, and ”super smooth”, when it is exponentially decaying near infinity. The
deconvolution problem has been widely studied in the literature. The first works proposed ker-
nel nonadaptive estimators assuming that f is ordinary smooth and that fε is ordinary or super
smooth. We can cite Carroll and Hall (1988), Fan (1991), (1993), among others. Adaptive
estimation, based on a wavelet method, was first considered by Pensky and Vidakovic (1999).
Butucea (2004) establishes the minimax rate in the case where f is super smooth and fε is ordi-
nary smooth while Butucea and Tsybakov (2007a, 2007b) study optimality in the very difficult
case when both functions are super smooth. Some more recent works were dedicated to this
problem: Comte and Lacour (2011) considered the case where the noise density is unknown,
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2 OUSMANE B SACKO

and propose an adaptive estimator in this setting, later improved by Kappus and Mabon (2014).
Mabon (2017) builds a projection estimator in Laguerre basis in the case where the variable of
interest is positive. Comte and Genon-Catalot (2017) propose a projection estimator in Hermite
basis, but do not provide a complete study of its performance. Our aim here is to improve this
estimator and to propose an adaptive model selection procedure. We obtain a simple, fast and
powerful procedure, which preserves standard deconvolution rates. Moreover, its numerical per-
formances are very good. The paper is organized as follows: we define our estimator in Section
2.2. We prove a bound on the risk in Section 3, and discuss rates of convergence in Section 3.2.
In Section 4, an adaptive estimation procedure is proposed and a risk control of the resulting
estimator is provided. We then illustrate the performance and stability of the adaptive estima-
tion procedure in Section 5, and we compare our result with Comte and Lacour (2011). A brief
extension to the case of dependent variables is given in Section 6. Proofs of most theoretical
results are gathered in Section 7.

2 Estimation procedure and Hermite basis

2.1 Useful tools

2.1.1 Notations. For a, b ∈ R, let a ∨ b = max(a, b), and a+ = max(0, a). For f , g in

L2(R)∩L1(R), we denote by 〈f, g〉 =

∫
R
f(u)g(u)du, ||f ||2 =

∫
R
|f(u)|2du, f∗(x) =

∫
R
eituf(u)du

and f ∗ g(x) =

∫
R
f(x− u)g(u)du ∀x ∈ R. Lastly, we recall Plancherel-Parseval formula 〈f, g〉 =

(2π)−1〈f∗, g∗〉.
Before proposing an estimator, we start by recalling the definition of the Hermite basis.

2.1.2 Hermite basis. The Hermite basis (ϕj)j≥0 is a basis on L2(R) defined from Hermite

polynomials (Hj)j≥0: Hj(x) = (−1)jex
2 dj

dxj
(e−x

2
). The Hermite polynomials are orthogonal

with respect to the weight function e−x
2
:
∫
R
Hj(x)Hk(x)e−x

2
dx = 2jj!

√
πδj,k (see Abramowitz

and Stegun (1964)). Thus, we deduce that the basis:

ϕj(x) = cjHj(x)e−x
2/2 , cj = (2jj!

√
π)−1/2,

is orthonormal in L2(R). The Hermite basis (ϕj)j≥0 is a bounded basis verifying ||ϕj ||∞ =

sup
x∈R
|ϕj(x)| ≤ φ0, with φ0 ' 1, 086435/π1/4 ' 0, 8160 (see Abramowitz and Stegun (1964)). The

Fourier transform of (ϕj)j≥0 verifies:

(3) ϕ∗j =
√

2π(i)jϕj .

Moreover, according to Askey and Wainger (1965), we have

(4) |ϕj(x)| < Ce−ξx
2
, |x| ≥

√
2j + 1, C > 0

where ξ is a positive constant independent of x.

2.1.3 Assumptions on the noise. For the definition of our estimator, we assume the follow-
ing: (H4) the noise density fε is such that f∗ε 6= 0.
We also assume that fε satisfies:

There exist c1 ≥ c′1 > 0, et γ ≥ 0, µ ≥ 0, δ ≥ 0 ( with γ > 0 si δ = 0) such that

(5) c′1(1 + t2)
γ
eµ|t|

δ ≤ 1

|f∗ε (t)|2
≤ c1(1 + t2)

γ
eµ|t|

δ
.

It is standard to assume a condition like (5) in the deconvolution setting. When δ = 0 in (5),
the function fε and the errors are called "ordinary smooth". When δ > 0 (with the convention
that δ > 0 if and only if µ > 0), they are called "super smooth".
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2.2 Estimation procedure. We denote by Sm=vect{ϕ0, . . . , ϕm−1}, the space generated by
(ϕ0, . . . , ϕm−1) in L2(R). Now, we construct an estimator of f relying on the data Z1, . . . , Zn,

from model (1). We suppose that f belongs to L2(R) ∩ L1(R), thus we can write f =
+∞∑
j=0

ajϕj

with aj = 〈f, ϕj〉 and the orthogonal projection of f on Sm is given by: fm =
m−1∑
j=0

ajϕj . In fact,

we estimate fm and therefore, we build m estimators âj of aj , j = 0, . . . ,m− 1. Under (H4) and

using (2), we have f∗ =
f∗Z
f∗ε

. Therefore, using Parseval’s Theorem and (3), we have:

(6) aj = 〈f, ϕj〉 =
1

2π
〈f∗, ϕ∗j 〉 =

(−i)j√
2π
〈f∗, ϕj〉 =

(−i)j√
2π

∫
f∗Z(u)

f∗ε (u)
ϕj(u)du.

Thus, to estimate aj , we replace f∗Z by an estimate. As f∗Z(t) =

∫
eitufZ(u)du = E[eitZ1 ], we

set:

(7) f̂∗Z(t) =
1

n

n∑
k=1

eitZk .

Plugging (7), into (6), we can propose an unbiased estimator of fm, provided that ϕj/f∗ε is
integrable on R, for j = 0, . . . ,m− 1:

(8) f̂m =
m−1∑
j=0

âjϕj , âj =
(−i)j√

2π

∫
f̂∗Z(u)

f∗ε (u)
ϕj(u)du.

The Hermite basis has the specificity of leading to integrable ϕj/f∗ε in a large number of cases.

3 Risk Study of the estimator

3.1 Risk of the estimator for fixed m. Under the additional assumption:
(H5) fZ is bounded,

we can study the risk of f̂m and the following proposition states our result.

Proposition 3.1. (i) Under (H1), . . . , (H5) and for f̂m given by (8), we have

(9) E[||f̂m − f ||2] ≤ ||f − fm||2 +
1

πn

∫
|u|≤
√
lm

du

|f∗ε (u)|2
+

2

n
||fZ ||∞

m−1∑
j=0

∫
|u|>
√
lm

|ϕj(u)|2

|f∗ε (u)|2
du,

where l > 0 is a positive constant.
(ii) If in addition l ≥ 2 and fε satisfies (5) with 0 < δ < 2 or (δ = 2, with µ < ξ), where ξ

is defined in (4), then

(10)
2

n
||fZ ||∞

m−1∑
j=0

∫
|u|>
√
lm

|ϕj(u)|2

|f∗ε (u)|2
du = O(

1

n
).

The first right-hand side term of (9) is the bias term, it is decreasing with m as ||f − fm||2 =∑
j≥m

a2
j . The second term is the main variance term, it is clearly increasing with m. The last term

also comes from the variance computation, but we give in Proposition 3.1, part (ii) conditions
ensuring that it is negligible. Thus, choosing m that minimizes the risk requires a bias-variance
compromise.
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If δ = 2 and µ ≥ ξ, we can always transform our variables considering the following model:

Z̃k = X̃k + ε̃k, Z̃k =

√
ξ

2µ
Zk, X̃k =

√
ξ

2µ
Xk and ε̃k =

√
ξ

2µ
εk.

As f =

√
2µ

ξ
f1(

√
2µ

ξ
·) where f1 is the density of X̃k, we can build an estimator of f1 and f∗ε̃

satisfies (5), with µ̃ < ξ.
So under the assumptions of Proposition 3.1, part (ii), (9) becomes:

(11) E[||f̂m − f ||2] ≤ ||f − fm||2 +
1

πn

∫
|u|≤
√
lm

du

|f∗ε (u)|2
+
c

n
, c > 0, l ≥ 2.

Comment about (H5): We both have, ∀x ∈ R, |fZ(x)| = |f ∗ fε(x)| ≤ min(||f ||∞, ||fε||∞)
and |fZ(x)| ≤ ||f ||. ||fε||. Therefore, the density fZ is bounded if f or fε is bounded, or if both
functions are square integrable. Condition (H5) is not very strong.

3.2 Rate of convergence. To obtain rates of convergence, we have to evaluate the order of
bias and variance terms. In general each basis is associated with a regularity space: here, we
consider Sobolev-Hermite spaces.

3.2.1 Rate on a Sobolev-Hermite space. For s > 0, the Sobolev-Hermite space of regularity
s (see Bongionni and Torrea (2006)) is given by:

W s
H = {θ : R→ R, θ ∈ L2(R),

∑
k≥0

ksa2
k(θ) < +∞}, ak(θ) =

∫
θ(u)ϕk(u)du

and the Sobolev-Hermite ball by:

(12) W s
H(D) = {θ ∈ L2(R),

∑
k≥0

ksa2
k(θ) ≤ D}, D > 0

Thus, for f in W s
H(D), we have ||f − fm||2 =

∑
j≥m

jsa2
jj
−s ≤ Dm−s. Under the assumptions of

Proposition 3.1 and for f ∈W s
H(D), we get:

(13) E[||f̂m − f ||2] . Dm−s +
1

πn

∫
|u|≤
√
lm

du

|f∗ε (u)|2
,

where the notation . means for two functions u, v, we denote u(x) . v(x) if u(x) ≤ cv(x), with
c is constant independent of x. This inequality is similar to the one in Comte and Lacour (2011),
with m therein replaced now by

√
m. It is worth underlining that the role of the dimension

m in projection methods is played here by
√
m: this is a specificity of the Hermite basis. The

result is the similar in density estimation when Xk are directly observed, (see Comte and Genon-
Catalot (2017), Belomestny et al. (2017). Let us denote by mopt the value of m for which the
bias-variance compromise is obtained, relying on the same calculations as in Comte and Lacour
(2011), the rates and the dimension mopt are given in following table.

δ = 0 0 < δ < 2 or δ = 2, µ < ξ

mopt [n
2

2s+2γ+1 ]

[(
log n

2µlδ

) 2
δ

]

Rate n
− 2s

2s+2γ+1 (log n)−
2s
δ

Table 1. Rate of convergence for the MISE if f ∈W s
H(D)
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The rates obtained coincide with the ones obtained by Fan (1993), Pensky and Vidakovic
(1999). They are known to be optimal: lower bounds corresponding to these rates for fε verifying
(5) are proved by Fan (1993) when f belongs to a Hölder class, and by Pensky and Vidakovic
(1999) for f in a Sobolev class.

3.2.2 Rates of convergence for specific function classes. We can obtain for some specific
classes of functions a bias term with much smaller order, for instance the Gaussian density or
the mixtures of Gaussian. Indeed, then, we can explicitly compute the coefficients aj and obtain
smaller bias than previously on W s

H(D). Let

fµ,σ(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
, gp,σ(x) =

x2p

σ2pC2p
f0,σ(x), C2p = E

[
X2p

]
,

for X a standard Gaussian variable. We also define the class of mean mixtures, respectively of
variance mixtures of the Gaussian distribution by:

F(C) =

{
f : f(x) = φ ? Π(x) =

∫
φ(x− u)dΠ(u), Π ∈ P(C)

}
,

where P(C) :=
{
Π ∈ P(R), Π(|u| > t) ≤ C exp(−t2/C), ∀t ∈ R+

}
, respectively

G(v) =

{
f : f(x) =

∫ +∞

0

φ(x/u)

u
dΠ(u), Π

([
1/
√
v,
√
v
])

= 1

}
, v > 1,

with φ the density of standard Gaussian and P(R) the set of probability measures on R. The
following results are based on bias evaluation obtained in Belomestny et al. (2017). The rate is
given by the order of variance term, since in all these cases, the bias term is exponentially small.
We can prove the following proposition.

Proposition 3.2. Assume that fε is ordinary smooth. For the choice mopt = [log(n)/C1], with

C1 = log(2) + eµ2 if f = fµ,1, C1 = log

(
σ2 + 1

σ2 − 1

)2

if f = f0,σ, C1 =
1

(eC + 1/ log(2))
if

f ∈ F(C), C1 =

(
v2 − 1

v2 + 1

)
if f ∈ G(v), we have

E
[
||f̂mopt − f ||2

]
.

(log n)γ+ 1
2

n
,

where γ is given in (5).

The same result hold for f = gp,σ. This rate is similar to the one obtained in Butucea (2004)
for super-smooth functions f .

However in all previous cases the choicem = mopt depends on the regularity of f and associated
parameters, which are unknown. This is why we have to look for another method to make the
bias-variance compromise, in a data-driven way (see Section 4).

3.3 Comparison with the classical estimator in deconvolution. The ”standard” decon-
volution estimator (see Fan (1991), and choose sinus cardinal kernel) is given by:

(14) f̌`(x) =
1

2π

∫ π`

−π`
e−ixu

f̂∗Z(u)

f∗ε (−u)
du, where f̂∗Z is defined by (7).

We mention that this estimator can be decomposed in an orthonormal basis namely ψ`,j(x) =
√
lψ(`x − j), ψ(x) =

sinπx

πx
(see Comte et al. (2008), Section 3.2), but the development is

infinite:

f̌`(x) =
∑
j∈Z

âm,jψm,j , âm,j =
1

n

n∑
k=1

1

2π

∫
ψ∗m,j(−u)

f∗ε (u)
eiuZkdu
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A finite (computable) development would require an additional approximation (truncation of
the sum). From computation point of view, the low complexity of f̂m in the Hermite basis is an
advantage (see Belomestny et al. (2017), Section 4.5). The risk of f̌ verifies

E[||f̌` − f ||2] ≤ 1

2π

∫
|t|>π`

|f∗(u)|2 du+
1

2πn

∫
|u|≤π`

du

|f∗ε (u)|2
.

In this context, the regularity spaces which are considered are Sobolev balls defined by

(15) W s(D′) =

{
f ∈ L2(R),

∫
(1 + u2s)|f∗(u)|2du < D′

}
, D′ > 0.

Note that it is proved in Comte and Genon-Catalot (2017) that W s
H(D) ⊂ W s(D). For f ∈

W s(D) the bias term is such that
1

2π

∫
|t|>π`

|f∗(u)|2 du ≤ D

2π
(π`)−2s = C`−2s. Therefore, for

` =
√
m, the risks of the two estimators have the same order. This implies that they have the

same rates of convergence.

4 Adaptive estimation and model selection

From now on, l given in Proposition 3.1, part (ii) is assumed to be fixed. In this section
we propose an automatic selection of m which performs the bias-variance compromise. The
procedure does not depend on the regularity of the density f , but only on data Z1, . . . , Zn.
Consider the contrast function defined by

(16) γn(t) = ||t||2 − 2

n

n∑
k=1

φt(Zk), φt(x) =
1

2π

∫
t∗(u)

f∗ε (−u)
e−ixudu.

It is easy to check that f̂m = argmin
t∈Sm

γn(t). Let

∆(m) =
1

π

∫
|u|≤
√
lm

du

|f∗ε (u)|2
.

We considerMn, the collection of models,

Mn = {m ∈ N\{0},∆(m) ≤ n} .
This collection is finite and contains models with bounded variance. More precisely, as fε is a

density, we have |f∗ε (u)| ≤ 1, which implies ∆(m) ≥ 1

π

∫
|u|≤
√
lm
du =

2
√
lm

π
. Therefore, m . n2.

The cardinal of Mn is therefore at most of order O(n2). Our aim is to find the best model m̂
in Mn, that is to select m̂ such that, the risk of f̂m̂ approximately performs the bias-variance
trade-off, without any information on f . We set:

(17) m̂ = argmin
m∈Mn

{γn(f̂m) + pen(m)},

where pen(m) is an increasing function defined by:

(18) pen(m) =


κ

∆(m)

n
, if fε is ordinary smooth or super smooth with δ <

1

2
,

2κ
(

1 + 24µlδ/2mδ− 1
2

) ∆(m)

n
if fε is super smooth with δ ≥ 1

2
,

where κ > 0 is a numerical constant, µ is the constant given in (5) and l ≥ 2 given in Proposition

3.1, fixed. As γn(f̂m) = −||f̂m||2 = −
m−1∑
j=0

â2
j , it is worth emphasizing that computing m̂ is

numerically fast. Clearly the choice of m given by (17) is entirely determined by the data. The
constant κ is independent of the data. The theoretical results show that κ > 16 is suitable (see
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the proof of Lemma 7.1.) In practice this value is too large and is calibrated by preliminary
simulation experiments. They confirm that (see Section 5) smaller practical values must be
chosen.

We can prove the following theorem.

Theorem 4.1. Assume that fε is square integrable. Let pen(m) defined by (18), f̂m = argmin
t∈Sm

γn(t)

and m̂ selected by (17). Then, there exists a constant κ0 such that, for all κ ≥ κ0, the estimator
f̂m̂ satisfies

(19) E
[
||f̂m̂ − f ||2

]
≤ C inf

m∈Mn

(
||f − fm||2 + pen(m)

)
+
C ′

n
,

where C is a numerical constants (C=4 suits) and C ′ a constant depending on fε.

Remark 4.2. Assume that the assumptions of Theorem 4.1 are satisfied. Then if f ∈ W s
H(D)

the estimator f̂m̂ converges to f with the rates obtained in Table 1. Indeed, the term C ′/n in (19)
does not change the order of the rate, and is negligible compared to the term ||f−fm||2 +pen(m).

5 Simulation and numerical results

5.1 Implementation of the adaptive estimator. In this section, we propose some illus-
trations of the theoretical results. More precisely, we implement the projection estimator given
by (8). To do this, we consider data simulated according to (1). For the density f , we choose
the distributions (following Comte and Lacour (2011)):

(i) Gaussian standard N (0, 1), I = [−4, 4]

(ii) Cauchy standard: f(x) =
(
π
(
1 + x2

))−1, I = [−10, 10]

(iii) Laplace density: f(x) = e−
√

2|x|/
√

2, I = [−5, 5]

(iv) Gamma density Γ(4, 1/
√

3)/
√

12, I = [0, 6]

(v) Mixed Gaussian density (0.5N (−2, 1) + 0.5N (2, 1))/
√

5, I = [−3, 3]

where I is the interval on which we graphically represent the functions and compute the risks.
• Case 1 : Laplace noise ( "ordinary smooth")

The density considered of fε is :

fε(x) =
λ

2
e−λ|x|; f∗ε (x) =

λ2

λ2 + x2
; λ = 2

√
5.

The penalty term is given by:

pen(m) =
κ

n
∆(m) =

κ

πn

∫
|u|≤
√
lm

(1+
u2

λ2
)2du =

2κ

πn

(
√
lm+

2

3λ2

(√
lm
)3

+
(
√
lm)5

5λ4

)
, l = 6.

• Case 2 : Gaussian noise ("super smooth")
We have:

fε(x) =
1√
2πσ

e−x
2/2σ2

ε ; f∗ε (x) = e−σ
2
εx

2/2.

The penalty proposed is:

pen(m) = 4κ
(

1 + 24σ2
ε lm

3/2
) √lm
πn

(∫ 1

0
eu

2σ2
ε lmdu

)
,

where l = 4 here and the integral is computed by a Riemann sum discretized in 300 points.
Then, we have to calibrate the penalty constant κ. This constant is fixed through preliminary
simulations, by testing set of values on different densities f with a large number of repetitions.
The comparison of the risks for these different values of κ makes it possible to make a reasonable
choice. Finally, we choose κ = 0.4 for a Laplace noise, κ = 10−3 for a Gaussian noise.

The estimation procedure is described as follows:
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• For m inMn, compute −
m−1∑
j=0

â2
j + pen(m) = Cr(m), with âj given by (8)

• Select m̂ such that m̂ = argmin
m∈Mn

Cr(m),

• Compute f̂m̂ =
m̂−1∑
j=0

âjϕj , and
∫
I
(f̂m̂(u)− f(u))2du by discretization.

5.2 Simulations results. Simulation results are given in Tables 2 and 3. The columns of
Table 2 indicate the values of the MISE (Mean Integrated squared Error) multiplied by 100
for a Laplace noise or a Gaussian noise, Table 3 gives the ratio of the risk values obtained in
Comte and Lacour (2011) divided by the risk values obtained by our method: the larger it is, the
better our method is. The errors obtained by our method are computed by a discretization of
the integral as Riemann sums and averaging over 100 independent simulations. We remark that
increasing the sample size makes the error smaller and thus improves the estimation. Globally
the results of our simulations are satisfactory and our method is often better than Comte and
Lacour (2011) for both noise densities. The main exception concerns the Gamma density (iv).
Some failures for Cauchy density (ii) and super smooth noise are also observed, especially when
n increases.

n = 100 n = 250 n = 500 n = 1000

f
Noise Lap. Gauss. Lap. Gauss Lap. Gauss. Lap. Gauss.

Gaussian 0.44 0.37 0.12 0.06 9.5910−2 4.310−2 7.10−2 4.1.10−2

Cauchy 0.28 0.89 0.20 0.56 0.14 0.37 0.10 0.29
Laplace 1.65 2.18 1.06 1.34 0.75 1.16 0.57 0.87
Gamma 1.70 1.27 0.98 0.97 0.50 0.90 0.28 0.83

Mixed Gaussian 2.82 1.91 1.09 0.87 0.66 0.69 0.41 0.53
Table 2. Empirical integrated mean squared errors computed from (100 ×
E||f̂m̂ − f ||2) over 100 independent simulations pour n = 100, 250, 500, 1000.

n = 100 n = 250 n = 500 n = 1000

f
Noise Lap. Gauss. Lap. Gauss Lap. Gauss. Lap. Gauss.

Gaussian 1.95 1.27 5.67 5.00 5.01 5.11 2.41 3.41
Cauchy 4.07 1.07 2.45 0.79 2.43 0.70 1.40 0.52
Laplace 1.47 1.40 1.13 1.34 1.12 1.02 1.04 0.89
Gamma 0.67 0.88 0.66 0.73 0.82 0.49 1 0.37

Mixed Gaussian 1.26 2.17 1.45 2.24 1.17 1.68 0.95 1.15
Table 3. Ratio of the risks obtained in Comte and Lacour (2011) divided by
those of Table 2.

6 Conclusion remarks: extensions to the dependent case

We proposed a projection estimator of the density of X in the convolution model (1), relying
on the Hermite basis. We prove a bound on the quadratic risk which shows that the relevant
parameter is not the dimension m but its square root

√
m. A data driven estimator is proposed:

the model can be automatically chosen and the resulting estimator reaches optimal rates in most
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cases. We also provide numerical simulation results, and the comparison with Comte and Lacour
(2011) ensures the good performances of our method.

To conclude we explain that the results may be extended to the context of dependent Xi’s.
We first define the mixing coefficients.

Definition 1. Let (Ω,A,P) be a probability space, and U , V two σ-algebras of A. The β-mixing
coefficient is defined by

(20) β(U ,V) =
1

2
sup{

I∑
i=1

J∑
j=1

|P(Ui ∩ Vj)− P(Ui)P(Vj)|},

where the supremum is taken over all pairs finite partitions {U1, . . . , UI} and {V1, . . . , VJ } of Ω,
such that Ui ∈ U and Vj ∈ V.

Let (Xk)k∈Z a strictly stationary process. Let F0 = σ(Xi, i ≤ 0) and Fk = σ(Xi, i ≤ k) for
all k ∈ Z, where F0 is the σ-algebra generated by the Xi for i ≤ 0 and Fk generated by Xi for
i ≤ k. The mixing coefficient βk is defined by βk = β(F0,Fk), where β is defined by (20).

The process (Xk)k∈Z is β-mixing if the sequence βk tends to zero at infinity.

In this section, we still consider model (1), but we replace (H1) by (H ′1) : (Xk)k≥1 is strictly
stationary and β-mixing. The estimator is the same as in the independent case.

We can prove a bound on the risk.

Proposition 6.1. Let 1 ≤ p < +∞ and q two numbers such that 1/p+ 1/q = 1 and assume that

E[|X1|2q/3] < +∞. If the mixing coefficient are such that
+∞∑
k=0

(k + 1)p−1βk < +∞, then

(21)

E[||f̂m − f ||2] ≤ ||f − fm||2 +
1

πn

∫
|u|≤
√
lm

du

|f∗ε (u)|2
+

2

n
||fZ ||∞

m−1∑
j=0

∫
|u|>
√
lm

|ϕj(u)|2

|f∗ε (u)|2
du+ c′

√
m

n
,

where l ≥ 2 is a positive constant, and c′ = c′

(
E(|X1|2q/3),

+∞∑
k=0

(k + 1)p−1βk

)
.

Now we comment this bound of risk. We remark that we have a usual bias term, the same
variance term as in the i.i.d. case with an additional term c′

√
m/n which is clearly specific to the

β-mixing case. As
√
m is negligible compared to

1

πn

∫
|u|≤
√
lm

du

|f∗ε (u)|2
, inequality (21) implies

that the risk of f̂m here has the same order as in the i.i.d. case. We have therefore the same rates
of convergence. Thus, the same an adaptive estimation procedure as previously would work. We
do no investigate further, methods and results would be similar to Comte et al. (2008).

7 Proofs

7.1 Proof of proposition 3.1. We start by the part (i). For f̂m given by (8), we have:

(22) E
[
||f̂m − f ||2

]
= ||f − fm||2 + E

[
||f̂m − fm||2

]
= ||f − fm||2 +

m−1∑
j=0

Var(âj).

Now with the definition of âj given by (8) we have

Var(âj) = Var

(
(−i)j√

2πn

∫
R

n∑
k=1

eiuZk
ϕj(u)

f∗ε (u)
du

)
=

1

2πn
Var

(
(−i)j

∫
R
eiuZ1

ϕj(u)

f∗ε (u)
du

)

≤ 1

2πn
E

[∣∣∣∣(−i)j ∫
R
eiuZ1

ϕj(u)

f∗ε (u)
du

∣∣∣∣2
]
.
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Plugging this in (22) yields

E
[
||f̂m − f ||2

]
≤ ||f − fm||2 +

1

2πn

m−1∑
j=0

E

[∣∣∣∣∫
R
eiuZ1

ϕj(u)

f∗ε (u)
du

∣∣∣∣2
]
.

Using |a+ b|2 ≤ 2|a|2 + 2|b|2, we deduce

E

m−1∑
j=0

∣∣∣∣∫
R
eiuZ1

ϕj(u)

f∗ε (u)
du

∣∣∣∣2
 ≤ 2E

m−1∑
j=0

∣∣∣∣∣
∫
|u|>
√
lm
eiuZ1

ϕj(u)

f∗ε (u)
du

∣∣∣∣∣
2


+ 2E

m−1∑
j=0

∣∣∣∣∣
∫
|u|≤
√
lm
eiuZ1

ϕj(u)

f∗ε (u)
du

∣∣∣∣∣
2
 .

We evaluate the two right-hand side terms of the previous inequality. By Bessel inequality we
have, for the last term:

(23) E

m−1∑
j=0

∣∣∣∣∣
∫
|u|≤
√
lm
eiuZ1

ϕj(u)

f∗ε (u)
du

∣∣∣∣∣
2
 = E

m−1∑
j=0

∣∣∣∣〈eiZ1•

f∗ε
1|•|≤

√
lm, ϕj〉

∣∣∣∣2
 ≤ ∫

|u|≤
√
lm

du

|f∗ε (u)|2
.

Moreover, let ψj(u) =
ϕj(u)

f∗ε (u)
1|u|>

√
lm, we get for the other term

E

m−1∑
j=0

∣∣∣∣∣
∫
|u|>
√
lm
eiuZ1

ϕj(u)

f∗ε (u)
du

∣∣∣∣∣
2
 =

m−1∑
j=0

∫
R

∣∣∣∣∣
∫
|u|>
√
lm
eiuz

ϕj(u)

f∗ε (u)
du

∣∣∣∣∣
2

fZ(z)dz

≤||fZ ||∞
m−1∑
j=0

∫
R

∣∣∣∣∣
∫
|u|>
√
lm
eiuz

ϕj(u)

f∗ε (u)
du

∣∣∣∣∣
2

dz

=||fZ ||∞
m−1∑
j=0

||ψ∗j ||2 = 2π||fZ ||∞
m−1∑
j=0

||ψj ||2.(24)

Putting (23), (24) in (22), we have the part (i).
Let us prove the part (ii). We have using (5) that:

m−1∑
j=0

∫
|u|>
√
lm

|ϕj(u)|2

|f∗ε (u)|2
du ≤ c1

m−1∑
j=0

∫
|u|>
√
lm

(1 + u2)γ |ϕj(u)|2 eµ|u|δdu.

By (4), we have |ϕj(x)| < Ce−ξx
2
if |x| ≥

√
2j + 1. For j ∈ {0, . . . ,m−1}, thus it is in particular

true for |x| ≥
√
lm, with l ≥ 2. Therefore, for j ≤ m− 1,∫

|u|>
√
lm

(1 + u2)γ |ϕj(u)|2 eµ|u|δdu ≤ C2

∫
|u|>
√
lm

(1 + u2)γe−2ξu2eµ|u|
δ
du

≤ C2e−ξlm
∫
R

(1 + u2)γe−ξu
2
eµ|u|

δ
du.

And
∫
R

(1 + u2)γe−ξu
2
eµ|u|

δ
du < +∞ if δ < 2 or if δ = 2, µ < ξ, which corresponds to our

assumptions. Therefore:
m−1∑
j=0

∫
|u|>
√
lm

|ϕj(u)|2

|f∗ε (u)|2
du = O(me−ξlm). Hence the result. �.
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7.2 Proof of proposition 3.2. By (9) and (10), we have:

(25) E[||f̂m − f ||2] ≤ ||f − fm||2 +
1

πn

∫
|u|≤
√
lm

du

|f∗ε (u)|2
+
c

n
.

Using Lemma 1 in Comte and Lacour (2011) p.586, we have

(26)
∫
|u|≤
√
lm

du

|f∗ε (u)|2
� mγ+ 1−δ

2 eµl
δ
2m

δ
2 .

We denote for two functions u and v, u(x) � v(x), if u(x) . v(x) and v(x) . u(x).
From Belomestny et al. (2017) the bias term is exponentially small (see Proposition 7, 8 and

9), thus, the rate of convergence is given by the order of variance term. As fε is ordinary smooth,
δ = 0 in (26) and replacing m by mopt = [log(n)/C1], with C1 is given in Proposition 3.2, we
have the result. �

7.3 Proof of theorem 4.1. By definition of m̂ we have: γn(f̂m̂)+pen(m̂) ≤ γn(fm)+pen(m).
Moreover, for two functions s, t in L2(R), γn(t)−γn(s) = ||t−f ||2−||s−f ||2 +2νn(t−s), where

νn(t) =
1

n

n∑
k=1

(φt(Zk)− 〈t, f〉),

where φt is defined in (16). Thus, ||f̂m̂ − f ||2 ≤ ||fm − f ||2 + pen(m) + 2νn(f̂m̂ − fm)− pen(m̂).
As the function t 7→ νn(t) is linear, we deduce

||f̂m̂ − f ||2 ≤ ||fm − f ||2 + pen(m) + 2||f̂m̂ − fm||νn

(
f̂m̂ − fm
||f̂m̂ − fm||

)
− pen(m̂)

≤ ||fm − f ||2 + pen(m) + 2||f̂m̂ − fm|| sup
t∈Sm+Sm̂,||t||=1

νn(t)− pen(m̂).(27)

For all x, y ≥ 0 we have: 2xy ≤ x2/4 + 4y2, therefore we obtain

(28) 2||f̂m̂ − fm|| sup
t∈Sm+Sm̂,||t||=1

νn(t) ≤ 1

4
||f̂m̂ − fm||2 + 4 sup

t∈Sm+Sm̂,||t||=1
(νn(t))2.

Now, ||f̂m̂ − fm||2 ≤ 2||f̂m̂ − f ||2 + 2||fm − f ||2 and plugging this and (28) in (27), we have

(29)
1

2
||f̂m̂ − f ||2 ≤

3

2
||fm − f ||2 + pen(m) + 4 sup

t∈Sm+Sm̂,||t||=1
(νn(t))2 − pen(m̂).

We decompose the empirical process νn(t) in two processes. We set m∗ = m̂ ∨m. For t ∈ Sm∗ ,
we have using Plancherel-Parseval

νn(t) =
1

n

n∑
k=1

(φt(Zk)− 〈t, f〉)

=
1

n

n∑
k=1

(
1

2π

∫
|u|≤
√
lm∗

t∗(u)

f∗ε (−u)
e−iuZkdu− E

[
1

2π

∫
|u|≤
√
lm∗

t∗(u)

f∗ε (−u)
e−iuZkdu

])

+
1

n

n∑
k=1

(
1

2π

∫
|u|>
√
lm∗

t∗(u)

f∗ε (−u)
e−iuZkdu− E

[
1

2π

∫
|u|>
√
lm∗

t∗(u)

f∗ε (−u)
e−iuZkdu

])

=
1

n

n∑
k=1

(φt,1(Zk)− E [φt,1(Zk)]) +
1

2π

∫
|u|>
√
lm∗

t∗(u)

f∗ε (−u)
(f̂∗Z(u)− f∗Z(u))du,(30)
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with φt,1(x) =
1

2π

∫
|u|≤
√
lm∗

t∗(u)

f∗ε (−u)
e−iuxdu. Therefore, we write νn(t) = νn,1(t) + νn,2(t)

where νn,1(t) =
1

n

n∑
k=1

(φt,1(Zk)− E [φt,1(Zk)]) and νn,2(t) =
1

2π

∫
|u|>
√
lm∗

t∗(u)

f∗ε (−u)
(f̂∗Z(−u) −

f∗Z(−u))du. Using that (νn,1(t) + νn,2(t))2 ≤ 2 (νn,1(t))2 + 2 (νn,2(t))2 and by (29), (30) we
deduce

1

2
||f̂m̂− f ||2 ≤

3

2
||fm− f ||2 + pen(m) + 8 sup

t∈Sm∗ ,||t||=1
(νn,1(t))2 + 8 sup

t∈Sm∗ ,||t||=1
(νn,2(t))2− pen(m̂).

We introduce the function p(m,m′) =
κ

8

∆(m ∨m′)
n

if fε is ordinary smooth or super smooth

with δ ≤ 1/2 and p(m,m′) = 2κ(1 + ε(m,m′))
∆(m ∨m′)

8n
otherwise, where ε(m,m′) is given

below, which verifies 8p(m,m′) ≤ pen(m) + pen(m′). We obtain:

||f̂m̂ − f ||2 ≤3||fm − f ||2 + 4pen(m) + 16
∑

m′∈Mn

(
sup

t∈Sm∨m′ ,||t||=1
(νn,1(t))2 − p(m,m′)

)
+

+ 16 sup
t∈Sm∗ ,||t||=1

(νn,2(t))2.

By taking expectation, we get

E
[
||f̂m̂ − f ||2

]
≤ 3||fm − f ||2 + 4pen(m) + 16

∑
m′∈Mn

E

[(
sup

t∈Sm∨m′ ,||t||=1
(νn,1(t))2 − p(m,m′)

)
+

]

+ 16E

[
sup

t∈Sm∗ ,||t||=1
(νn,2(t))2

]
.

The two followings lemmas lead to the result of Theorem 4.1:

Lemma 7.1. There exist a constant Σ1 such that

∑
m′∈Mn

E

[(
sup

t∈Sm∨m′ ,||t||=1
(νn,1(t))2 − p(m,m′)

)
+

]
≤ Σ1

n
.

Lemma 7.2. There exist a constant Σ2 such that

E

[
sup

t∈Sm∗ ,||t||=1
(νn,2(t))2

]
≤ Σ2

n
.

Using lemmas 7.1 and 7.2, we have the result choosing C = 4 and C ′ = 16(Σ1 + Σ2). �

7.3.1 Proof of lemma 7.1. To prove this lemma, we use Talagrand’s inequality given in
Appendix 8.1, and compute H2, M1, v defined there. Denote by m′′ = m ∨ m′. We start by

computing H2. As the map t 7→ νn,1(t) is linear, for t =

m′′−1∑
j=0

ajϕj such that ||t|| = 1, we have

(νn,1(t))2 =

m′′−1∑
j=0

ajνn,1 (ϕj)

2

≤
m′′−1∑
j=0

a2
j

m′′−1∑
j=0

νn,1(ϕj)
2 =

m′′−1∑
j=0

νn,1(ϕj)
2.
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Therefore,

E

[(
sup

t∈Sm′′ ,||t||=1
(νn,1(t))2

)]
≤ E

m′′−1∑
j=0

νn,1(ϕj)
2

 =

m′′−1∑
j=0

1

n
Var

(
φϕj ,1(Z1)

)
≤ 1

n

m′′−1∑
j=0

E
[
|φϕj ,1 (Z1) |2

]
.

It comes using (23) that,

(31) E

m′′−1∑
j=0

|φϕj (Z1) |2
 =

1

(2π)2
E

m′′−1∑
j=0

∣∣∣∣∣
∫
|u|≤
√
lm′′

ϕ∗j (u)e−iuZ1

f∗ε (−u)
du

∣∣∣∣∣
2
 ≤ ∆(m′′)

n
=: H2.

Now we look for M1. Using Cauchy-Schwarz inequality and Parseval’s theorem

|φt,1(x)| =
1

2π

∣∣∣∣∣
∫
|u|≤
√
lm′′

t∗(u)

f∗ε (−u)
e−iuxdu

∣∣∣∣∣ ≤ 1

2π

∫
|u|≤
√
lm′′

∣∣∣∣ t∗(u)

f∗ε (−u)
e−iux

∣∣∣∣ du
≤ 1

2π

√∫
|t∗(u)|2du

∫
|u|≤
√
lm′′

du

|f∗ε (−u)|2
=

1

2π

√
2π||t||2

∫
|u|≤
√
lm′′

du

|f∗ε (−u)|2

≤
√

∆(m′′).

Thus,

(32) sup
t∈Sm+Sm′ ,||t||=1

||φt,1||∞ ≤
√

∆(m′′) =: M1.

The case of v is more tedious,

Var(φt,1(Z1)) ≤ E
[
|φt,1(Z1)|2

]
=

1

2π

∫ ∣∣∣∣∣
∫
|u|≤
√
lm′′

t∗(u)

f∗ε (−u)
e−iuzdu

∣∣∣∣∣
2

fZ(z)dz

=
1

2π

∫∫∫
t∗(u)

f∗ε (−u)

t∗(−v)

f∗ε (v)
e−i(u−v)zfZ(z)1|u|≤

√
lm′′1|v|≤

√
lm′′dudvdz

=
1

2π

∫∫
t∗(u)

f∗ε (−u)

t∗(−v)

f∗ε (v)
f∗Z(v − u)1|u|≤

√
lm′′1|v|≤

√
lm′′dudv

≤ 1

2π

∫∫ ∣∣∣∣ t∗(u)

f∗ε (−u)

∣∣∣∣2 |f∗Z(v − u)|1|u|≤√lm′′1|v|≤√lm′′dudv

≤ 1

2π

∫
|f∗Z(z)|dz

∫ ∣∣∣∣ t∗(u)

f∗ε (−u)

∣∣∣∣2 1|u|≤√lm′′du.
Using the Cauchy-Schwarz inequality and Parseval’s theorem we have:∫

|f∗Z(z)|dz =

∫
|f∗(z)f∗ε (z)|dz ≤ 2π||fε||. ||f ||.

Thus, we get: Var(φt,1(Z1)) .
∫ ∣∣∣∣ t∗(u)

f∗ε (−u)

∣∣∣∣2 1|u|≤√lm′′du. We consider separately two cases.

(1) Ordinary smooth case: In this case, we have by (31) and by (26) that H2 � m′′γ+1/2

n
.

Moreover,

Var(φt,1(Z1)) ≤
∫
|t∗(u)|2 (1 + t2)γ1|u|≤

√
lm′′du ≤ (1 + lγm′′γ)

∫
|t∗(u)|2 du

= 2π(1 + lγm′′γ)||t||2 = 2π(1 + lγm′′γ).
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We can set v = cm′′γ , with c > 0. Thus, using Talagrand’s inequality we have:

(33) E

[(
sup

t∈Sm′′ , ||t||=1
(νn,1(t))2 − p(m,m′)

)
+

]
.
[
U(m′′) + V (m′′)

]
,

with p(m,m′) =
κ

8

∆(m′′)

n
=
κ

8
H2 ≥ 2(1 + 2ε)H2, we take κ0 = 17, ε = 1/2, and

U(m′′) =
v

n
exp

(
−K1

2

nH2

v

)
=
cm′′γ

n
exp

−K1

2
n
m′′γ+

1
2

n

cm′′γ

 . m′′γ

n
e−

K1
2c
m′′

1
2 ,

V (m′′) =
M2

1

C(ε)2n2
exp

(
−K ′1C(ε)

1√
2

nH

M1

)
= C1

∆(m′′)

n2
exp

−C2n

√
∆(m′′)
n√

∆(m′′)

 . 1

n
e−C2

√
n,

because for m ∈Mn, ∆(m) ≤ n. Therefore, we deduce by (33) that:∑
m′∈Mn

E

[(
sup

t∈Sm′′ , ||t||=1
(νn,1(t))2 − p(m,m′)

)
+

]
.

∑
m′∈Mn

[
U(m′′) + V (m′′)

]
.

As∑
m′

U(m′′) .
1

n

∑
m′

m′′γe−
K1
2c
m′′ =

1

n

 m∑
m′=0

m′′γe−
K1
2c
m′′ +

n2∑
m′=m

m′′γe−
K1
2c
m′′


=

1

n

[
mγ+1e−

K1
2c
m +

+∞∑
m′=m

m′γe−
K1
2c
m′

]
≤ C ′1

n
,

and ∑
m′∈Mn

V (m′′) .
1

n

∑
m′∈Mn

e−C2
√
n =

1

n
|Mn|e−C2

√
n . ne−C2

√
n ≤ C ′′1

n
.

We deduce that

(34)
∑

m′∈Mn

E

[(
sup

t∈Sm′′ , ||t||=1
(νn,1(t))2 − p(m,m′)

)
+

]
≤ Σ1

n
, Σ1 = C ′1 + C ′′1 .

(2) Super smooth case: In this case the order ofH2 is given by (26): H2 � m′′
1−δ
2 eµl

δ
2m′′

δ
2

n
,

Var(φt,1(Z1)) ≤ c1

∫
|t∗(u)|2 eµ|u|δ1|u|≤√lm′′du ≤ c1e

µl
δ
2m′′

δ
2

∫
|t∗(u)|2 du

= 2πc1e
µl
δ
2m′′

δ
2 ||t||2 . eµl

δ
2m′′

δ
2 = v.

We use Talagrand’s inequality again, we must compute U(m′′) and V (m′′).

U(m′′) =
v

n
exp

(
−K1ε

nH2

v

)
=
ceµl

δ
2m′′

δ
2

n
exp

−K1εn
m′′

1−δ
2 eµl

δ/2m
′′ δ2

n

eµl
δ/2m′′

δ
2

 . 1

n
eµl

δm′′
δ
2−K1εm

′′ 1−δ2 ,

V (m′′) =
M2

1

C2(ε)n2
exp

(
−K ′1C(ε)

√
ε
nH

M1

)
=

∆(m′′)

C2(ε)n2
exp

(
−K ′1C(ε)

√
ε
√
n
)

≤ 1

C2(ε)n
exp

(
−K ′1C(ε)

√
ε
√
n
)
.
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• Study of
∑

m′∈Mn

U(m′′): we have
∑

m′∈Mn

U(m′′) .
1

n

∑
m′∈Mn

eµl
δ
2m′′

δ
2−K1εm

′′ 1−δ2 . We are

going to study this term according the value of δ.
(i) Case 0 < δ < 1/2: In this case δ/2 < (1 − δ)/2. Thus the choice ε = 1 im-

plies that meµl
δm

δ
2−K1εm

1−δ
2 is bounded by a constant independent of m′, and

eµl
δm′

δ
2−K1εm

′ 1−δ2 is integrable in m′. We deduce that:

1

n

∑
m′∈Mn

eµl
δm′′

δ
2−K1εm

′′ 1−δ2 =
1

n

 m∑
m′=1

eµl
δ/2m′′

δ
2−K1εm

′′ 1−δ2 +

n2∑
m′=m

eµl
δ/2m′′

δ
2−K1εm

′′ 1−δ2


≤ 1

n

meµlδ/2m δ
2−K1εm

1−δ
2 +

∑
m′∈Mn

eµl
δ/2m′

δ
2−K1εm

′ 1−δ2

 ≤ C ′′1
n
.(35)

(ii) Case δ ≥ 1/2: We choose ε such that µlδ/2m′′
δ
2 −K1εm

′′ 1−δ
2 = −µl

δ
2m′′

δ
2 , that is

ε =
2µlδ/2

K1
m′′δ−

1
2 . This implies

(36)
1

n

∑
m′∈Mn

eµl
δ/2m′′

δ
2−K1εm

′′ 1−δ2 =
1

n

∑
m′∈Mn

e−µl
δ/2m′′

δ
2 ≤ 1

n

∑
m′

e−µl
δ/2m′

δ
2 ≤ C ′′1

n
.

In the all cases, we have :
∑

m′∈Mn

U(m′′) ≤ C ′′1
n

.

• Study of
∑

m′∈Mn

V (m′′)

As |Mn| = O(n2) and for all choice of ε in the study of U(m′′), we have C(ε) = 1, ε ≥ 1.
Thus,

∑
m′∈Mn

V (m′′) ≤ |Mn|
C2(ε)n

exp
(
−K ′1C(ε)ε

√
n
)
≤ n

C2(ε)
exp

(
−K ′1C(ε)

√
ε
√
n
)
≤ C ′1

n
.(37)

Therefore, (34) holds and the result of Lemma 7.1 is proven. �

7.3.2 Proof of lemma 7.2. Here m∗ = m ∨ m̂. Using the Cauchy-Schwarz inequality for

t =

m∗−1∑
j=0

ajϕj such that ||t||2 =
m∗−1∑
j=0

a2
j = 1 we have:

νn,2(t)2 =
1

(2π)2

(∫
|u|>
√
lm∗

t∗(u)

f∗ε (−u)
(f̂∗Z(−u)− f∗Z(−u))du

)2

≤ 1

(2π)2

m∗−1∑
j=0

∣∣∣∣∣
∫
|u|>
√
lm∗

ϕ∗j (u)

f∗ε (−u)
(f̂∗Z(−u)− f∗Z(−u))du

∣∣∣∣∣
2
 .
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By (3)-(4) and using the Cauchy-Schwarz inequality we have:

m∗−1∑
j=0

∣∣∣∣∣
∫
|u|>
√
lm∗

ϕ∗j (u)

f∗ε (−u)
(f̂∗Z(u)− f∗Z(u))du

∣∣∣∣∣
2

= 2π
m∗−1∑
j=0

∣∣∣∣∣
∫
|u|>
√
lm∗

ϕj(u)

f∗ε (−u)
(f̂∗Z(−u)− f∗Z(−u))du

∣∣∣∣∣
2

.
m∗−1∑
j=0

(∫
|u|>
√
lm∗

|f̂∗Z(−u)− f∗Z(−u)|
|f∗ε (−u)|

|ϕj(u)|du

)2

.
m∗−1∑
j=0

(∫
|u|>
√
lm∗

|f̂∗Z(−u)− f∗Z(−u)|
|f∗ε (−u)|

e−ξu
2
du

)2

.
m∗−1∑
j=0

(∫
|u|>
√
lm∗

|f̂∗Z(−u)− f∗Z(−u)|2

|f∗ε (−u)|2
e−ξu

2
du

)

×
∫
|u|>
√
lm∗

e−ξu
2
du.

As
∫
|u|>
√
lm∗

e−ξu
2
du ≤ ce−ξm

∗
and the function x 7→ xe−ξx reaches its maximum (1/ξ)e−1 in

x = 1/ξ, it implies νn,2(t)2 .
∫
R

|f̂∗Z(−u)− f∗Z(−u)|2

|f∗ε (−u)|2
e−ξu

2
du. Therefore,

E

[
sup

t∈Sm∗ ,||t||=1
(νn,2(t))2

]
.
∫
R

E
[
|f̂∗Z(−u)− f∗Z(−u)|2

]
|f∗ε (−u)|2

e−ξu
2
du.

Now, we have

E
[
|f̂∗Z(−u)− f∗Z(−u)|2

]
= Var[f̂∗Z(−u)] =

1

n
Var[e−iuZ1 ] =

1

n

(
1− |f∗Z(−u)|2

)
≤ 1

n
.

Thus, by this last inequality we deduce E

[
sup

t∈Sm∗ , ||t||=1
(νn,2(t))2

]
.

1

n

∫
R

1

|f∗ε (−u)|2
e−ξu

2
du. If

fε is ordinary smooth, the integral is convergent and the previous bound is of order 1/n. Assume
now fε super smooth, we have by (5):

E

[
sup

t∈Sm∗ , ||t||=1
(νn,2(t))2

]
.

1

n

∫
R
eµ|u|

δ
e−ξu

2
du ≤ Σ2

n
,

if δ < 2, or if δ = 2, and µ < ξ. This gives the announced result.

7.4 Proof of proposition 6.1. As in the i.i.d. case, we have the bias-variance decomposition
given by (22). Now,

Var(âj) = Var

(
(−i)j√

2πn

∫
R

n∑
k=1

eiuZk
ϕj(u)

f∗ε (t)
du

)

=
1

2πn2

n∑
k=1

Var

(
(−i)j

∫
R
eiuZk

ϕj(u)

f∗ε (u)
du

)
+

1

2πn2

∑
1≤k, l≤n,k 6=l

Cov

(
(−i)j

∫
R
eiuZk

ϕj(u)

f∗ε (u)
du, (−i)j

∫
R
eiuZl

ϕj(u)

f∗ε (u)
du

)
.
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As Var(X) ≤ E|X|2, it comes

E
[
||f̂m − f ||2

]
≤ ||f − fm||2 +

1

2πn

m−1∑
j=0

E

[∣∣∣∣∫
R
eiuZ1

ϕj(u)

f∗ε (u)
du

∣∣∣∣2
]

+
1

2πn2

m−1∑
j=0

∑
1≤k,l≤n,k 6=l

Cov

(
(−i)j

∫
R
eiuZk

ϕj(u)

f∗ε (u)
du, (−i)j

∫
R
eiuZl

ϕj(u)

f∗ε (u)
du

)
.(38)

The first two right hand side terms are the same as in the independent case and are dealt with
as in Proposition 3.1. We compute the covariance term. First,

Cov

(
(−i)j

∫
R
eiuZk

ϕj(u)

f∗ε (u)
du, (−i)j

∫
R
eiuZl

ϕj(u)

f∗ε (u)
du

)

= E
[∫

R

∫
R
ei(uZk−vZl)

ϕj(u)

f∗ε (u)

ϕj(v)

f∗ε (−v)
dudv

]
− E

[∫
R
eiuZk

ϕj(u)

f∗ε (u)
du

]
E
[∫

R
e−ivZl

ϕj(v)

f∗ε (−v)
dv

]
.

(39)

The first expectation is equal to

E
[∫

R

∫
R
ei(uZk−vZl)

ϕj(u)

f∗ε (u)

ϕj(v)

f∗ε (−v)
dudv

]
=

∫
R

∫
R
E
[
ei(uXk+uεk−vXl−vεl)

] ϕj(u)

f∗ε (u)

ϕj(v)

f∗ε (−v)
dudv

=

∫
R

∫
R
E
[
ei(uXk−vXl)

]
ϕj(u)ϕj(v)dudv,(40)

and the second to:

(41) E
[∫

R
eiuZk

ϕj(u)

f∗ε (u)
du

]
E
[∫

R
e−ivZl

ϕj(v)

f∗ε (−v)
dv

]
=

∣∣∣∣∫
R
f∗(u)ϕj(u)du

∣∣∣∣2 .
Thus, from (39), (40) and (41) we deduce

Cov

(
(−i)j

∫
R
eiuZk

ϕj(u)

f∗ε (u)
du, (−i)j

∫
R
eiuZl

ϕj(u)

f∗ε (u)
du

)
= Cov

(∫
R
eiuXkϕj(u)du,

∫
R
eiuXlϕj(u)du

)
.

As a consequence

∑
1≤k, l≤n, k 6=l

Cov

(∫
R
eiuXkϕj(u)du,

∫
R
eiuXlϕj(u)du

)
≤ Var

(
n∑
k=1

∫
R
eiuXkϕj(u)du

)
.

Using Viennet’s covariance inequality (1997) and equality (3), we have

(42) Var

(
n∑
k=1

∫
R
eiuXkϕj(u)du

)
= Var

(
n∑
k=1

ϕ∗j (Xk)

)
≤ 8πn

∫
R
b(u)ϕj(u)2f(u)du,

with b =
n∑
k=0

bk and bk, a sequence of measurable functions such that b0 = 1,
∫
bk(u)f(u)du = βk

(see Theorem 2.1 in Viennet (1997)).

Lemma 7.3. Under the assumptions and notations of Proposition 6.1, there exist a constant
c > 0 such that:

(43)
∫
R
b(x)ϕ2

j (x)f(x)dx ≤ c√
j
, ∀j ≥ 1.
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By Lemma 7.3 and (42), we deduce

m−1∑
j=0

Var

(
n∑
k=1

∫
R
eiuXkϕj(u)du

)
≤ 8πn

∫
R
b(u)ϕ2

0(u)f(u)du+
m∑
j=1

∫
R
b(u)ϕj(u)2f(u)du


≤ 8πn

φ2
0

∑
k≥0

βk +
m∑
j=1

c√
j

 .(44)

Using (44), Proposition 3.1 and in view of (38), we obtain the announced result �.

7.4.1 Proof of Lemma 7.3. To prove this lemma, we use the decomposition formula of the
Hermite basis in Laguerre basis (see Comte and Genon-Catalot (2017), Lemma 7.4, page 16) and

the approximation formula of Askey and Wainger (1965). To evaluate
∫
R
b(u)ϕj(u)2f(u)du, we

distinguish the cases under the parity of j.
For j even, j = 2k, set to ν = 4k + 1 and we have

∫
R
b(x)ϕ2

2k(x)f(x)dx =
1

2

∫ ∞
0

x
(
ψ

(−1/2)
k (x2/2)

)2
f(x)b(x)dx :=

6∑
l=1

Jl,

where the bounds of ψ(δ)
k are given in Section 7.1.3 (see Comte and Genon-Catalot (2017), page

15), we have six terms to evaluate.

J1 =
1

2

∫ 1/
√
ν

0
x
(
ψ

(−1/2)
k (x2/2)

)2
b(x)f(x)dx ≤ C

2

∫ 1/
√
ν

0
x
[
(x2ν)−1/4

]2
b(x)f(x)dx

≤ C

2
√
ν

∫
R
b(x)f(x)dx =

C

2
√
ν
E [b(X1)] ≤ C

2
√
ν

∑
k≥0

βk

J2 =
1

2

∫ √ν/2
1/
√
ν
x
(
ψ

(−1/2)
k (x2/2)

)2
b(x)f(x)dx ≤ C

2

∫ √ν/2
1/
√
ν
x
[
(x2ν)−1/4

]2
b(x)f(x)dx ≤ C

2
√
ν

∑
k=0

βk.

J3 =
1

2

∫ (ν−ν1/3)1/2

√
ν/2

x
(
ψ

(−1/2)
k (x2/2)

)2
b(x)f(x)dx ≤ C

2

∫ (ν−ν1/3)1/2

√
ν/2

x
(
ν−1/4(ν − x2)−1/4

)2
b(x)f(x)dx

=
C

2

∫ (ν−ν1/3)1/2

√
ν/2

x1/3x2/3ν−1/2(ν − x2)−1/2b(x)f(x)dx ≤ C

2
√
ν

∫
R
|x|2/3b(x)f(x)dx.

Using the Hölder inequality, we have

∫
R
|x|2/3b(x)f(x)dx ≤

(∫
R
|x|2q/3f(x)dx

)1/q (∫
R
bp(x)f(x)dx

)1/p

= E
[
|X1|2q/3

]1/q
E [b(X1)p]1/p ,
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with
1

p
+

1

q
= 1. By Lemma 4.2 in Viennet (1997), page 481, we have: E [b(X1)p] ≤ p

∑
k≥0

(k +

1)p−1βk. It comes: J3 ≤
C

2
√
ν
E
[
|X1|2q/3

]1/q
(p
∑
k≥0

(k + 1)p−1βk)
1/p.

J4 =
1

2

∫ (ν+ν1/3)1/2

(ν−ν1/3)1/2
x
(
ψ

(−1/2)
k (x2/2)

)2
b(x)f(x)dx ≤ C

2

∫ (ν+ν1/3)1/2

(ν−ν1/3)1/2
x(ν−1/3)2b(x)f(x)dx

=
C

2

∫ (ν+ν1/3)1/2

(ν−ν1/3)1/2
x1/3x2/3ν−2/3b(x)f(x)dx

≤ C√
ν

∫
R
|x|2/3b(x)f(x)dx.

By the same computation as for (J3) we deduce: J4 ≤
C√
ν
E
[
|X1|2q/3

]1/q
(p
∑
k≥0

(k+ 1)p−1βk)
1/p.

J5 =
1

2

∫ √3ν/2

(ν+ν1/3)1/2
x
(
ψ

(−1/2)
k (x2/2)

)2
b(x)f(x)dx

≤ C

2

∫ √3ν/2

(ν+ν1/3)1/2
x1/3x2/3

(
ν−1/4(x2 − ν)−1/4e−γ1ν

−1/2(x2−ν)3/2
)2
b(x)f(x)dx

≤ C

2

∫ √3ν/2

(ν+ν1/3)1/2
ν−1/2x1/3(x2 − ν)−1/2e−2γ1ν−1/2(x2−ν)3/2x2/3b(x)f(x)dx ≤ C√

ν

∫
R
|x|2/3b(x)f(x)dx.

Again by the Hölder inequality we get: J5 ≤
C√
ν
E
[
|X1|2q/3

]1/q
(p
∑
k≥0

(k + 1)p−1βk)
1/p.

Finally,

J6 =
1

2

∫ ∞
√

3ν/2
x
(
ψ

(−1/2)
k (x2/2)

)2
b(x)f(x)dx ≤ C

2

∫ ∞
√

3ν/2
xe−γ2x

2
b(x)f(x)dx

≤ C ′e−3
γ2ν
4

∫
R
b(x)f(x)dx = C ′e−3

γ2ν
4 E [b(X1)] = C ′e−3

γ2ν
4

n∑
k=0

βk ≤ C ′e−3
γ2ν
4

∑
k≥0

βk.

For j odd, j = 2k + 1, set to ν = 4k + 3 we have,∫
R
b(x)ϕ2

2k+1(x)f(x)dx =
1

2

∫ ∞
0

x
(
ψ

(−1/2)
k (x2/2)

)2
f(x)b(x)dx :=

6∑
l=1

Kl.

Only the first term changes, thus we just compute K1 and the other terms are such that the
bounds coincide for i = 2 . . . 6.

K1 =
1

2

∫ 1/
√
ν

0
x
(
ψ

(1/2)
k (x2/2)

)2
b(x)f(x)dx ≤ C

2

∫ 1/
√
ν

0
x
[
(x2ν)1/4

]2
b(x)f(x)dx ≤ C

2
√
ν

∑
k≥0

βk

By gathering all these inequalities according to the parity of j we have the announced result.

8 Appendix

8.1 Talagrand’s inequality. Let (Xi)1≤i≤n be independent real random variables, F a class

at most countable of measurable functions and νn(f) =
1

n

n∑
i=1

(f(Xi) − E[f(Xi)]) for all f ∈ F .
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We assume there exist third strictly positive constants M1, H, v such that: sup
f∈F
||f ||∞ ≤ M1 ,

E[sup
f∈F
| νn(f) |] ≤ H, and sup

f∈F

1

n

n∑
i=1

Var(f(Xi)) ≤ v. Then for ε > 0,

E[(sup
f∈F
|ν2
n(f)|−2(1+2ε)H2)+] ≤ 4

K1

(
v

n
exp

(
−K1ε

nH2

v

)
+

49M2
1

K1C2(ε)n2
exp

(
−K ′1C(ε)

√
ε
nH

M1

))
,

where C(ε) = (
√

1 + ε− 1)∧ 1, K1 = 1/6 and K ′1 a universal constant. The Talagrand inequali-
ties has been proven in Talagrand (1996), reworded by Ledoux (1997). This version is given in
Klein and Rio (2005).

Acknowledgements: The author thanks F. Comte and C. Duval for helpful advices and kind
proofreadings.
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