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Abstract. The degradation of railway tracks can be observed through several measurement
techniques. Recently, a method to diagnose the railway track using Fiber Bragg gratings (FBG)
has been proposed. FBG are integrated inside the railway sleeper and is named a “Smart
Sleeper”. To study the sleeper behavior, an analytical model for the dynamics of railway sleep-
ers has been developed, which can calculate rapidly the sleeper responses. In this model, by
using the relation between the rail forces and displacements of a periodically supported beam,
the dynamic equation of the sleeper is written with the help of the Euler-Bernoulli beam equa-
tion and Dirac’s functions. Subsequently, thanks to the Green’s function of this system, the
sleeper dynamic response is calculated analytically. A linear relation between the train loads
and the sleeper strains is shown in the frequency domain. This article presents an application
of this model to calculate the train loads from the strains measured by the FBG. Based on the
analytical model, we obtain a matrix which presents the link between the loads and the sleeper
responses. By integrating this matrix and the Fourier transform of the measurements recorded
by the FBG at the middle and at the two rail-seats, the train loads can be quickly calculated by
using the solver mldivide of MATLAB. The numerical application shows that the identified
train loads are different for different wheels and different rails. This highlights the irregularity
of the wheel-rail contact forces which can be used to detect the defaults in the rolling stock in
future works.

1 INTRODUCTION

Generally, defective materials can be detected by several different methods. The easiest is
the correlation by image analysis but it is slow and not exact. Measurement of elastic waves,
electrical resistance or acoustic emission focus on a variation of the propagation time of waves
and electrical resistance to detect the internal cracks of objects. The study of the dynamic prop-
erties of systems in the frequency domain (modal analysis) is then applied [1, 2, 3]. Material
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damage would have abnormal resonant frequencies.

In recent years, a novel technology using the Fiber Bragg Grating (FBG) to diagnose the
railway track has been developed. In 2010, Filograno et al. [12] posed the FBG sensors on the
rail in different directions (vertical, horizontal and inclined at an angle 45°) for monitoring the
high speed line from Madrid to Barcelona in real time. They could detect the train parameters:
train speed and acceleration, the distance between the wheel and wheel number. Moreover, the
dynamic charge can be calculated in a precise way. Wei et al. [13, 14] presented two methods:
X-Crossing and D-Crossing to avoid the area where signals are noisy. Buggy et al. [15] has
used the FBG to monitor the fishplate (jonction of two rails). In the same year, Tam et al. [16]
presented the system “Smart Railways” which has been developped by KCRS’s East Rail in
Hong Kong. The FBG sensor has been demonstrated to be able to detect the rail imperfection
[17, 18]. A railway sleeper “Smart Sleeper” [19] which has been developed by Sateba with 6
sensors allows us to measure the sleeper strain when the train is passing.

Substantial research using analytical and numerical methods for rail track has been carried
out. Analytical models of the rail track have been developped by considering the model of an
infinite beam placed on a continuous foundation [8, 9, 10] or a periodically supported beam
[4, 5, 6, 7]. Some research focus on the pre-stressed concrete sleeper using FEM in 2D and in
3D [20, 21]. In 2017, Tran et al. [11] has developped an analytical model of the railway sleeper
which allows us to rapidly calculate the sleeper response.

In this paper, based on the analytical model of the railway sleeper, an “inverse problem’ has
been developped to determine the train loads. By considering a beam resting on a Kelvin-Voigt
foundation and by assuming a periodic charge, the sleeper strain and the train loads can be
written as a linear relation in the frequency domain with the help of the Green’s function. The
charges can be determined by using the MATLAB solver m1divide. We verified this problem
to a good precision by back-calculating the train loads from a signal. That is a combination of
imposed loads and random noise. Another application has been shown in this paper with the
real measurements recorded by the “Smart Sleeper”. The results of this application shows the
differents charges applied on each rail which corresponds to different strain level recorded by
the FGB of the sleeper.

2 GORVERNING EQUATIONS
2.1 Analytical model of the sleeper

A railway track can be modeled as shown in Fig. 1. In this track, the sleeper together with
the ballast and foundation are modeled by an Euler-Bernouilli beam resting on a Kelvin-Voigt
foundation. The sleeper length is 2L (from —L to L) and the rail positions are at x* = +a. The
sleeper displacement wg(x,t) under a force F'(z,t) is driven by the dynamic equation of the
Euler-Bernoulli pre-stressed beam as follows:

0w, (, t)
Ozt

Owg(z,t)
ot

OPwgy(z,t) B T82w5 (x,1)

EsIs o012 02 + kfw5<‘r7t) + Cf = F(I‘, t) (1)

+ psSs

where p;, Fs, Ss and I are the density, the Young’s modulus, the section and the cross-sectional
moment inertia of the sleeper respectively; k; and (y are the stiffness and damping coefficients
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Figure 1: Railway track (a) and the analytical model representation (b)

of the foundation and 7" is the sleeper pre-stress. The force applied by the rails on the sleeper
F(z,t) can be written with the help of the Dirac’s functions as follows :

F(z,t) = —Ri(t)6(x — a) — Re0(x + a) (2)

where R, and R are the reaction forces applied on the rail positions (r = *a). For a free-free
beam posed on the foundation, the moment (3a) and the shear force (3b) are vanishing at two
extremities, thus these boundary conditions can be imposed by the 2" and 3" partial derivative
with regard to x set to zero respectively:

0%w, 0w,
Or2 (_Lat) = Ox2 (L7t) =0 (33)
Pw, Pw,
ﬁ(—Lﬂf) = W(L»t) =0 (3b)

Eq. (1) together with the boundary conditions (3) is a 4'" order linear differential equation in
the frequency domain which can be solved with help of the Green’s function. (The calculation
of the Green’s function is shown in Appendix B). Hence, the sleeper response in the frequency
domain w;,(z,w) can be written as follow:

A ~

—R —R
ws(z,w) = Es]i Go(z,w) + KiG_a(x, w) 4)
By substituting = a and x = —a into the aforementioned equation, we obtain respectively
the sleeper displacement at the rail positions:
iy — iz
we(a,w) = Bl Gala,w) + Bl G_4(a,w)
i i ®
— o (= 2 —
Ws(—a,w) = Bl Go(—a,w) + Bl G_o(—a,w)
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The model of the periodically supported beam and together with the consecutive law of the
rail pads shows the expression of the reaction force (see Appendix A). The combination at Egs.
(17) and (5) gives us the result of the reaction force of the sleeper on the two rails:

R — Bl Q [G—a(_a'7 (.U) + X} - QQG—a<a7w)
1= X + Gola,w)] [x + G_o(—a,w)] — Go(—a,w)G_4(a,w) ©
f, _ Bsls Q5 [Gola,w) + x| — ©1Go(—a,w)

2 K [x+ Gula,w)] [x + G_o(—a,w)] — Go(—a,w)G_,(a,w)

K
where y = Esls%. Then, the sleeper displacement in the frequency domain can be ob-
P

tained by replacing Ry and R in Eq. (4). The sleeper strain can be calculated using the beam
theory and together with the equation of the sleeper response (4):

A - -él " RQ 7
Ex(m, 2, w) = 24 (Es]s G, (z,w) + N Ga(:c,w)> (7)

where z, is the distance to the beam’s neutral axis. By using the inverse Fourier transform of
Egs. (4) and (7), we can get the sleeper response and the sleeper strain in the time domain.

2.2 Identifcation of the train load

Figure 2: Instrumented sleeper: upper right sensor (red), and uper center sensor (black)

We will apply this analytical model to identify the train load from the sleeper strain. A
“Smart Sleeper” which has been developped by Sateba with 6 Fibre Bragg Grating sensors
(FBG) integrated in the longitudinal direction allow us to obtain the sleeper strain as the train
passes. These sensors are situated at the two rail seats and at the middle of the sleeper. The
signals are recorded by these sensors in the time domain and by using the Fourier transform, we
can obtain these signals in the frequency domain. We can rewrite Eq. (7) as follows:

~ ~

iy, 25, W) = A (T4, 25, W) 1 (W) + A (4, 25, w) Ra(w) (8)
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Zs; Zs;

where (z;, z, ) are the positions of the sensors, Aj; = <E ] G (s, w)) and Ajp = (E ] G”a(xi,w))

This equation can be also rewritten as:

)] = [Anl) Au@)] [0 ©

where [é(w)] represents the vector signals in the frequency domain and has a dimension n s that
depends on the number of signals.

The reaction forces of the sleeper on the rail can be calculated by the equivalent charges Oy
where k£ = 1, 2 which corresponds to right and left rails. From Eq. (6), we obtain:

)= o) mee o) 10

where these 4 components Bjy are 4 known constants. The equivalent charges Q). are calculated
on each rail k£ (see Appendix A) as follows:

K(w)

Qu(w) = ZQM 7 = [Cw)] Qu (11)

VL | (2)" - M| i

where Qi = [Q4;]; is a column vector of all moving loads on the rail k. The matrix [C(w)]

has dimensions [n; x K| with n; and K represent the length of the vector [¢(w)] and the wheel
number respectively. Eq. (11) can be rewritten as follows:

2] ~teer |3 a

The combination of Egs. (9), (10), and (12) allows us to deduce the relation between the sleeper
strains and the train loads as follows:

) = [Aut) An)] [p2f2) B2 e | a3
And we can also rewritten the Eq. (13) as a linear equation:
) = [Fule) Fu() | = [F)] [Q 14

Eq. (14) is a linear relation between the sleeper strains and train loads. Hence, we can use
function mldivide' in MATLAB to solve this linear equation.

I'This solver has many methods of factorization to solve a system linear equation which depend on the di-
mension of the matrices (for example: Cholesky factorization for a matrix symmetric with real, positive diagonal
element; Gaussian elimination to reduce the system to a triangular matrix if the matrix is upper Hessenberg etc.).
In this case, the matrix F(w) is rectangular, thus method of QR factorization will be used in the mldivide solver
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3 NUMERICAL APPLICATION
3.1 Verification

The objective of this section is to verify the precision of the inverse problem. By using
the analytical signals generated by the analytical model, we apply it on the inverse problem to
identify the train loads. The test will be done with the analytical signal and noise signal. The
parameters of the railway track is shown in Table 1. These parameters allows us to generate the
analytical signals for identifying the train loads.

Content Unit Notation Value
Young’s modulus of rail GPa E, 210
Cross-sectional moment inertia of rail m? I, 3E-05
Rail density kgm~3 Pr 7850
Rail section area m? S, 7.69E-3
Young’s modulus of sleeper GPa B 48
Cross-sectional moment inertia of sleeper m* I 4.32E-4
Density of sleeper kgm—3 Ps 2475
Sleeper section area m? Ss 54.9E-3
Length of sleeper m 2L 241
Track gauge m 2a 1.435
Stiffness of ballast MNm™! ky 240
Damping coefficient of ballast kNsm™! Cr 58.8
Stiffness of rail pad MNm™* Kyrp 192
Damping coefficient of rail pad MNsm ! Cop 1.97
Train speed ms ! v 50
Pre-stress of sleeper kN T 300
Sleeper spacing m l 0.6

Table 1: Parameters of the railway track

The charge per wheel on each rail has been generated randomly. Fig. 3 shows the superposi-
tion of the charges introduced and indentified (blue line and red column respectively) on the left
rail (a) and right rail(b). In the two figures, the blue line has the same value as the red columns
in this figure because we found the same train loads. The relative error is about 3.7x10~% %.
We can conclude that the inverse problem is verified with a good precision. The difference is
due to small errors introduced during the numerical calcultations.

Now, we add a random noise to the sleeper response to simulate the real measurments. Fig.
4 shows the sleeper strain as a red line and the noise signal as a blue line on the left rail (a) and
right rail (b) in a time interval which corresponds to the time for the passing of a train. By using
the inverse problem, the superposition of the train loads introduced and identified is shown in
Fig. 5.

With the noise, the train loads have been found with a small difference. In this figure, the
red column and blue line corresponding to trains loads introduced and identified don’t have the
same value. The table 2 shows the relative error with different levels of noise in the signal.
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Figure 3: Superposition of the train loads introduced and identified on the left rail (a) and right
rail (b)
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Figure 4: Analytical and noise signals on the left rail (a) and right rail (b)

Amplitude of noise Leftrail Rightrail Average

Slightly noisy 0281 % 0.285% 0.283 %
Noisy 0.585% 0.597 % 0.592 %
Very noisy 1.186 % 1.159 % 1.172 %
Strongly noisy 2541 % 2.634 %  2.588 %

Table 2: Relative error between the train loads introduced and identified fore different noise
levels

Fig. 4 shows the case of large amount of introduced noise which the relative error is 1.17 %.
With the strongly noisy signal, the relative error is about 2.6 %. Thus, we can conclude that the
train loads identified have been found with a good precision.

3.2 Real signal

We will use the measurements recorded in-situ with the help of the “Smart Sleeper”. The
measurement has been performed at Creil, France, on the 6 of May 2017. Fig. 7 shows the
signal recorded by the “Smart Sleeper” during the passing of a train which contains 10 wagons
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Figure 5: Superposition of the train loads introduced and identified on the left rail (a) and right
rail (b)

including the locomotive. The green and red line represent the measurements on the left (a) and
right (b) upper sensor respectively. The train loads on the two rails are shown in Fig. 6. The
black in Fig. 7 represents the analytical sleeper response by using the identified train loads.

110" : : : : : : 12210"
10t
~ 8f —
< <
B 6/ 3
o o
- 4+ —
2 H
0
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Wheel number Wheel number
(a) Left rail (b) Right rail

Figure 6: Train loads identified by using the measurements on the left rail (a) and right rail (b)

We note that the value of the first four loads on the two rails are bigger than the rest, corre-
sponding to the locomotive of the train, which is normally heavier than the wagons. In the Fig.
7, the first four peaks are also superior to the rest.

Moreover, we note that the train loads on the two rails are not the same (in Fig 7, the sleeper
strains on the left rail are superior to the right rail). By identifying the train loads, this phe-
nomenon is demonstrated by the different charges on the two rails. The charges applied on
the left rail are bigger than the right rail. This could be explained by the non-homogenous
foundation or by the unbalanced of rolling stock.

4 CONCLUSION

Based on an analyical model of the railway sleeper the inverse problem has been developed
to identify the train loads. In the frequency domain, the sleeper strain and the train loads can be
linked by a linear relation. The train loads identified from the measurements in-situ demonstrate
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Figure 7: Sleeper response on the left rail (a) and right rail (b)

different values for each wheel of the train. Thus, this technique can detect the imperfection of
the wheel-rail contact when the train load on one rail is much higher than the other. In future
works, the model should be developed to identify other parameters of the railway track.
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A Periodically supported beam model
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Figure 8

The periodically supported beam is shown in Fig. 8. When the rails are modeled by pe-

riodically supported beams [7], the forces Rj on each rail £ in the frequency domain can be
calculated as follows:

Ri(w) = Ko® (w) + Qp(w) (15)
where K is the equivalent stiffness, Qy are the equivalent charges of the two rails which are
determined. Let w'™ be the rail & displacements at the sleeper position respectively and w;(z, t)

9



L-H. Tran, T. Hoang, D. Duhamel, G. Foret, S. Messad and A. Loaéc

is the sleeper displacement where x = +a corresponds to the positions of the rail seats. The
forces Rj can be expressed by the constitutive law of the rail pads in the frequency domain as
follows:

Ri(w) = =k, (0P (w) — s(a,w)) (16)

where k, = k,, + iw(,, is the dynamic stiffness of the rail pad and £,,, ¢, are the stiffness and
damping coefficients of the rail pads. By substituting Eq. (15) into Eq. (16), we obtain:

. kK

k
Ry (w) = p +Kws(a,w)+ ) (17)
P

k, + K

B Green’s function

By using the Fourier transform and combining equations (1), (2) and (3), this system dynam-
ics equation can be rewritten in the frequency domain :

N T N psst kb ~ o Rl 2
w, (z,w) — E’Slsws (r,w) — Tws(a:,w) = Eslsé(x a) Es[sé(x +a)
W, (—L,w) =, (L,w) =0
W, (—L,w) =W, (L,w) =0
(18)

where (D') stands for the partial derivative with regard to x and k;, = kf+iw(j is the foundation
dynamic stiffness. The Green’s function G,(x,w) of Eq. (18) is defined by :

4 2
T - ) (o) = e —a) a9
T X

T SSS 2 - k . . . . . .
where oy = 4 / ol and )\, = {‘/ % This is a 4" order linear differential equation

and its Green’s function [22] can be written as follows:

ApeM®T 4 Apet® 4 Aget® + AyeM® forax € [—L, al

20
B1eM?® 4 Byer?® 4 Bse®  BueM®  forx € la, L] .

Gu(r,w) = {

where A;, B;, and \; (with 1 < ¢ < 4) are parameters to be determined. J; is the 4 complex
roots of the characteristic equation:

P(A) = At —a?X\? -\ (1)

By using the boundary conditions of the free-free beam (continuity condition for displacement,
slope and moments, discontinuity of magnitude one at the point force), we can obtain analytical
expressions for A;, B;.

10
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