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In recent years, researchers have obtained impressive reconstructions of the refractive index (RI) of biological objects through the combined use of advanced physics (nonlinear forward model) and regularization. Here, we propose an adaptation of these techniques for the more challenging problem of intensity-only measurements. It involves a difficult nonconvex optimization problem where phase and distribution of the RI must be jointly estimated. Using an adequate splitting, we leverage recent achievements in phase retrieval and RI reconstruction to perform this task. This yields an efficient reconstruction method with sparsity constraints.

INTRODUCTION

Having access to the map of the refractive index (RI) of biological samples has a broad range of applications [START_REF] Jin | Tomographic phase microscopy: Principles and applications in bioimaging[END_REF]. It can be obtained through optical diffraction tomography (ODT). There, the sample is illuminated by a set of tilted incident waves and holographic measurements of the resulting scattered fields are recorded (see Figure 1). The RI distribution is then recovered by solving an inverse scattering problem.

Pioneering works to solve the recovery problem were relying on direct linear inversion algorithms such as back-propagation [START_REF] Wolf | Three-dimensional structure determination of semi-transparent objects from holographic data[END_REF][START_REF] Devaney | Inverse-scattering theory within the Rytov approximation[END_REF]. Reconstructions were then dramatically improved using regularizationbased methods [4,[START_REF] Lim | Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography[END_REF]. However, the validity of linear models is restricted to weakly scattering samples. To overcome this limitation, the most recent reconstruction algorithms combine advanced physical models with modern regularization [START_REF] Kamilov | Optical tomographic image reconstruction based on beam propagation and sparse regularization[END_REF][START_REF] Kamilov | A recursive Born approach to nonlinear inverse scattering[END_REF]. These methods account for multiple scattering, which opens the door to the imaging of strongly scattering objects.

As a CCD camera can measure intensity only, holographic measurements must be acquired using an elaborate interferometric setup that needs a reference beam or multiple measurements per angle. Phaseless diffraction tomography allows one to simplify this setup by recording a single intensity measurement per angle. However, this comes at the price of a more challenging inverse problem. Existing methods tackle this difficulty by alternating between phase retrieval and RI estimation. The phase estimation step is generally performed using the popular Gerchberg-Saxton projection [START_REF] Gerchberg | A practical algorithm for the determination of phase from image and diffraction plane pictures[END_REF]. The RI reconstruction step has known the same progression as for classical ODT, going from linear models [START_REF] Zheng | Wide-field, high-resolution Fourier ptychographic microscopy[END_REF][START_REF] Tian | Multiplexed coded illumination for Fourier ptychography with an LED array microscope[END_REF] to nonlinear ones with ad hoc regularization [START_REF] Maiden | Ptychographic transmission microscopy in three dimensions using a multi-slice approach[END_REF][START_REF] Tian | 3D intensity and phase imaging from light field measurements in an LED array microscope[END_REF][START_REF] Li | Separation of threedimensional scattering effects in tilt-series Fourier ptychography[END_REF].

Contributions In this paper, we propose phaseless diffraction tomography as an adaptation of the efficient regularized method [START_REF] Kamilov | Optical tomographic image reconstruction based on beam propagation and sparse regularization[END_REF] that solves inverse scattering. We thereby leverage the benefit of an advanced nonlinear physical model and sparse regularization. We first express the inverse problem within a variational framework that includes the total variation (TV) penalty together with a nonnegativity constraint. Then, using an adequate splitting strategy, we carry out the optimization by alternating between simpler steps. For each subproblem, we deploy an efficient numerical solution. Finally, we validate the proposed method on simulated and experimental data.

BEAM-PROPAGATION METHOD

We consider the 2D area Ω discretized in (Nx × Nz) points with steps δx and δz. We denote the RI distribution of the sample by n ∈ R Nx×Nz and the RI of the surrounding medium by n b ∈ R. Also, we introduce the RI variation δn = (n -n b 1) with 1 = ∑ NxNz k=1 e k . The incident plane wave of wavelength λ is referred to as u in ∈ C Nx×Nz . We represent the total field u tot (δn) ∈ C Nx×Nz (incident + scattered) as u tot q (δn) = aq(δn) e jk b q , (

where a(δn) ∈ C Nx×Nz is the complex envelope of the wave,

k b = 2πn b λ
is the background wavenumber, and the index q denotes the z slice of the corresponding matrix. The beam-propagation method (BPM) computes a(δn) slice-by-slice along the optical axis z using the recursive relation

aq(δn) = (aq-1(δn) * hprop) ⊙ pq(δn), (2) 
a0(δn) = u in 0 , (3) 
where ⊙ denotes the Hadamard product and * the convolution operation. In (2), aq-1(δn) is first propagated to the next slice by convolution with the propagation kernel hprop ∈ C Nx given by

hprop = F -1 { exp ( -jω 2 δz k b + √ k b 2 -ω 2 )} (diffraction step), ( 4 
)
where F is the 1D discrete Fourier transform, ω ∈ R Nx is the frequency variable for the x direction, and all operations are component-wise. This convolution is followed by a point-wise multiplication with the qth slice of the phase mask p(δn) ∈ C N x×N z defined as

pq(δn) = exp (jk0δz(δn)q) (refraction step), (5) 
where k0 = k b /n b is the wavenumber in free space. Finally, the BPM forward model is defined by the operator

B : R Nx×Nz → C Nx δn → aN z (δn) e jk b Nz , (6) 
where aN z (δn) ∈ C Nx is computed using (2)-(3).

ADMM-BASED RECONSTRUCTION

We denote by P the number of the incident planes waves u in p ∀ p ∈ [1 . . . P ]. The forward model that links δn to the intensity measure-

ments yp ∈ R Nx is yp = |Bp(δn)| 2 + sp ∀ p ∈ [1 . . . P ], (7) 
where sp ∈ R Nx is a vector of noise components, | • | denotes the component-wise magnitude, (•) 2 denotes the component-wise square operation, and Bp is the BPM model in ( 6) associated to u in p . To recover the RI variation δn, we minimize the TV-regularized negative log-likelihood of the noise distribution

δn ∈ { arg min δn∈χ ( 1 2 P ∑ p=1 ∥|Bp(δn)| 2 -yp∥ 2 Wp + τ ∥δn∥TV )} , ( 8 
)
with τ a regularization parameter, χ ⊆ R Nx×Nz ≥0 a set that enforces the nonnegativity constraint, Wp = diag((w p 1 , . . . , w p Nx )) ∈ R Nx×Nx a diagonal matrix, and

∥ • ∥ W a weighted ℓ2-norm such that ∥v∥ 2 W = ∑ Nx m=1 w p m (vm) 2 .
To account for shot noise (Poisson), we set these weights to the inverse of the intensity of each measurement.

We then apply the popular alternating direction method of multipliers (ADMM) [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF] strategy to solve our inverse problem. The leading idea is to split the initial problem in a series of simpler subproblems for which we can deploy efficient algorithms. Starting from Algorithm 1 ADMM for minimizing [START_REF] Tian | Multiplexed coded illumination for Fourier ptychography with an LED array microscope[END_REF] 

Require: {yp} p∈[1...P ] , δn (0) ∈ R N ≥0 , ρ > 0, τ > 0 1: w (0) p = 0 C Nx , ∀p ∈ [1 . . . P ] 2: k = 0 3: while (not converged) do 4: v (k+1) p = prox 1 2ρ ∥|•| 2 -yp∥ 2 Wp (Bp(δn (k) ) + w (k) p ρ ) 5: δn (k+1) = arg min δn∈χ ( 1 2 P ∑ p=1 ∥Bp(δn) -v (k+1) p + w (k) p ρ ∥ 2 2 + τ ρ ∥δn∥TV
This problem admits the augmented-Lagrangian form L(δn, v1, . . . , vP , w1, . . . , wP ) = 1 2

P ∑ p=1 ∥|vp| 2 -yp∥ 2 Wp + ρ 2 ∥Bp(δn) -vp + wp/ρ∥ 2 2 + τ ∥δn∥TV, ( 10 
)
where wp and ρ are the Lagrangians and the penalty parameter [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF].

Algorithm 1 shows the steps to minimize (10) using ADMM.

Proximity Operator

At Step 4 of Algorithm 1, one has to compute the proximity operator of D(v) = 1 2ρ ∥|v| 2 -yp∥ 2 Wp defined as

prox D (x) = arg min v∈C Nx ( 1 2 ∥v -x∥ 2 2 + D(v) ) . ( 11 
)
Here, we take advantage of the closed-form expressions that have been recently derived for both Gaussian and Poisson likelihoods in [START_REF] Soulez | Proximity operators for phase retrieval[END_REF]. Specifically, the proximity operator in ( 11) is computed component-wise according to

∀x ∈ C Nx , [prox D (x)] m = ϱm e jarg(xm) , ( 12 
)
where ϱm is the positive root of the 3rd degree three polynomial

qG(ϱ) = 4w p m ρ ϱ 3 + ϱ ( 1 - 4w p m ρ [yp]m ) -|xm|, ( 13 
)
which is found with Cardano's method.

Solving for δn

At Step 5 of Algorithm 1, we need to reconstruct the RI distribution from the complex "data" z

(k+1) p = v (k+1) p -w (k) p /ρ, taking into account that δn (k+1) = arg min δn∈χ ( 1 2 P ∑ p=1 ∥Bp(δn)-z (k+1) p ∥ 2 2 + τ ρ ∥δn∥TV ) . ( 14 
)
This optimization problem is solved using the fast iterative shrinkagethresholding algorithm (FISTA) [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF], which has already been proven to be useful in this context [START_REF] Kamilov | Learning approach to optical tomography[END_REF][START_REF] Kamilov | Optical tomographic image reconstruction based on beam propagation and sparse regularization[END_REF]. Two quantities are required 1. The proximity operator of τ ρ ∥ • ∥TV which is computed efficiently using a standard iterative method [START_REF] Kamilov | Optical tomographic image reconstruction based on beam propagation and sparse regularization[END_REF].

The gradient of

F(δn) = 1 2 ∑ P p=1 ∥Bp(δn) -z (k+1) p ∥ 2 2
which is derived using classical differential rules.

Specifically, we have that

∇F(δn) = P ∑ p=1 Re ( J H Bp (δn)(Bp(δn) -z (k+1) p ) ) , ( 15 
)
where JB p (δn) is the Jacobian matrix of the BPM forward model. It is computed efficiently by back-propagation as in [START_REF] Kamilov | Optical tomographic image reconstruction based on beam propagation and sparse regularization[END_REF]. Moreover, to reduce the computational cost, we compute the gradient only from a subset of angles L < P . We choose the angles such that they are equally spaced and increment them at each FISTA iteration. The computational complexity of ∇F(δn) for one angle corresponds to the cost of 6Nz FFTs of size Nx.

We implemented Algorithm 1 using the GlobalBioIm library [START_REF] Unser | GlobalBioIm: A unifying computational framework for solving inverse problems[END_REF].

NUMERICAL EXPERIMENTS

Simulated data

We simulated intensity measurements using a nonlinear accurate forward model [START_REF] Soubies | Efficient inversion of multiple-scattering model for optical diffraction tomography[END_REF]. The square area Ω = 33λ × 33λ includes the sample and the sensors. The medium has a RI n b = 1.33 (i.e., water). The setup is similar to the scheme in Figure 1. A cell-like phantom is included in a central area of side 16.5λ. As shown in Figure 2 (top left), the cell body and the two ellipses have a RI of 1.355, 1.432 and 1.457 respectively. We simulated on a very fine grid in order to reduce numerical errors (i.e., 1024 × 1024) and then down-sampled (512 × 512) to get the measurements used for the reconstruction (last column of this matrix). The plane waves have incident angles equally spaced between -π 4 and π 4 . Thirty one sets of measurements were acquired with a wavelength of 406 nm (i.e., P = 31). The reconstruction problem is challenging because of the limited-angle illuminations (missing cone). We computed the reconstruction error ∥δn-δn true ∥ F ∥δn true ∥ F with ∥ • ∥F the Frobenius norm. Our reference is the (linear) light field refocusing (LFR) method [START_REF] Zheng | Microscopy refocusing and dark-field imaging by using a simple LED array[END_REF] which is also used to initialize Algorithm 1. It provides a reasonably "good" start, which is crucial here since the optimization task is non-convex. The algorithm parameters were manually set to ρ = 10 -3 , L = 8 and the step size in FISTA to γ = 5 • 10 -4 .

Noiseless measurements For this experiment, we set the regularization parameter to τ = 1.5 • 10 -6 • ∥y P/2 ∥ 2 2 . We compare the proposed method with the BPM method in [START_REF] Kamilov | Optical tomographic image reconstruction based on beam propagation and sparse regularization[END_REF] that reconstructs the RI map from holographic measurements (BPMc). We initialize this algorithm with a filtered back-projection method (FBP) [START_REF] Kak | Principles of computerized tomographic imaging[END_REF]. As shown in Figure 2, the proposed method is able to recover the RI distribution. One can observe that the structures are slightly elongated along z, as a consequence of the missing cone. However, contrarily to the LFR solution, we can distinguish the two ellipses and the shape of the cell body. The reconstructed RI is also close to the true value. The reconstruction error is 6 • 10 -3 . The proposed method compares well against BPMc (error 5.4 • 10 -3 ) for which the phase was provided. the cell-like phantom and its associated noiseless intensity measurements;

(middle) the solutions from FBP [START_REF] Kak | Principles of computerized tomographic imaging[END_REF] and BPMc [START_REF] Kamilov | Optical tomographic image reconstruction based on beam propagation and sparse regularization[END_REF]; (bottom) the LFR solution [START_REF] Zheng | Microscopy refocusing and dark-field imaging by using a simple LED array[END_REF], and the RI distribution recovered by the proposed method. The elongated ellipses are due to missing informations along the optical axis.

Noisy measurements We simulated noisy measurements at three different noise levels. For each of them, we set the incident fields (u in p ) p∈[1...P ] such that |[u in p ]m| = A ∈ R>0 and simulated the resulting intensity measurements. We considered three scenarios with A = 1.75, 3 and 5. Then, these measurements were corrupted using a Poisson distribution. The resulting SNR are 5.32, 9.77 and 14.13 dB, respectively. Simulated measurements are shown in Figure 3 (top line). The regularizations were set to τ = 10 -6 • ∥y P/2 ∥ 2 2 for all noise levels. As shown in Figure 3 (bottom line), the proposed method is still able to recover the shape of the cell and the ellipses. The reconstruction errors are 9.47 • 10 -3 , 8.07 • 10 -3 and 6.17 • 10 -3 for A = 1.75, 3 and 5, respectively. Despite the noise, we can still distinguish the different elements of the phantom, which demonstrates the robustness of the method.

Experimental data

We validated our method on experimental data. Holographic measurements were collected using a standard Mach-Zehnder interferometer, which relies on off-axis digital holography (λ = 450 nm). The sample was the cross-section of two fibres immersed in a medium of RI n b = 1.525 (oil). We obtained P = 160 views ranging from -π 4 to π 4 . The RI variation is negative δn ∈ R ≤0 . The reconstructed area is Ω = 38λ × 97λ. We compare the performance of the proposed method with BPMc. The latter and Algorithm 1 were initialized with the solutions of the Rytov based-backpropagation [START_REF] Devaney | Inverse-scattering theory within the Rytov approximation[END_REF] and LFR respectively.

The FISTA step size was set at γ = 0.2/∥y P/2 ∥ 2 2 for BPMc and our method. We set the penalty parameter to ρ = 2.5 for Algorithm 1. The regularization parameter τ was tuned manually.

As shown in Figure 4, both BPMc and the proposed method are able to reconstruct the cross-section of the two fibres. Although the phase is missing, our method reaches performances similar to BPMc.

CONCLUSION

We have proposed a method to reconstruct a map of refractive index (RI) from intensity-only measurements. It is a non-trivial extension from complex to amplitude-only of a state-of-the-art method for RI reconstruction from holographic measurements. We have combined proximity operators for phase retrieval with an efficient RI reconstruction pipeline. Using an adequate splitting of the problem, our method can cope with different noise models and regularizers. We showed its robustness to noise and to the limited-angle acquisition settings that are the main difficulties for biological imaging. 
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 1 Fig. 1. Diffraction-tomography setup. A sample of RI n = n b 1 + δn is immersed in a background medium of index n b and impinged by a set of incident waves (u in p ) p∈[1...P ]. The interaction of the wave with the object produces a total field u tot . Its squared magnitude is recorded by the detector.
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 92 return δn (k) (8), we introduce the auxiliary variables vp ∈ C Nx ∀ p ∈ [1 . . . P ] to obtain the equivalent constrained problem δn ∈ arg min δn∈χ ( -yp∥ 2 Wp + τ ∥δn∥TV ) , s.t. vp = Bp(δn) ∀p ∈ [1 . . . P ].

Fig. 2 .

 2 Fig. 2. Simulated data and their reconstruction. From left to right: (top)

Fig. 3 .

 3 Fig. 3. Noisy measurements and their RI reconstructions. Each column corresponds to a noise level. From left to right: |[u in p ]m| = 1.75, |[u in p ]m| = 3, |[u in p ]m| = 5 ∀p ∈ [1 . . . P ]. Top to bottom: intensity measurements, LFR [20], and proposed method.

2 Fig. 4 .

 24 Fig. 4. RI reconstructions of two fibres. Top left: profile plots of reconstructions from BPMc and proposed method of the dashed lines on the right. Bottom left: intensity measurements experimentally acquired. Right: BPMc (complex measurements) and proposed method (intensity measurements).