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We consider the additive model:

) is performed.

Introduction

Consider the additive noise model:

(1)

Z k = X k + ε k , k = 1, . . . , n
where (H 1 ) (X k ) k≥1 are independent and identically distributed (i.i.d.) with unknown density f , with respect to the Lebesgue measure.

(H 2 ) (ε k ) k≥1 are i.i.d. with known common density f ε , with respect to the Lebesgue measure.

(H 3 ) (X k ) k≥1 and (ε k ) k≥1 are independent. We observe n copies Z 1 , . . . , Z n . We want to estimate f , the distribution of X 1 , using Z 1 , . . . , Z n only. Under (H 3 ), if we denote by f Z the density of Z 1 , we can write [START_REF] Askey | Mean convergence of expansion in Laguerre and Hermite Series[END_REF] f Z = f * f ε , where u * v(x) = R u(u)v(x -u)du is the convolution product of the functions u and v under adequate assumptions. Formula (2) explains the term of "deconvolution" for density estimation in model [START_REF] Abramowitz | Handbook of mathematical functions: with formulas, graphs, and mathematical tables[END_REF]. Two factors influence the rate of convergence: the regularity of f and the regularity of f ε , with slower rate of convergence if f ε is more regular. Two types of errors are considered: errors are called "ordinary smooth" errors, when the Fourier transform of f ε is polynomially decaying near infinity, and "super smooth", when it is exponentially decaying near infinity. The deconvolution problem has been widely studied in the literature. The first works proposed kernel nonadaptive estimators assuming that f is ordinary smooth and that f ε is ordinary or super smooth. We can cite [START_REF] Carroll | Optimal rates of convergence for deconvolving a density[END_REF], [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF], (1993), among others. Adaptive estimation, based on a wavelet method, was first considered by [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF]. [START_REF] Butucea | Deconvolution of supersmooth densities with smooth noise[END_REF] establishes the minimax rate in the case where f is super smooth and f ε is ordinary smooth while [START_REF] Butucea | Deconvolution of supersmooth densities with smooth noise[END_REF]Tsybakov (2007a, 2007b) study optimality in the very difficult case when both functions are super smooth. Some more recent works were dedicated to this problem: Comte and Lacour (2011) considered the case where the noise density is unknown, and propose an adaptive estimator in this setting, later improved by [START_REF] Kappus | Adaptive density estimation in deconvolution problems with unknown error distribution[END_REF]. [START_REF] Mabon | Adaptive deconvolution on the non-negative real line[END_REF] builds a projection estimator in Laguerre basis in the case where the variable of interest is positive. Comte and Genon-Catalot (2017) propose a projection estimator in Hermite basis, but do not provide a complete study of its performance. Our aim here is to improve this estimator and to propose an adaptive model selection procedure. We obtain a simple, fast and powerful procedure, which preserves standard deconvolution rates. Moreover, its numerical performances are very good. The paper is organized as follows: we define our estimator in Section 2.2. We prove a bound on the risk in Section 3, and discuss rates of convergence in Section 3.2.

In Section 4, an adaptive estimation procedure is proposed and a risk control of the resulting estimator is provided. We then illustrate the performance and stability of the adaptive estimation procedure in Section 5, and we compare our result with [START_REF] Comte | Data-driven density estimation in the presence of additive noise with unknown distribution[END_REF]. A brief extension to the case of dependent variables is given in Section 6. Proofs of most theoretical results are gathered in Section 7.

2 Estimation procedure and Hermite basis Before proposing an estimator, we start by recalling the definition of the Hermite basis.

2.1.2 Hermite basis. The Hermite basis (ϕ j ) j≥0 is a basis on L 2 (R) defined from Hermite polynomials (H j ) j≥0 : H j (x) = (-1) j e x 2 d j dx j (e -x 2 ). The Hermite polynomials are orthogonal with respect to the weight function e -x 2 : R H j (x)H k (x)e -x 2 dx = 2 j j! √ πδ j,k (see Abramowitz and Stegun (1964)). Thus, we deduce that the basis:

ϕ j (x) = c j H j (x)e -x 2 /2 , c j = (2 j j! √ π) -1/2 ,
is orthonormal in L 2 (R). The Hermite basis (ϕ j ) j≥0 is a bounded basis verifying ||ϕ j || ∞ = sup x∈R |ϕ j (x)| ≤ φ 0 , with φ 0 1, 086435/π 1/4 0, 8160 (see Abramowitz and Stegun (1964)). The Fourier transform of (ϕ j ) j≥0 verifies:

(3)

ϕ * j = √ 2π(i) j ϕ j .
Moreover, according to Askey and Wainger (1965), we have

(4) |ϕ j (x)| < Ce -ξx 2 , |x| ≥ 2j + 1, C > 0
where ξ is a positive constant independent of x.

2.1.3

Assumptions on the noise. For the definition of our estimator, we assume the following: (H 4 ) the noise density f ε is such that f * ε = 0. We also assume that f ε satisfies:

There exist

c 1 ≥ c 1 > 0, et γ ≥ 0, µ ≥ 0, δ ≥ 0 ( with γ > 0 si δ = 0) such that (5) c 1 (1 + t 2 ) γ e µ|t| δ ≤ 1 |f * ε (t)| 2 ≤ c 1 (1 + t 2 ) γ e µ|t| δ .
It is standard to assume a condition like [START_REF] Butucea | Deconvolution of supersmooth densities with smooth noise[END_REF] in the deconvolution setting. When δ = 0 in (5), the function f ε and the errors are called "ordinary smooth". When δ > 0 (with the convention that δ > 0 if and only if µ > 0), they are called "super smooth".

2.2 Estimation procedure. We denote by S m =vect{ϕ 0 , . . . , ϕ m-1 }, the space generated by (ϕ 0 , . . . , ϕ m-1 ) in L 2 (R). Now, we construct an estimator of f relying on the data Z 1 , . . . , Z n , from model [START_REF] Abramowitz | Handbook of mathematical functions: with formulas, graphs, and mathematical tables[END_REF]. We suppose that f belongs to L 2 (R) ∩ L 1 (R), thus we can write f = +∞ j=0 a j ϕ j with a j = f, ϕ j and the orthogonal projection of f on S m is given by: f m = m-1 j=0 a j ϕ j . In fact, we estimate f m and therefore, we build m estimators a j of a j , j = 0, . . . , m -1. Under (H 4 ) and using (2), we have

f * = f * Z f * ε
. Therefore, using Parseval's Theorem and (3), we have:

(6) a j = f, ϕ j = 1 2π f * , ϕ * j = (-i) j √ 2π f * , ϕ j = (-i) j √ 2π f * Z (u) f * ε (u) ϕ j (u)du.
Thus, to estimate a j , we replace f * Z by an estimate. As

f * Z (t) = e itu f Z (u)du = E[e itZ 1 ]
, we set:

(7) f * Z (t) = 1 n n k=1 e itZ k .
Plugging [START_REF] Carroll | Optimal rates of convergence for deconvolving a density[END_REF], into [START_REF] Butucea | Sharp optimality in density deconvolution with dominating bias[END_REF], we can propose an unbiased estimator of f m , provided that ϕ j /f * ε is integrable on R, for j = 0, . . . , m -1:

(8) f m = m-1 j=0 a j ϕ j , a j = (-i) j √ 2π f * Z (u) f * ε (u) ϕ j (u)du.
The Hermite basis has the specificity of leading to integrable ϕ j /f * ε in a large number of cases. (i) Under (H 1 ), . . . , (H 5 ) and for f m given by (8), we have

(9) E[|| f m -f || 2 ] ≤ ||f -f m || 2 + 1 πn |u|≤ √ lm du |f * ε (u)| 2 + 2 n ||f Z || ∞ m-1 j=0 |u|> √ lm |ϕ j (u)| 2 |f * ε (u)| 2 du,
where l > 0 is a positive constant. (ii) If in addition l ≥ 2 and f ε satisfies (5) with 0 < δ < 2 or (δ = 2, with µ < ξ), where ξ is defined in (4), then

(10) 2 n ||f Z || ∞ m-1 j=0 |u|> √ lm |ϕ j (u)| 2 |f * ε (u)| 2 du = O( 1 n ).
The first right-hand side term of ( 9) is the bias term, it is decreasing with m as ||f -

f m || 2 = j≥m a 2 j .
The second term is the main variance term, it is clearly increasing with m. The last term also comes from the variance computation, but we give in Proposition 3.1, part (ii) conditions ensuring that it is negligible. Thus, choosing m that minimizes the risk requires a bias-variance compromise.

If δ = 2 and µ ≥ ξ, we can always transform our variables considering the following model:

Z k = X k + ε k , Z k = ξ 2µ Z k , X k = ξ 2µ X k and ε k = ξ 2µ ε k . As f = 2µ ξ f 1 ( 2µ ξ •)
where f 1 is the density of X k , we can build an estimator of f 1 and f * ε satisfies (5), with µ < ξ. So under the assumptions of Proposition 3.1, part (ii), [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF] becomes:

(11) E[|| f m -f || 2 ] ≤ ||f -f m || 2 + 1 πn |u|≤ √ lm du |f * ε (u)| 2 + c n , c > 0, l ≥ 2.
Comment about (H 5 ):

We both have, ∀x ∈ R, |f Z (x)| = |f * f ε (x)| ≤ min(||f || ∞ , ||f ε || ∞ ) and |f Z (x)| ≤ ||f ||. ||f ε ||. Therefore, the density f Z is bounded if f or f ε is bounded, or if both functions are square integrable. Condition (H 5 ) is not very strong.
3.2 Rate of convergence. To obtain rates of convergence, we have to evaluate the order of bias and variance terms. In general each basis is associated with a regularity space: here, we consider Sobolev-Hermite spaces.

3.2.1

Rate on a Sobolev-Hermite space. For s > 0, the Sobolev-Hermite space of regularity s (see Bongionni and Torrea (2006)) is given by:

W s H = {θ : R → R, θ ∈ L 2 (R), k≥0 k s a 2 k (θ) < +∞}, a k (θ) = θ(u)ϕ k (u)du
and the Sobolev-Hermite ball by:

(12) W s H (D) = {θ ∈ L 2 (R), k≥0 k s a 2 k (θ) ≤ D}, D > 0 Thus, for f in W s H (D), we have ||f -f m || 2 =
j≥m j s a 2 j j -s ≤ Dm -s . Under the assumptions of Proposition 3.1 and for f ∈ W s H (D), we get:

(13) E[|| f m -f || 2 ] Dm -s + 1 πn |u|≤ √ lm du |f * ε (u)| 2
, where the notation means for two functions u, v, we denote u(x) v(x) if u(x) ≤ cv(x), with c is constant independent of x. This inequality is similar to the one in [START_REF] Comte | Data-driven density estimation in the presence of additive noise with unknown distribution[END_REF], with m therein replaced now by √ m. It is worth underlining that the role of the dimension m in projection methods is played here by √ m: this is a specificity of the Hermite basis. The result is the similar in density estimation when X k are directly observed, (see Comte and Genon-Catalot (2017), [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF]. Let us denote by m opt the value of m for which the bias-variance compromise is obtained, relying on the same calculations as in [START_REF] Comte | Data-driven density estimation in the presence of additive noise with unknown distribution[END_REF], the rates and the dimension m opt are given in following table.

δ = 0 0 < δ < 2 or δ = 2, µ < ξ m opt [n 2 2s+2γ+1 ] log n 2µl δ 2 δ Rate n - 2s 2s+2γ+1 (log n) -2s δ Table 1. Rate of convergence for the MISE if f ∈ W s H (D)
The rates obtained coincide with the ones obtained by [START_REF] Fan | Adaptively local one-dimensional subproblems with application to a deconvolution problem[END_REF], [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF]. They are known to be optimal: lower bounds corresponding to these rates for f ε verifying (5) are proved by [START_REF] Fan | Adaptively local one-dimensional subproblems with application to a deconvolution problem[END_REF] when f belongs to a Hölder class, and by [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF] for f in a Sobolev class.

3.2.2

Rates of convergence for specific function classes. We can obtain for some specific classes of functions a bias term with much smaller order, for instance the Gaussian density or the mixtures of Gaussian. Indeed, then, we can explicitly compute the coefficients a j and obtain smaller bias than previously on W s H (D). Let

f µ,σ (x) = 1 σ √ 2π exp - (x -µ) 2 2σ 2 , g p,σ (x) = x 2p σ 2p C 2p f 0,σ (x), C 2p = E X 2p ,
for X a standard Gaussian variable. We also define the class of mean mixtures, respectively of variance mixtures of the Gaussian distribution by:

F(C) = f : f (x) = φ Π(x) = φ(x -u)dΠ(u), Π ∈ P(C) ,
where

P(C) := Π ∈ P(R), Π(|u| > t) ≤ C exp(-t 2 /C), ∀t ∈ R + , respectively G(v) = f : f (x) = +∞ 0 φ(x/u) u dΠ(u), Π 1/ √ v, √ v = 1 , v > 1,
with φ the density of standard Gaussian and P(R) the set of probability measures on R. The following results are based on bias evaluation obtained in [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF]. The rate is given by the order of variance term, since in all these cases, the bias term is exponentially small. We can prove the following proposition.

Proposition 3.2. Assume that f ε is ordinary smooth. For the choice m opt = [log(n)/C 1 ], with C 1 = log(2) + eµ 2 if f = f µ,1 , C 1 = log σ 2 + 1 σ 2 -1 2 if f = f 0,σ , C 1 = 1 (eC + 1/ log(2)) if f ∈ F(C), C 1 = v 2 -1 v 2 + 1 if f ∈ G(v), we have E || f mopt -f || 2 (log n) γ+ 1 2 n ,
where γ is given in [START_REF] Butucea | Deconvolution of supersmooth densities with smooth noise[END_REF].

The same result hold for f = g p,σ . This rate is similar to the one obtained in Butucea (2004) for super-smooth functions f . However in all previous cases the choice m = m opt depends on the regularity of f and associated parameters, which are unknown. This is why we have to look for another method to make the bias-variance compromise, in a data-driven way (see Section 4).

Comparison with the classical estimator in deconvolution.

The "standard" deconvolution estimator (see [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF], and choose sinus cardinal kernel) is given by: ( 14)

f (x) = 1 2π π -π e -ixu f * Z (u) f * ε (-u)
du, where f * Z is defined by [START_REF] Carroll | Optimal rates of convergence for deconvolving a density[END_REF].

We mention that this estimator can be decomposed in an orthonormal basis namely ψ ,j (x) = √ lψ( x -j), ψ(x) = sin πx πx (see [START_REF] Comte | Adaptive density deconvolution with dependent inputs[END_REF], Section 3.2), but the development is infinite:

f (x) = j∈Z a m,j ψ m,j , a m,j = 1 n n k=1 1 2π ψ * m,j (-u) f * ε (u) e iuZ k du
A finite (computable) development would require an additional approximation (truncation of the sum). From computation point of view, the low complexity of f m in the Hermite basis is an advantage (see [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF], Section 4.5). The risk of f verifies

E[|| f -f || 2 ] ≤ 1 2π |t|>π |f * (u)| 2 du + 1 2πn |u|≤π du |f * ε (u)| 2 .
In this context, the regularity spaces which are considered are Sobolev balls defined by ( 15)

W s (D ) = f ∈ L 2 (R), (1 + u 2s )|f * (u)| 2 du < D , D > 0.
Note that it is proved in Comte and Genon-Catalot (2017

) that W s H (D) ⊂ W s (D). For f ∈ W s (D) the bias term is such that 1 2π |t|>π |f * (u)| 2 du ≤ D 2π (π ) -2s = C -2s
. Therefore, for = √ m, the risks of the two estimators have the same order. This implies that they have the same rates of convergence.

Adaptive estimation and model selection

From now on, l given in Proposition 3.1, part (ii) is assumed to be fixed. In this section we propose an automatic selection of m which performs the bias-variance compromise. The procedure does not depend on the regularity of the density f , but only on data Z 1 , . . . , Z n . Consider the contrast function defined by [START_REF] Mabon | Adaptive deconvolution on the non-negative real line[END_REF] γ

n (t) = ||t|| 2 - 2 n n k=1 φ t (Z k ), φ t (x) = 1 2π t * (u) f * ε (-u) e -ixu du. It is easy to check that f m = argmin t∈Sm γ n (t). Let ∆(m) = 1 π |u|≤ √ lm du |f * ε (u)| 2 .
We consider M n , the collection of models,

M n = {m ∈ N\{0}, ∆(m) ≤ n} .
This collection is finite and contains models with bounded variance. More precisely, as

f ε is a density, we have |f * ε (u)| ≤ 1, which implies ∆(m) ≥ 1 π |u|≤ √ lm du = 2 √ lm π . Therefore, m n 2 .
The cardinal of M n is therefore at most of order O(n 2 ). Our aim is to find the best model m in M n , that is to select m such that, the risk of f m approximately performs the bias-variance trade-off, without any information on f . We set:

(17) m = argmin m∈Mn {γ n ( f m ) + pen(m)},
where pen(m) is an increasing function defined by:

(18) pen(m) =      κ ∆(m) n , if f ε is ordinary smooth or super smooth with δ < 1 2 , 2κ 1 + 24µl δ/2 m δ-1 2 ∆(m) n if f ε is super smooth with δ ≥ 1 2 ,
where κ > 0 is a numerical constant, µ is the constant given in (5) and l ≥ 2 given in Proposition

3.1, fixed. As γ n ( f m ) = -|| f m || 2 = - m-1 j=0
a 2 j , it is worth emphasizing that computing m is numerically fast. Clearly the choice of m given by ( 17) is entirely determined by the data. The constant κ is independent of the data. The theoretical results show that κ > 16 is suitable (see the proof of Lemma 7.1.) In practice this value is too large and is calibrated by preliminary simulation experiments. They confirm that (see Section 5) smaller practical values must be chosen.

We can prove the following theorem.

Theorem 4.1. Assume that f ε is square integrable. Let pen(m) defined by [START_REF] Talagrand | New concentration inequalities in product spaces[END_REF],

f m = argmin t∈Sm γ n (t)
and m selected by [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF]. Then, there exists a constant κ 0 such that, for all κ ≥ κ 0 , the estimator f m satisfies

(19) E || f m -f || 2 ≤ C inf m∈Mn ||f -f m || 2 + pen(m) + C n ,
where C is a numerical constants (C=4 suits) and C a constant depending on f ε .

Remark 4.2. Assume that the assumptions of Theorem 4.1 are satisfied. Then if f ∈ W s H (D) the estimator f m converges to f with the rates obtained in Table 1. Indeed, the term C /n in [START_REF] Viennet | Inequalities for absolutely regular sequences: application to density estimation[END_REF] does not change the order of the rate, and is negligible compared to the term ||f -f m || 2 + pen(m).

Simulation and numerical results

5.1 Implementation of the adaptive estimator. In this section, we propose some illustrations of the theoretical results. More precisely, we implement the projection estimator given by [START_REF] Comte | Adaptive density deconvolution with dependent inputs[END_REF]. To do this, we consider data simulated according to [START_REF] Abramowitz | Handbook of mathematical functions: with formulas, graphs, and mathematical tables[END_REF]. For the density f , we choose the distributions (following Comte and Lacour (2011)):

(i) Gaussian standard N (0, 1),

I = [-4, 4] (ii) Cauchy standard: f (x) = π 1 + x 2 -1 , I = [-10, 10] (iii) Laplace density: f (x) = e - √ 2|x| / √ 2, I = [-5, 5] (iv) Gamma density Γ(4, 1/ √ 3)/ √ 12, I = [0, 6] (v) Mixed Gaussian density (0.5N (-2, 1) + 0.5N (2, 1))/ √ 5, I = [-3, 3]
where I is the interval on which we graphically represent the functions and compute the risks.

• Case 1 : Laplace noise ( "ordinary smooth") The density considered of f ε is :

f ε (x) = λ 2 e -λ|x| ; f * ε (x) = λ 2 λ 2 + x 2 ; λ = 2 √ 5.
The penalty term is given by:

pen(m) = κ n ∆(m) = κ πn |u|≤ √ lm (1 + u 2 λ 2 ) 2 du = 2κ πn √ lm + 2 3λ 2 √ lm 3 + ( √ lm) 5 5λ 4 , l = 6.
• Case 2 : Gaussian noise ("super smooth") We have:

f ε (x) = 1 √ 2πσ e -x 2 /2σ 2 ε ; f * ε (x) = e -σ 2 ε x 2 /2 .
The penalty proposed is:

pen(m) = 4κ 1 + 24σ 2 ε lm 3/2 √ lm πn 1 0 e u 2 σ 2 ε lm du ,
where l = 4 here and the integral is computed by a Riemann sum discretized in 300 points. Then, we have to calibrate the penalty constant κ. This constant is fixed through preliminary simulations, by testing set of values on different densities f with a large number of repetitions. The comparison of the risks for these different values of κ makes it possible to make a reasonable choice. Finally, we choose κ = 0.4 for a Laplace noise, κ = 10 -3 for a Gaussian noise. The estimation procedure is described as follows:

• For m in M n , compute - m-1 j=0 a 2 j + pen(m) = Cr(m)
, with a j given by (8)

• Select m such that m = argmin m∈Mn Cr(m),

• Compute f m = m-1 j=0
a j ϕ j , and

I ( f m (u) -f (u)) 2 du by discretization.
5.2 Simulations results. Simulation results are given in Tables 2 and3. The columns of Table 2 indicate the values of the MISE (Mean Integrated squared Error) multiplied by 100 for a Laplace noise or a Gaussian noise, Table 3 gives the ratio of the risk values obtained in Comte and Lacour (2011) divided by the risk values obtained by our method: the larger it is, the better our method is. The errors obtained by our method are computed by a discretization of the integral as Riemann sums and averaging over 100 independent simulations. We remark that increasing the sample size makes the error smaller and thus improves the estimation. Globally the results of our simulations are satisfactory and our method is often better than Comte and Lacour (2011) for both noise densities. The main exception concerns the Gamma density (iv). Some failures for Cauchy density (ii) and super smooth noise are also observed, especially when n increases. 

Conclusion remarks: extensions to the dependent case

We proposed a projection estimator of the density of X in the convolution model [START_REF] Abramowitz | Handbook of mathematical functions: with formulas, graphs, and mathematical tables[END_REF], relying on the Hermite basis. We prove a bound on the quadratic risk which shows that the relevant parameter is not the dimension m but its square root √ m. A data driven estimator is proposed: the model can be automatically chosen and the resulting estimator reaches optimal rates in most cases. We also provide numerical simulation results, and the comparison with Comte and Lacour (2011) ensures the good performances of our method.

To conclude we explain that the results may be extended to the context of dependent X i 's. We first define the mixing coefficients. Definition 1. Let (Ω, A, P) be a probability space, and U, V two σ-algebras of A. The β-mixing coefficient is defined by

(20) β(U, V) = 1 2 sup{ I i=1 J j=1 |P(U i ∩ V j ) -P(U i )P(V j )|},
where the supremum is taken over all pairs finite partitions {U 1 , . . . , U I } and {V 1 , . . . , V J } of Ω, such that U i ∈ U and V j ∈ V.

Let (X k ) k∈Z a strictly stationary process. Let F 0 = σ(X i , i ≤ 0) and F k = σ(X i , i ≤ k) for all k ∈ Z, where F 0 is the σ-algebra generated by the X i for i ≤ 0 and F k generated by X i for i ≤ k. The mixing coefficient β k is defined by β k = β(F 0 , F k ), where β is defined by (20).

The process (X k ) k∈Z is β-mixing if the sequence β k tends to zero at infinity.

In this section, we still consider model ( 1), but we replace (H 1 ) by (H 1 ) : (X k ) k≥1 is strictly stationary and β-mixing. The estimator is the same as in the independent case.

We can prove a bound on the risk. Proposition 6.1. Let 1 ≤ p < +∞ and q two numbers such that 1/p + 1/q = 1 and assume that

E[|X 1 | 2q/3 ] < +∞. If the mixing coefficient are such that +∞ k=0 (k + 1) p-1 β k < +∞, then (21) 
E[|| f m -f || 2 ] ≤ ||f -f m || 2 + 1 πn |u|≤ √ lm du |f * ε (u)| 2 + 2 n ||f Z || ∞ m-1 j=0 |u|> √ lm |ϕ j (u)| 2 |f * ε (u)| 2 du + c √ m n ,
where l ≥ 2 is a positive constant, and

c = c E(|X 1 | 2q/3 ), +∞ k=0 (k + 1) p-1 β k .
Now we comment this bound of risk. We remark that we have a usual bias term, the same variance term as in the i.i.d. case with an additional term c √ m/n which is clearly specific to the

β-mixing case. As √ m is negligible compared to 1 πn |u|≤ √ lm du |f * ε (u)| 2 , inequality (21) 
implies that the risk of f m here has the same order as in the i.i.d. case. We have therefore the same rates of convergence. Thus, the same an adaptive estimation procedure as previously would work. We do no investigate further, methods and results would be similar to [START_REF] Comte | Adaptive density deconvolution with dependent inputs[END_REF].

Proofs

7.1 Proof of proposition 3.1. We start by the part (i). For f m given by ( 8), we have:

(22) E || f m -f || 2 = ||f -f m || 2 + E || f m -f m || 2 = ||f -f m || 2 + m-1 j=0
Var( a j ).

Now with the definition of a j given by (8) we have

Var( a j ) = Var (-i) j √ 2πn R n k=1 e iuZ k ϕ j (u) f * ε (u) du = 1 2πn Var (-i) j R e iuZ 1 ϕ j (u) f * ε (u) du ≤ 1 2πn E (-i) j R e iuZ 1 ϕ j (u) f * ε (u) du 2 .
Plugging this in ( 22) yields

E || f m -f || 2 ≤ ||f -f m || 2 + 1 2πn m-1 j=0 E R e iuZ 1 ϕ j (u) f * ε (u) du 2 .
Using |a + b| 2 ≤ 2|a| 2 + 2|b| 2 , we deduce

E   m-1 j=0 R e iuZ 1 ϕ j (u) f * ε (u) du 2   ≤ 2E   m-1 j=0 |u|> √ lm e iuZ 1 ϕ j (u) f * ε (u) du 2   + 2E   m-1 j=0 |u|≤ √ lm e iuZ 1 ϕ j (u) f * ε (u) du 2   .
We evaluate the two right-hand side terms of the previous inequality. By Bessel inequality we have, for the last term:

(23) E   m-1 j=0 |u|≤ √ lm e iuZ 1 ϕ j (u) f * ε (u) du 2   = E   m-1 j=0 e iZ 1 • f * ε 1 |•|≤ √ lm , ϕ j 2   ≤ |u|≤ √ lm du |f * ε (u)| 2 . Moreover, let ψ j (u) = ϕ j (u) f * ε (u) 1 |u|> √ lm , we get for the other term E   m-1 j=0 |u|> √ lm e iuZ 1 ϕ j (u) f * ε (u) du 2   = m-1 j=0 R |u|> √ lm e iuz ϕ j (u) f * ε (u) du 2 f Z (z)dz ≤||f Z || ∞ m-1 j=0 R |u|> √ lm e iuz ϕ j (u) f * ε (u) du 2 dz =||f Z || ∞ m-1 j=0 ||ψ * j || 2 = 2π||f Z || ∞ m-1 j=0 ||ψ j || 2 . (24)
Putting ( 23), (24) in (22), we have the part (i).

Let us prove the part (ii). We have using ( 5) that:

m-1 j=0 |u|> √ lm |ϕ j (u)| 2 |f * ε (u)| 2 du ≤ c 1 m-1 j=0 |u|> √ lm (1 + u 2 ) γ |ϕ j (u)| 2 e µ|u| δ du.
By (4), we have

|ϕ j (x)| < Ce -ξx 2 if |x| ≥ 2j + 1. For j ∈ {0, . . . , m-1}, thus it is in particular true for |x| ≥ √ lm, with l ≥ 2. Therefore, for j ≤ m -1, |u|> √ lm (1 + u 2 ) γ |ϕ j (u)| 2 e µ|u| δ du ≤ C 2 |u|> √ lm (1 + u 2 ) γ e -2ξu 2 e µ|u| δ du ≤ C 2 e -ξlm R (1 + u 2
) γ e -ξu 2 e µ|u| δ du.

And

R

(1 + u 2 ) γ e -ξu 2 e µ|u| δ du < +∞ if δ < 2 or if δ = 2, µ < ξ, which corresponds to our assumptions. Therefore:

m-1 j=0 |u|> √ lm |ϕ j (u)| 2 |f * ε (u)| 2 du = O(me -ξlm
). Hence the result. .

7.2

Proof of proposition 3.2. By ( 9) and ( 10), we have:

(25) E[|| f m -f || 2 ] ≤ ||f -f m || 2 + 1 πn |u|≤ √ lm du |f * ε (u)| 2 + c n .
Using Lemma 1 in Comte and Lacour (2011) p.586, we have

(26) |u|≤ √ lm du |f * ε (u)| 2 m γ+ 1-δ 2 e µl δ 2 m δ 2 .
We denote for two functions u and v, u(x) v(x), if u(x) v(x) and v(x) u(x).

From Belomestny et al. (2017) the bias term is exponentially small (see Proposition 7, 8 and 9), thus, the rate of convergence is given by the order of variance term. As f ε is ordinary smooth, δ = 0 in (26) and replacing m by m opt = [log(n)/C 1 ], with C 1 is given in Proposition 3.2, we have the result. 

γ n ( f m )+pen( m) ≤ γ n (f m )+pen(m). Moreover, for two functions s, t in L 2 (R), γ n (t) -γ n (s) = ||t -f || 2 -||s -f || 2 + 2ν n (t -s), where ν n (t) = 1 n n k=1 (φ t (Z k ) -t, f ),
where φ t is defined in [START_REF] Mabon | Adaptive deconvolution on the non-negative real line[END_REF]. Thus,

|| f m -f || 2 ≤ ||f m -f || 2 + pen(m) + 2ν n ( f m -f m ) -pen( m).
As the function t → ν n (t) is linear, we deduce

|| f m -f || 2 ≤ ||f m -f || 2 + pen(m) + 2|| f m -f m ||ν n f m -f m || f m -f m || -pen( m) ≤ ||f m -f || 2 + pen(m) + 2|| f m -f m || sup t∈Sm+S m ,||t||=1 ν n (t) -pen( m). (27) 
For all x, y ≥ 0 we have: 2xy ≤ x 2 /4 + 4y 2 , therefore we obtain

(28) 2|| f m -f m || sup t∈Sm+S m ,||t||=1 ν n (t) ≤ 1 4 || f m -f m || 2 + 4 sup t∈Sm+S m ,||t||=1 (ν n (t)) 2 . Now, || f m -f m || 2 ≤ 2|| f m -f || 2 + 2||f m -f || 2
and plugging this and (28) in ( 27), we have

(29) 1 2 || f m -f || 2 ≤ 3 2 ||f m -f || 2 + pen(m) + 4 sup t∈Sm+S m ,||t||=1 (ν n (t)) 2 -pen( m).
We decompose the empirical process ν n (t) in two processes. We set m * = m ∨ m. For t ∈ S m * , we have using Plancherel-Parseval

ν n (t) = 1 n n k=1 (φ t (Z k ) -t, f ) = 1 n n k=1 1 2π |u|≤ √ lm * t * (u) f * ε (-u) e -iuZ k du -E 1 2π |u|≤ √ lm * t * (u) f * ε (-u) e -iuZ k du + 1 n n k=1 1 2π |u|> √ lm * t * (u) f * ε (-u) e -iuZ k du -E 1 2π |u|> √ lm * t * (u) f * ε (-u) e -iuZ k du = 1 n n k=1 (φ t,1 (Z k ) -E [φ t,1 (Z k )]) + 1 2π |u|> √ lm * t * (u) f * ε (-u) ( f * Z (u) -f * Z (u))du, (30) with φ t,1 (x) = 1 2π |u|≤ √ lm * t * (u) f * ε (-u)
e -iux du. Therefore, we write ν n (t) = ν n,1 (t) + ν n,2 (t) 2 and by ( 29), (30) we deduce

where ν n,1 (t) = 1 n n k=1 (φ t,1 (Z k ) -E [φ t,1 (Z k )]) and ν n,2 (t) = 1 2π |u|> √ lm * t * (u) f * ε (-u) ( f * Z (-u) - f * Z (-u))du. Using that (ν n,1 (t) + ν n,2 (t)) 2 ≤ 2 (ν n,1 (t)) 2 + 2 (ν n,2 (t))
1 2 || f m -f || 2 ≤ 3 2 ||f m -f || 2 + pen(m) + 8 sup t∈S m * ,||t||=1 (ν n,1 (t)) 2 + 8 sup t∈S m * ,||t||=1 (ν n,2 (t)) 2 -pen( m).
We introduce the function p(m, m

) = κ 8 ∆(m ∨ m ) n if f ε is ordinary smooth or super smooth with δ ≤ 1/2 and p(m, m ) = 2κ(1 + ε(m, m )) ∆(m ∨ m ) 8n
otherwise, where ε(m, m ) is given below, which verifies 8p(m, m ) ≤ pen(m) + pen(m ). We obtain:

|| f m -f || 2 ≤3||f m -f || 2 + 4pen(m) + 16 m ∈Mn sup t∈S m∨m ,||t||=1 (ν n,1 (t)) 2 -p(m, m ) + + 16 sup t∈S m * ,||t||=1 (ν n,2 (t)) 2 .
By taking expectation, we get

E || f m -f || 2 ≤ 3||f m -f || 2 + 4pen(m) + 16 m ∈Mn E sup t∈S m∨m ,||t||=1 (ν n,1 (t)) 2 -p(m, m ) 
+ + 16E sup t∈S m * ,||t||=1 (ν n,2 (t)) 2 . 
The two followings lemmas lead to the result of Theorem 4.1:

Lemma 7.1. There exist a constant Σ 1 such that

m ∈Mn E sup t∈S m∨m ,||t||=1 (ν n,1 (t)) 2 -p(m, m ) + ≤ Σ 1 n . Lemma 7.2. There exist a constant Σ 2 such that E sup t∈S m * ,||t||=1 (ν n,2 (t)) 2 ≤ Σ 2 n .
Using lemmas 7.1 and 7.2, we have the result choosing C = 4 and C = 16(Σ 1 + Σ 2 ). a j ϕ j such that ||t|| = 1, we have

(ν n,1 (t)) 2 =   m -1 j=0 a j ν n,1 (ϕ j )   2 ≤ m -1 j=0 a 2 j m -1 j=0 ν n,1 (ϕ j ) 2 = m -1 j=0 ν n,1 (ϕ j ) 2 .
Therefore,

E sup t∈S m ,||t||=1 (ν n,1 (t)) 2 ≤ E   m -1 j=0 ν n,1 (ϕ j ) 2   = m -1 j=0 1 n Var φ ϕ j ,1 (Z 1 ) ≤ 1 n m -1 j=0 E |φ ϕ j ,1 (Z 1 ) | 2 .
It comes using (23) that,

(31) E   m -1 j=0 |φ ϕ j (Z 1 ) | 2   = 1 (2π) 2 E   m -1 j=0 |u|≤ √ lm ϕ * j (u)e -iuZ 1 f * ε (-u) du 2   ≤ ∆(m ) n =: H 2 .
Now we look for M 1 . Using Cauchy-Schwarz inequality and Parseval's theorem

|φ t,1 (x)| = 1 2π |u|≤ √ lm t * (u) f * ε (-u) e -iux du ≤ 1 2π |u|≤ √ lm t * (u) f * ε (-u) e -iux du ≤ 1 2π |t * (u)| 2 du |u|≤ √ lm du |f * ε (-u)| 2 = 1 2π 2π||t|| 2 |u|≤ √ lm du |f * ε (-u)| 2 ≤ ∆(m ). Thus, (32) 
sup t∈Sm+S m ,||t||=1 ||φ t,1 || ∞ ≤ ∆(m ) =: M 1 .
The case of v is more tedious,

Var(φ t,1 (Z 1 )) ≤ E |φ t,1 (Z 1 )| 2 = 1 2π |u|≤ √ lm t * (u) f * ε (-u) e -iuz du 2 f Z (z)dz = 1 2π t * (u) f * ε (-u) t * (-v) f * ε (v) e -i(u-v)z f Z (z)1 |u|≤ √ lm 1 |v|≤ √ lm dudvdz = 1 2π t * (u) f * ε (-u) t * (-v) f * ε (v) f * Z (v -u)1 |u|≤ √ lm 1 |v|≤ √ lm dudv ≤ 1 2π t * (u) f * ε (-u) 2 |f * Z (v -u)|1 |u|≤ √ lm 1 |v|≤ √ lm dudv ≤ 1 2π |f * Z (z)|dz t * (u) f * ε (-u) 2 1 |u|≤ √ lm du.
Using the Cauchy-Schwarz inequality and Parseval's theorem we have:

|f * Z (z)|dz = |f * (z)f * ε (z)|dz ≤ 2π||f ε ||. ||f ||.
Thus, we get:

Var(φ t,1 (Z 1 )) t * (u) f * ε (-u) 2 1 |u|≤ √ lm du.
We consider separately two cases.

(1) Ordinary smooth case: In this case, we have by (31) and by ( 26) that H 2 m γ+1/2 n . Moreover,

Var(φ t,1 (Z 1 )) ≤ |t * (u)| 2 (1 + t 2 ) γ 1 |u|≤ √ lm du ≤ (1 + l γ m γ ) |t * (u)| 2 du = 2π(1 + l γ m γ )||t|| 2 = 2π(1 + l γ m γ ).
We can set v = cm γ , with c > 0. Thus, using Talagrand's inequality we have:

(33) E sup t∈S m , ||t||=1 (ν n,1 (t)) 2 -p(m, m ) + U (m ) + V (m ) , with p(m, m ) = κ 8 ∆(m ) n = κ 8 H 2 ≥ 2(1 + 2ε)H 2 , we take κ 0 = 17, ε = 1/2, and 
U (m ) = v n exp - K 1 2 nH 2 v = cm γ n exp   - K 1 2 n m γ+ 1 2 n cm γ   m γ n e -K 1 2c m 1 2 , V (m ) = M 2 1 C(ε) 2 n 2 exp -K 1 C(ε) 1 √ 2 nH M 1 = C 1 ∆(m ) n 2 exp   -C 2 n ∆(m ) n ∆(m )   1 n e -C 2 √ n ,
because for m ∈ M n , ∆(m) ≤ n. Therefore, we deduce by (33) that:

m ∈Mn E sup t∈S m , ||t||=1 (ν n,1 (t)) 2 -p(m, m ) + m ∈Mn U (m ) + V (m ) . As m U (m ) 1 n m m γ e -K 1 2c m = 1 n   m m =0 m γ e -K 1 2c m + n 2 m =m m γ e -K 1 2c m   = 1 n m γ+1 e -K 1 2c m + +∞ m =m m γ e -K 1 2c m ≤ C 1 n ,
and

m ∈Mn V (m ) 1 n m ∈Mn e -C 2 √ n = 1 n |M n |e -C 2 √ n ne -C 2 √ n ≤ C 1 n .
We deduce that (34)

m ∈Mn E sup t∈S m , ||t||=1 (ν n,1 (t)) 2 -p(m, m ) + ≤ Σ 1 n , Σ 1 = C 1 + C 1 .
(2) Super smooth case: In this case the order of H 2 is given by ( 26):

H 2 m 1-δ 2 e µl δ 2 m δ 2 n , Var(φ t,1 (Z 1 )) ≤ c 1 |t * (u)| 2 e µ|u| δ 1 |u|≤ √ lm du ≤ c 1 e µl δ 2 m δ 2 |t * (u)| 2 du = 2πc 1 e µl δ 2 m δ 2 ||t|| 2 e µl δ 2 m δ 2 = v.
We use Talagrand's inequality again, we must compute U (m ) and V (m ).

U (m ) = v n exp -K 1 ε nH 2 v = ce µl δ 2 m δ 2 n exp   -K1εn m 1-δ 2 e µl δ/2 m δ 2 n e µl δ/2 m δ 2    1 n e µl δ m δ 2 -K 1 εm 1-δ 2 , V (m ) = M 2 1 C 2 (ε)n 2 exp -K 1 C(ε) √ ε nH M 1 = ∆(m ) C 2 (ε)n 2 exp -K 1 C(ε) √ ε √ n ≤ 1 C 2 (ε)n exp -K 1 C(ε) √ ε √ n .
• is bounded by a constant independent of m , and

e µl δ m δ 2 -K 1 εm 1-δ 2
is integrable in m . We deduce that:

1 n m ∈Mn e µl δ m δ 2 -K 1 εm 1-δ 2 = 1 n   m m =1 e µl δ/2 m δ 2 -K 1 εm 1-δ 2 + n 2 m =m e µl δ/2 m δ 2 -K 1 εm 1-δ 2   ≤ 1 n   me µl δ/2 m δ 2 -K 1 εm 1-δ 2 + m ∈Mn e µl δ/2 m δ 2 -K 1 εm 1-δ 2   ≤ C 1 n . ( 35 
) (ii) Case δ ≥ 1/2: We choose ε such that µl δ/2 m δ 2 -K 1 εm 1-δ 2 = -µl δ 2 m δ 2 , that is ε = 2µl δ/2 K 1 m δ-1 2
. This implies (36)

1 n m ∈Mn e µl δ/2 m δ 2 -K 1 εm 1-δ 2 = 1 n m ∈Mn e -µl δ/2 m δ 2 ≤ 1 n m e -µl δ/2 m δ 2 ≤ C 1 n .
In the all cases, we have :

m ∈Mn U (m ) ≤ C 1 n . • Study of m ∈Mn V (m ) As |M n | = O(n 2
) and for all choice of ε in the study of U (m ), we have

C(ε) = 1, ε ≥ 1. Thus, m ∈Mn V (m ) ≤ |M n | C 2 (ε)n exp -K 1 C(ε)ε √ n ≤ n C 2 (ε) exp -K 1 C(ε) √ ε √ n ≤ C 1 n . (37) 
Therefore, (34) holds and the result of Lemma 7.1 is proven. 

ν n,2 (t) 2 = 1 (2π) 2 |u|> √ lm * t * (u) f * ε (-u) ( f * Z (-u) -f * Z (-u))du 2 ≤ 1 (2π) 2   m * -1 j=0 |u|> √ lm * ϕ * j (u) f * ε (-u) ( f * Z (-u) -f * Z (-u))du 2   .
By (3)-( 4) and using the Cauchy-Schwarz inequality we have:

m * -1 j=0 |u|> √ lm * ϕ * j (u) f * ε (-u) ( f * Z (u) -f * Z (u))du 2 = 2π m * -1 j=0 |u|> √ lm * ϕ j (u) f * ε (-u) ( f * Z (-u) -f * Z (-u))du 2 m * -1 j=0 |u|> √ lm * | f * Z (-u) -f * Z (-u)| |f * ε (-u)| |ϕ j (u)|du 2 m * -1 j=0 |u|> √ lm * | f * Z (-u) -f * Z (-u)| |f * ε (-u)| e -ξu 2 du 2 m * -1 j=0 |u|> √ lm * | f * Z (-u) -f * Z (-u)| 2 |f * ε (-u)| 2 e -ξu 2 du × |u|> √ lm * e -ξu 2 du. As |u|> √ lm *
e -ξu 2 du ≤ ce -ξm * and the function x → xe -ξx reaches its maximum (1/ξ)e -1 in

x = 1/ξ, it implies ν n,2 (t) 2 R | f * Z (-u) -f * Z (-u)| 2 |f * ε (-u)| 2 e -ξu 2 du. Therefore, E sup t∈S m * ,||t||=1 (ν n,2 (t)) 2 R E | f * Z (-u) -f * Z (-u)| 2 |f * ε (-u)| 2
e -ξu 2 du.

Now, we have

E | f * Z (-u) -f * Z (-u)| 2 = Var[ f * Z (-u)] = 1 n Var[e -iuZ 1 ] = 1 n 1 -|f * Z (-u)| 2 ≤ 1 n .
Thus, by this last inequality we deduce E sup

t∈S m * , ||t||=1 (ν n,2 (t)) 2 1 n R 1 |f * ε (-u)| 2 e -ξu 2 
du. If f ε is ordinary smooth, the integral is convergent and the previous bound is of order 1/n. Assume now f ε super smooth, we have by ( 5):

E sup t∈S m * , ||t||=1 (ν n,2 (t)) 2 1 n R e µ|u| δ e -ξu 2 du ≤ Σ 2 n , if δ < 2, or if δ = 2
, and µ < ξ. This gives the announced result.

7.4 Proof of proposition 6.1. As in the i.i.d. case, we have the bias-variance decomposition given by ( 22). Now,

Var( a j ) = Var (-i) j √ 2πn R n k=1 e iuZ k ϕ j (u) f * ε (t) du = 1 2πn 2 n k=1 Var (-i) j R e iuZ k ϕ j (u) f * ε (u) du + 1 2πn 2 1≤k, l≤n,k =l Cov (-i) j R e iuZ k ϕ j (u) f * ε (u) du, (-i) j R e iuZ l ϕ j (u) f * ε (u) du .
As Var(X) ≤ E|X| 2 , it comes

E || f m -f || 2 ≤ ||f -f m || 2 + 1 2πn m-1 j=0 E R e iuZ 1 ϕ j (u) f * ε (u) du 2 + 1 2πn 2 m-1 j=0 1≤k,l≤n,k =l Cov (-i) j R e iuZ k ϕ j (u) f * ε (u) du, (-i) j R e iuZ l ϕ j (u) f * ε (u) du . (38) 
The first two right hand side terms are the same as in the independent case and are dealt with as in Proposition 3.1. We compute the covariance term. First,

Cov (-i) j R e iuZ k ϕ j (u) f * ε (u) du, (-i) j R e iuZ l ϕ j (u) f * ε (u) du = E R R e i(uZ k -vZ l ) ϕ j (u) f * ε (u) ϕ j (v) f * ε (-v) dudv -E R e iuZ k ϕ j (u) f * ε (u) du E R e -ivZ l ϕ j (v) f * ε (-v) dv . (39) 
The first expectation is equal to

E R R e i(uZ k -vZ l ) ϕ j (u) f * ε (u) ϕ j (v) f * ε (-v) dudv = R R E e i(uX k +uε k -vX l -vε l ) ϕ j (u) f * ε (u) ϕ j (v) f * ε (-v) dudv = R R E e i(uX k -vX l ) ϕ j (u)ϕ j (v)dudv, (40) 
and the second to:

(41) E R e iuZ k ϕ j (u) f * ε (u) du E R e -ivZ l ϕ j (v) f * ε (-v) dv = R f * (u)ϕ j (u)du 2 .
Thus, from (39), ( 40) and (41) we deduce Lemma 7.3. Under the assumptions and notations of Proposition 6.1, there exist a constant c > 0 such that:

Cov (-i) j R e iuZ k ϕ j (u) f * ε (u) du, (-i) j R e iuZ l ϕ j (u) f * ε (u) du = Cov
(43) R b(x)ϕ 2 j (x)f (x)dx ≤ c √ j , ∀j ≥ 1.
By Lemma 7.3 and (42), we deduce

m-1 j=0 Var n k=1 R e iuX k ϕ j (u)du ≤ 8πn   R b(u)ϕ 2 0 (u)f (u)du + m j=1 R b(u)ϕ j (u) 2 f (u)du   ≤ 8πn   φ 2 0 k≥0 β k + m j=1 c √ j   . (44) 
Using (44), Proposition 3.1 and in view of (38), we obtain the announced result . 

≤ C 2 √ ν R b(x)f (x)dx = C 2 √ ν E [b(X 1 )] ≤ C 2 √ ν k≥0 β k J 2 = 1 2 √ ν/2 1/ √ ν x ψ (-1/2) k (x 2 /2) 2 b(x)f (x)dx ≤ C 2 √ ν/2 1/ √ ν x (x 2 ν) -1/4 2 b(x)f (x)dx ≤ C 2 √ ν k=0 β k . J 3 = 1 2 (ν-ν 1/3 ) 1/2 √ ν/2
x ψ

(-1/2) k (x 2 /2) 2 b(x)f (x)dx ≤ C 2 (ν-ν 1/3 ) 1/2 √ ν/2 x ν -1/4 (ν -x 2 ) -1/4 2 b(x)f (x)dx = C 2 (ν-ν 1/3 ) 1/2 √ ν/2
x 1/3 x 2/3 ν -1/2 (ν -

x 2 ) -1/2 b(x)f (x)dx ≤ C 2 √ ν R |x| 2/3 b(x)f (x)dx.
Using the Hölder inequality, we have (ν-ν 1/3 ) 1/2

x ψ

(-1/2) k (x 2 /2) 2 b(x)f (x)dx ≤ C 2 (ν+ν 1/3 ) 1/2
(ν-ν 1/3 ) 1/2

x(ν -1/3 ) 2 b(x)f (x)dx = C 2

(ν+ν 1/3 ) 1/2 (ν-ν 1/3 ) 1/2

x 1/3 x 2/3 ν -2/3 b(x)f (x)dx

≤ C √ ν R |x| 2/3 b(x)f (x)dx.
By the same computation as for (J 3 ) we deduce:

J 4 ≤ C √ ν E |X 1 | 2q/3 1/q (p k≥0 (k + 1) p-1 β k ) 1/p . J 5 = 1 2 √ 3ν/2
(ν+ν 1/3 ) 1/2

x ψ

(-1/2) k (x 2 /2) 2 b(x)f (x)dx ≤ C 2 √ 3ν/2
(ν+ν 1/3 ) 1/2

x 1/3 x 2/3 ν -1/4 (x 2 -ν) -1/4 e -γ 1 ν -1/2 (x 2 -ν) 3/2 2 b(x)f (x)dx

≤ C 2 √ 3ν/2 (ν+ν 1/3 ) 1/2 ν -1/2 x 1/3 (x 2 -ν) -1/2 e -2γ 1 ν -1/2 (x 2 -ν) 3/2 x 2/3 b(x)f (x)dx ≤ C √ ν R |x| 2/3 b(x)f (x)dx.
Again by the Hölder inequality we get: Only the first term changes, thus we just compute K 1 and the other terms are such that the bounds coincide for i = 2 . . . 6.

J 5 ≤ C √ ν E |X 1 | 2q/3 1/q (p k≥0 (k + 1) p-1 β k ) 1/p .
K 1 = 1 2 1/ √ ν 0 x ψ (1/2) k (x 2 /2) 2 b(x)f (x)dx ≤ C 2 1/ √ ν 0 x (x 2 ν) 1/4 2 b(x)f (x)dx ≤ C 2 √ ν k≥0 β k
By gathering all these inequalities according to the parity of j we have the announced result. (f (X i ) -E[f (X i )]) for all f ∈ F.

2. 1

 1 Useful tools 2.1.1 Notations. For a, b ∈ R, let a ∨ b = max(a, b), and a + = max(0, a). For f , g inL 2 (R)∩L 1 (R), we denote by f, g = R f (u)g(u)du, ||f || 2 = R |f (u)| 2 du, f * (x) = R e itu f (u)du and f * g(x) = R f (x -u)g(u)du ∀x ∈ R. Lastly, we recall Plancherel-Parseval formula f, g = (2π) -1 f * , g * .

3 Risk Study of the estimator 3 . 1

 31 Risk of the estimator for fixed m. Under the additional assumption: (H 5 ) f Z is bounded, we can study the risk of f m and the following proposition states our result. Proposition 3.1.

7. 3

 3 Proof of theorem 4.1. By definition of m we have:

7. 3 . 1

 31 Proof of lemma 7.1. To prove this lemma, we use Talagrand's inequality given in Appendix 8.1, and compute H 2 , M 1 , v defined there. Denote by m = m ∨ m . We start by computing H 2 . As the map t → ν n,1 (t) is linear, for t = m -1 j=0

2 -K 1 εm 1

 21 this term according the value of δ. (i) Case 0 < δ < 1/2: In this case δ/2 < (1 -δ)/2. Thus the choice ε = 1 implies that me µl δ m δ

7. 3 . 2 m * - 1 j=0 a j ϕ j such that ||t|| 2 =m * - 1 j=0 a 2 j = 1

 3212121 Proof of lemma 7.2. Here m * = m ∨ m. Using the Cauchy-Schwarz inequality for t = we have:

Ree

  iuX k ϕ j (u)du, R e iuX l ϕ j (u)du .As a consequence1≤k, l≤n, k =l Cov R e iuX k ϕ j (u)du, R e iuX l ϕ j (u)du ≤ Var n k=1 R e iuX k ϕ j (u)du .Using Viennet's covariance inequality (1997) and equality (3)iuX k ϕ j (u)du = Var n k=1 ϕ * j (X k ) ≤ 8πn R b(u)ϕ j (u) 2 f (u)du, with b = n k=0 b k and b k , a sequence of measurable functions such that b 0 = 1, b k (u)f (u)du = β k (see Theorem 2.1 in Viennet (1997)).

7. 4 . 1 k

 41 Proof of Lemma 7.3. To prove this lemma, we use the decomposition formula of the Hermite basis in Laguerre basis (see Comte and Genon-Catalot (2017), Lemma 7.4, page 16) and the approximation formula of Askey and Wainger (1965). To evaluate R b(u)ϕ j (u) 2 f (u)du, we distinguish the cases under the parity of j. For j even, j = 2k, set to ν = 4k + 1 and we have R b(x)ϕ 2 2k (x)f (x)dx = are given in Section 7.1.3 (see Comte and Genon-Catalot (2017), page 15), we have six terms to evaluate.

R |x| 2 1 .

 21 /3 b(x)f (x)dx ≤ R |x| 2q/3 f (x)dx 1/q R b p (x)f (x)dx 1/p = E |X 1 | 2q/3 1/q E [b(X 1 ) p ]1/p , By Lemma 4.2 in Viennet (1997), page 481, we have: E [b(X 1 ) p ] ≤ p k≥0 (k + 1) p-1 β k . It comes: J 3 ≤

xe -γ 2 xγ 2 ν 4 Rγ 2 ν 4 n k=0 β k ≤ C e -3 γ 2 ν 4 k≥0 β k .

 2444k 2 b(x)f (x)dx ≤ C e -3 b(x)f (x)dx = C e -3 γ 2 ν 4 E [b(X 1 )] = C e -3For j odd, j = 2k + 1, set to ν = 4k + 3 we have,

8 Appendix 8 . 1

 881 Talagrand's inequality. Let (X i ) 1≤i≤n be independent real random variables, F a class at most countable of measurable functions and ν n (f ) = 1 n n i=1

Table 2 .

 2 Empirical integrated mean squared errors computed from (100 × E|| f m -f || 2 ) over 100 independent simulations pour n = 100, 250, 500, 1000.

			n = 100		n = 250	n = 500	n = 1000
	f	Noise	Lap. Gauss. Lap. Gauss	Lap.	Gauss.	Lap.	Gauss.
	Gaussian	0.44	0.37	0.12 0.06 9.5910 -2 4.310 -2 7.10 -2 4.1.10 -2
	Cauchy	0.28	0.89	0.20 0.56	0.14	0.37	0.10	0.29
	Laplace	1.65	2.18	1.06 1.34	0.75	1.16	0.57	0.87
	Gamma	1.70	1.27	0.98 0.97	0.50	0.90	0.28	0.83
	Mixed Gaussian 2.82	1.91	1.09 0.87	0.66	0.69	0.41	0.53
				n = 100	n = 250	n = 500	n = 1000
	f	Noise	Lap. Gauss. Lap. Gauss Lap. Gauss. Lap. Gauss.
		Gaussian		1.95	1.27	5.67 5.00 5.01	5.11	2.41	3.41
		Cauchy		4.07	1.07	2.45 0.79 2.43	0.70	1.40	0.52
		Laplace		1.47	1.40	1.13 1.34 1.12	1.02	1.04	0.89
		Gamma		0.67	0.88	0.66 0.73 0.82	0.49	1	0.37
	Mixed Gaussian 1.26	2.17	1.45 2.24 1.17	1.68	0.95	1.15

Table 3 .

 3 Ratio of the risks obtained in Comte and Lacour (2011) divided by those of

Table 2 .
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We assume there exist third strictly positive constants M 1 , H, v such that:

where

and K 1 a universal constant. The Talagrand inequalities has been proven in [START_REF] Talagrand | New concentration inequalities in product spaces[END_REF], reworded by [START_REF] Ledoux | On Talagrand's deviation inequalities for product measures[END_REF]. This version is given in [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF].