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ABSTRACT

In recent years, researchers have obtained impressive reconstruc-
tions of the refractive index (RI) of biological objects through the
combined use of advanced physics (nonlinear forward model) and
regularization. Here, we propose an adaptation of these techniques
for the more challenging problem of intensity-only measurements.
It involves a difficult nonconvex optimization problem where phase
and distribution of the RI must be jointly estimated. Using an ad-
equate splitting, we leverage recent achievements in phase retrieval
and RI reconstruction to perform this task. This yields an efficient
reconstruction method with sparsity constraints.

Index Terms— Beam propagation, intensity measurement, co-
herence tomography, image reconstruction.

1. INTRODUCTION

Having access to the map of the refractive index (RI) of biological
samples has a broad range of applications [1]. It can be obtained
through optical diffraction tomography (ODT). There, the sample is
illuminated by a set of tilted incident waves and holographic mea-
surements of the resulting scattered fields are recorded (see Fig-
ure 1). The RI distribution is then recovered by solving an inverse
scattering problem.

Pioneering works to solve the recovery problem were relying
on direct linear inversion algorithms such as back-propagation [2, 3].
Reconstructions were then dramatically improved using regularization-
based methods [4, 5]. However, the validity of linear models is
restricted to weakly scattering samples. To overcome this limita-
tion, the most recent reconstruction algorithms combine advanced
physical models with modern regularization [6, 7]. These methods
account for multiple scattering, which opens the door to the imaging
of strongly scattering objects.

As a CCD camera can measure intensity only, holographic mea-
surements must be acquired using an elaborate interferometric setup
that needs a reference beam or multiple measurements per angle.
Phaseless diffraction tomography allows one to simplify this setup
by recording a single intensity measurement per angle. However,
this comes at the price of a more challenging inverse problem. Ex-
isting methods tackle this difficulty by alternating between phase re-
trieval and RI estimation. The phase estimation step is generally
performed using the popular Gerchberg-Saxton projection [8]. The
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Fig. 1. Diffraction-tomography setup. A sample of RI n = nb1 + δn
is immersed in a background medium of index nb and impinged by a set of
incident waves (uin

p )p∈[1...P ]. The interaction of the wave with the object
produces a total field utot. Its squared magnitude is recorded by the detector.

RI reconstruction step has known the same progression as for classi-
cal ODT, going from linear models [9, 10] to nonlinear ones with ad
hoc regularization [11, 12, 13].

Contributions In this paper, we propose phaseless diffraction to-
mography as an adaptation of the efficient regularized method [6]
that solves inverse scattering. We thereby leverage the benefit of an
advanced nonlinear physical model and sparse regularization. We
first express the inverse problem within a variational framework that
includes the total variation (TV) penalty together with a nonnegativ-
ity constraint. Then, using an adequate splitting strategy, we carry
out the optimization by alternating between simpler steps. For each
subproblem, we deploy an efficient numerical solution. Finally, we
validate the proposed method on simulated and experimental data.

2. BEAM-PROPAGATION METHOD

We consider the 2D area Ω discretized in (Nx × Nz) points with
steps δx and δz. We denote the RI distribution of the sample by n ∈
RNx×Nz and the RI of the surrounding medium by nb ∈ R. Also, we
introduce the RI variation δn = (n − nb1) with 1 =

∑NxNz
k=1 ek.

The incident plane wave of wavelength λ is referred to as uin ∈
CNx×Nz . We represent the total field utot(δn) ∈ CNx×Nz (incident
+ scattered) as

utot
q (δn) = aq(δn) e

jkbq, (1)



where a(δn) ∈ CNx×Nz is the complex envelope of the wave,
kb =

2πnb
λ

is the background wavenumber, and the index q denotes
the z slice of the corresponding matrix. The beam-propagation
method (BPM) computes a(δn) slice-by-slice along the optical
axis z using the recursive relation

aq(δn) = (aq−1(δn) ∗ hprop)⊙ pq(δn), (2)

a0(δn) = uin
0 , (3)

where ⊙ denotes the Hadamard product and ∗ the convolution op-
eration. In (2), aq−1(δn) is first propagated to the next slice by
convolution with the propagation kernel hprop ∈ CNx given by

hprop = F−1

{
exp

(
−jω2δz

kb+
√

kb
2− ω2

)}
(diffraction step), (4)

where F is the 1D discrete Fourier transform, ω ∈ RNx is
the frequency variable for the x direction, and all operations are
component-wise. This convolution is followed by a point-wise mul-
tiplication with the qth slice of the phase mask p(δn) ∈ CNx×Nz

defined as

pq(δn) = exp (jk0δz(δn)q) (refraction step), (5)

where k0 = kb/nb is the wavenumber in free space. Finally, the
BPM forward model is defined by the operator

B : RNx×Nz → CNx

δn 7→ aNz(δn) e
jkbNz ,

(6)

where aNz(δn) ∈ CNx is computed using (2)-(3).

3. ADMM-BASED RECONSTRUCTION

We denote by P the number of the incident planes waves uin
p ∀ p ∈

[1 . . . P ]. The forward model that links δn to the intensity measure-
ments yp ∈ RNx is

yp = |Bp(δn)|2 + sp ∀ p ∈ [1 . . . P ], (7)

where sp ∈ RNx is a vector of noise components, | · | denotes
the component-wise magnitude, (·)2 denotes the component-wise
square operation, and Bp is the BPM model in (6) associated to uin

p .
To recover the RI variation δn, we minimize the TV-regularized neg-
ative log-likelihood of the noise distribution

δ̂n ∈

{
argmin

δn∈χ

(
1

2

P∑
p=1

∥|Bp(δn)|2− yp∥2Wp
+ τ∥δn∥TV

)}
, (8)

with τ a regularization parameter, χ ⊆ RNx×Nz
≥0 a set that enforces

the nonnegativity constraint, Wp = diag((wp
1 , . . . , w

p
Nx

)) ∈
RNx×Nx a diagonal matrix, and ∥ · ∥W a weighted ℓ2-norm such
that ∥v∥2W =

∑Nx
m=1 w

p
m(vm)2. To account for shot noise (Pois-

son), we set these weights to the inverse of the intensity of each
measurement.

We then apply the popular alternating direction method of multi-
pliers (ADMM) [14] strategy to solve our inverse problem. The lead-
ing idea is to split the initial problem in a series of simpler subprob-
lems for which we can deploy efficient algorithms. Starting from

Algorithm 1 ADMM for minimizing (10)

Require: {yp}p∈[1...P ], δn
(0) ∈ RN

≥0, ρ > 0, τ > 0

1: w
(0)
p = 0CNx , ∀p ∈ [1 . . . P ]

2: k = 0
3: while (not converged) do

4: v
(k+1)
p = prox 1

2ρ
∥|·|2−yp∥2Wp

(Bp(δn
(k)) +

w
(k)
p

ρ
)

5: δn(k+1) =

arg min
δn∈χ

(
1

2

P∑
p=1

∥Bp(δn)− v(k+1)
p +

w
(k)
p

ρ
∥22 +

τ

ρ
∥δn∥TV

)
6: w

(k+1)
p = w

(k)
p +ρ(Bp(δn

(k+1))−v(k+1)
p ), ∀p ∈ [1 . . . P ]

7: k ← k + 1
8: end while
9: return δn(k)

(8), we introduce the auxiliary variables vp ∈ CNx∀ p ∈ [1 . . . P ]
to obtain the equivalent constrained problem

δ̂n ∈ arg min
δn∈χ

(
1

2

P∑
p=1

∥|vp|2 − yp∥2Wp
+ τ∥δn∥TV

)
,

s.t. vp = Bp(δn) ∀p ∈ [1 . . . P ]. (9)

This problem admits the augmented-Lagrangian form

L(δn,v1, . . . ,vP ,w1, . . . ,wP ) =
1

2

P∑
p=1

∥|vp|2 − yp∥2Wp

+
ρ

2
∥Bp(δn)− vp +wp/ρ∥22 + τ∥δn∥TV, (10)

where wp and ρ are the Lagrangians and the penalty parameter [14].
Algorithm 1 shows the steps to minimize (10) using ADMM.

3.1. Proximity Operator

At Step 4 of Algorithm 1, one has to compute the proximity operator
of D(v) = 1

2ρ
∥|v|2 − yp∥2Wp

defined as

proxD(x) = arg min
v∈CNx

(
1

2
∥v − x∥22 +D(v)

)
. (11)

Here, we take advantage of the closed-form expressions that have
been recently derived for both Gaussian and Poisson likelihoods
in [15]. Specifically, the proximity operator in (11) is computed
component-wise according to

∀x ∈ CNx , [proxD(x)]m = ϱm ejarg(xm), (12)

where ϱm is the positive root of the 3rd degree three polynomial

qG(ϱ) =
4wp

m

ρ
ϱ3 + ϱ

(
1− 4wp

m

ρ
[yp]m

)
− |xm|, (13)

which is found with Cardano’s method.

3.2. Solving for δn

At Step 5 of Algorithm 1, we need to reconstruct the RI distribution
from the complex “data” z

(k+1)
p = v

(k+1)
p − w

(k)
p /ρ, taking into

account that

δn(k+1)= argmin
δn∈χ

(
1

2

P∑
p=1

∥Bp(δn)−z(k+1)
p ∥22 +

τ

ρ
∥δn∥TV

)
. (14)



This optimization problem is solved using the fast iterative shrinkage-
thresholding algorithm (FISTA) [16], which has already been proven
to be useful in this context [17, 6]. Two quantities are required

1. The proximity operator of τ
ρ
∥ · ∥TV which is computed effi-

ciently using a standard iterative method [6].

2. The gradient of F(δn) = 1
2

∑P
p=1 ∥Bp(δn) − z

(k+1)
p ∥22

which is derived using classical differential rules.

Specifically, we have that

∇F(δn) =
P∑

p=1

Re
(
JH
Bp

(δn)(Bp(δn)− z(k+1)
p )

)
, (15)

where JBp(δn) is the Jacobian matrix of the BPM forward model.
It is computed efficiently by back-propagation as in [6].

Moreover, to reduce the computational cost, we compute the
gradient only from a subset of angles L < P . We choose the an-
gles such that they are equally spaced and increment them at each
FISTA iteration. The computational complexity of∇F(δn) for one
angle corresponds to the cost of 6Nz FFTs of size Nx.

We implemented Algorithm 1 using the GlobalBioIm library [18].

4. NUMERICAL EXPERIMENTS

4.1. Simulated data

We simulated intensity measurements using a nonlinear accurate for-
ward model [19]. The square area Ω = 33λ × 33λ includes the
sample and the sensors. The medium has a RI nb = 1.33 (i.e., wa-
ter). The setup is similar to the scheme in Figure 1. A cell-like
phantom is included in a central area of side 16.5λ. As shown in
Figure 2 (top left), the cell body and the two ellipses have a RI of
1.355, 1.432 and 1.457 respectively. We simulated on a very fine
grid in order to reduce numerical errors (i.e., 1024× 1024) and then
down-sampled (512 × 512) to get the measurements used for the
reconstruction (last column of this matrix). The plane waves have
incident angles equally spaced between −π

4
and π

4
. Thirty one sets

of measurements were acquired with a wavelength of 406 nm (i.e.,
P = 31). The reconstruction problem is challenging because of the
limited-angle illuminations (missing cone). We computed the recon-
struction error ∥δn−δntrue∥F

∥δntrue∥F
with ∥ · ∥F the Frobenius norm.

Our reference is the (linear) light field refocusing (LFR) method
[20] which is also used to initialize Algorithm 1. It provides a rea-
sonably “good” start, which is crucial here since the optimization
task is non-convex. The algorithm parameters were manually set
to ρ = 10−3, L = 8 and the step size in FISTA to γ = 5 · 10−4.

Noiseless measurements For this experiment, we set the regular-
ization parameter to τ = 1.5 · 10−6 · ∥yP/2∥22. We compare the
proposed method with the BPM method in [6] that reconstructs the
RI map from holographic measurements (BPMc). We initialize this
algorithm with a filtered back-projection method (FBP) [21]. As
shown in Figure 2, the proposed method is able to recover the RI dis-
tribution. One can observe that the structures are slightly elongated
along z, as a consequence of the missing cone. However, contrar-
ily to the LFR solution, we can distinguish the two ellipses and the
shape of the cell body. The reconstructed RI is also close to the true
value. The reconstruction error is 6 · 10−3. The proposed method
compares well against BPMc (error 5.4 · 10−3) for which the phase
was provided.
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Fig. 2. Simulated data and their reconstruction. From left to right: (top)
the cell-like phantom and its associated noiseless intensity measurements;
(middle) the solutions from FBP [21] and BPMc [6]; (bottom) the LFR so-
lution [20], and the RI distribution recovered by the proposed method. The
elongated ellipses are due to missing informations along the optical axis.

Noisy measurements We simulated noisy measurements at three
different noise levels. For each of them, we set the incident
fields (uin

p )p∈[1...P ] such that |[uin
p ]m| = A ∈ R>0 and simu-

lated the resulting intensity measurements. We considered three
scenarios with A = 1.75, 3 and 5. Then, these measurements
were corrupted using a Poisson distribution. The resulting SNR are
5.32, 9.77 and 14.13 dB, respectively. Simulated measurements
are shown in Figure 3 (top line). The regularizations were set to
τ = 10−6 · ∥yP/2∥22 for all noise levels.

As shown in Figure 3 (bottom line), the proposed method is still
able to recover the shape of the cell and the ellipses. The recon-
struction errors are 9.47 · 10−3, 8.07 · 10−3 and 6.17 · 10−3 for
A = 1.75, 3 and 5, respectively. Despite the noise, we can still dis-
tinguish the different elements of the phantom, which demonstrates
the robustness of the method.

4.2. Experimental data

We validated our method on experimental data. Holographic mea-
surements were collected using a standard Mach-Zehnder inter-
ferometer, which relies on off-axis digital holography (λ = 450
nm). The sample was the cross-section of two fibres immersed in
a medium of RI nb = 1.525 (oil). We obtained P = 160 views
ranging from−π

4
to π

4
. The RI variation is negative δn ∈ R≤0. The

reconstructed area is Ω = 38λ× 97λ. We compare the performance
of the proposed method with BPMc. The latter and Algorithm 1 were
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Fig. 3. Noisy measurements and their RI reconstructions. Each col-
umn corresponds to a noise level. From left to right: |[uin

p ]m| = 1.75,
|[uin

p ]m| = 3, |[uin
p ]m| = 5 ∀p ∈ [1 . . . P ]. Top to bottom: intensity

measurements, LFR [20], and proposed method.

initialized with the solutions of the Rytov based-backpropagation [3]
and LFR respectively.

The FISTA step size was set at γ = 0.2/∥yP/2∥22 for BPMc
and our method. We set the penalty parameter to ρ = 2.5 for Algo-
rithm 1. The regularization parameter τ was tuned manually.

As shown in Figure 4, both BPMc and the proposed method are
able to reconstruct the cross-section of the two fibres. Although the
phase is missing, our method reaches performances similar to BPMc.

5. CONCLUSION

We have proposed a method to reconstruct a map of refractive in-
dex (RI) from intensity-only measurements. It is a non-trivial exten-
sion from complex to amplitude-only of a state-of-the-art method for
RI reconstruction from holographic measurements. We have com-
bined proximity operators for phase retrieval with an efficient RI re-
construction pipeline. Using an adequate splitting of the problem,
our method can cope with different noise models and regularizers.
We showed its robustness to noise and to the limited-angle acquisi-
tion settings that are the main difficulties for biological imaging.
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