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A fast analytic method to calculate the dynamic response of railways sleepers

ω Angular velocity δ(xξ) Dirac's function at x = ξ G(x, ξ) Green's function at x = ξ

Existing analytical models for railway tracks consider only one rail supported by a continuous foundation or periodic concentrated supports (called the periodically supported beam). This article presents an analytical model for a railway track which includes two rails connected by sleepers. By considering the sleepers as Euler-Bernoulli beams resting on a Kelvin-Voigt foundation, we can obtain a dynamic equation for a sleeper subjected to the reaction forces of the rails. Then, by using the relation between the rail forces and displacements from the periodically supported beam model, we can calculate the sleeper responses with the help of Green's function. The numerical applications show that the sleeper is in flexion where the displacement at the middle of the sleeper is greater than those at the rail seats. Moreover, the deformed shape of the sleeper is non-symmetric when the loads on the two rails are different. The model result agrees well with measurements performed using instrumented sleeper in-situ 

K Equivalent stiffness Q Equivalent pre-force 1 Introduction
Currently, there are many kinds of railway tracks constructed using different technologies. Among many choices of sleeper types, the concrete monoblock sleeper remains popular. Determining the dynamic response of the sleeper is important because it affects the stability of the railway track. Substantial research using analytical methods for rail track have been carried out, for example: the model of a railway track as periodically supported beam [START_REF] Mead | Free wave propagation in periodically supported, infinite beams[END_REF][START_REF] Mead | The response of infinite periodic beams to point harmonic forces: A flexural wave analysis[END_REF][START_REF] Mead | Wave propagation in continuous periodic structures : Research contributions from Southampton, 1964-1995[END_REF][START_REF] Metrikine | Vibration of a periodically supported beam on an elastic half-space[END_REF][5][6][7][8][9][10] or the model of an infinite beam placed on a continuous foundation [11][START_REF] Nguyen | Finite element procedures for nonlinear structures in moving coordinates. Part 1: Infinite bar under moving axial loads[END_REF][START_REF] Nguyen | Finite element procedures for nonlinear structures in moving coordinates. Part II: Infinite beam under moving harmonic loads[END_REF][START_REF] Ding | Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load[END_REF]), the studies of each track component have been performed on the rail [START_REF] Gavrić | Computation of propagative waves in free rail using a finite element technique[END_REF][START_REF] Thompson | Experimental analysis of wave propagation in railway tracks[END_REF][START_REF] Kostovasilis | A semi-analytical beam model for the vibration of railway tracks[END_REF][START_REF] Kostovasilis | Analytical modelling of the vibration of railway track[END_REF] or on the ballast [START_REF] Di Mino | A Dynamic Model of Ballasted Rail Track with Bituminous Sub-Ballast Layer[END_REF][START_REF] Aikawa | Dynamic characterisation of a ballast layer subject to traffic impact loads using three-dimensional sensing stones and a special sensing sleeper[END_REF].

The dynamics of the sleepers have been investigated with several different methods. The main objective is to analyse the sleeper behaviour and to model it in the case of different moving charge values. Grassie [START_REF] Grassie | Dynamic modelling of concrete railway sleepers[END_REF] shows that the uniform beam can be used to model a non-uniform section sleepers. The dynamic lateral resistance of the sleeper has been studied to better understand the interaction zones between the sleeper and the ballast layer [START_REF] Esmaeili | Experimental assessment of dynamic lateral resistance of railway concrete sleeper[END_REF]. By using experimental and numerical methods, Laryea et al. [START_REF] Laryea | Comparison of performance of concrete and steel sleepers using experimental and discrete element methods[END_REF] compared the performance of sleepers made out of different materials. Some works focus on the pre-stressed concrete sleeper using FEM in 2D and in 3D [START_REF] Kumaran | Dynamic studies of railtrack sleepers in a track structure system[END_REF][START_REF] Arab | A methodological approach for finite element modeling of pretensioned concrete members at the release of pretensioning[END_REF].

In this paper, an analytical model for sleepers has been developed by considering a beam resting on a visco-elastic foundation. The dynamic equation of the beam is then written in the frequency domain by using the Fourier transform. When the rails are modeled by periodically supported beams [8], we can write the forces applied by the rails on the sleeper with the help of the Dirac delta function. Then, the dynamic equation for the beam (sleeper) together with the foundation is written and then solved by using the Green's functions. The method of using Green's functions to obtain the response of a beam structure to a moving mass has been successfully applied previously [START_REF] Mohamad | Tables of Green's functions for the theory of beam vibrations with general intermediate appendages[END_REF][START_REF] Foda | A dynamic Green function formulation for the response of a beam structure to a moving mass[END_REF].

The numerical applications show that the sleeper is in flexion and the dynamic effect when the two rails are charged with different loads. Moreover, the model results have been compared to measurement results in situ, with good agreement. This method is a simple and fast way to approach the dynamic response of sleepers.

Formulations

Consider a railway track as shown in Fig. 1. In this track, a sleeper together with the ballast and foundation are modeled by an Euler-Bernoulli beam resting on a Kelvin-Voigt foundation. The sleeper is subjected to two forces R 1 (t) and R 2 (t) from the two rails via the rail pads which are considered as dampers and springs. The total force applied due to the rails on the sleeper can be written with the help of Dirac's functions as follows:

F(x,t) = -R 1 (t)δ(x -a) -R 2 (t)δ(x + a) ( 1 
)
where 2a is the distance between the two rails. When the rails are modeled by periodically supported beams [8], the forces R 1 and R 2 in the frequency domain can be calculated as follows (see Appendix A)

z x y (a) x z -L L Rails Rail pads Ballast ζ f k f ζ rp k rp Sleeper a a Q 2 Q 1 (b)
R1 (ω) = K ŵ1 (ω) + Q 1 (ω) R2 (ω) = K ŵ2 (ω) + Q 2 (ω) (2)
where K is the equivalent stiffness, Q 1 and Q 2 are the equivalent pre-forces for the two rails calculated by equation [START_REF] Nguyen | Finite element procedures for nonlinear structures in moving coordinates. Part II: Infinite beam under moving harmonic loads[END_REF] in Appendix A; w 1 and w 2 are the rail 1 and 2 displacements at the sleeper position.

Let w s (x,t) be the sleeper displacement at the coordinate x with -L ≤ x ≤ L where x is the coordinate a long of the sleeper and t denotes time. In Fig. 1, we see that x = ±a corresponds to the positions of the rail seats. The forces R1 , R2 can be expressed by the constitutive law of the rail pads in the frequency domain as follows:

R1 (ω) = -k p ( ŵ1 (ω) -ŵs (a, ω)) R2 (ω) = -k p ( ŵ2 (ω) -ŵs (-a, ω)) (3) 
where k p = k rp + iωζ rp is the dynamic stiffness of the rail pad and k rp , ζ rp are the stiffness and damping coefficient of the rail pads. By substituting equation (2) into equation ( 3), we obtain:

R1 (ω) = k p K k p + K ŵs (a, ω) + k p k p + K Q 1 (ω) R2 (ω) = k p K k p + K ŵs (-a, ω) + k p k p + K Q 2 (ω) (4) 
The sleeper displacement w s (x,t) under a force F(x,t) is driven by the dynamic equation of the Euler-Bernoulli beam as follows:

E s I s ∂ 4 w s (x,t) ∂x 4 + ρ s S s ∂ 2 w s (x,t) ∂t 2 -T ∂ 2 w s (x,t) ∂x 2 + k f w s (x,t) +ζ f ∂w s (x,t) ∂t = F(x,t) (5) 
where ρ s , E s , S s and I s are the density, the Young's modulus, the section and the cross-sectional moment inertia of the sleeper respectively; k f and ζ f are the stiffness and damping coefficient of the foundation and T is the sleeper pre-stress. By combining equations ( 1) and ( 5) then by performing a Fourier transform, we obtain:

∂ 4 x ŵs (x, ω) - T E s I s ∂ 2 x ŵs (x, ω) - ρ s S s ω 2 -k b E s I s ŵs (x, ω) = - R1 E s I s δ(x -a) - R2 E s I s δ(x + a) (6) 
where ∂ x stands for the partial derivative with regard to x, k b = k f + iωζ f is the dynamic stiffness of the foundation. Equations ( 4) and (6) describe the sleeper response. In order to solve these equations, we will use the Green's function of equation (6) defined by:

∂ 4 G(x, a) ∂x 4 -α 2 s ∂ 2 G(x, a) ∂x 2 -λ 4 s G(x, a) = δ(x -a) (7)
where

α s = T E s I s and λ s = 4 ρ s S s ω 2 -k b E s I s
. This is a 4th-order linear differential equation and its Green's function [START_REF] Zauderer | Partial differential equations of applied mathematics[END_REF] can be written as follows:

G(x, a) = A 1 e λ 1 x + A 2 e λ 2 x + A 3 e λ 3 x + A 4 e λ 4 x for x ∈ [-L, a] B 1 e λ 1 x + B 2 e λ 2 x + B 3 e λ 3 x + B 4 e λ 4 x for x ∈ [a, L] (8) 
where 2L is the beam length, A i , B i , and λ i (with 1 ≤ i ≤ 4) are parameters to be determined. By using the boundary conditions of the free-free beam, we can obtain the analytical expressions for A i , B i as shown in Appendix B. The solution of equation ( 6) can be written with the help of the Green's function as follows:

ŵs (x, ω) = -R1 E s I s G(x, a) + -R2 E s I s G(x, -a) (9) 
By substituting x = a and x = -a into the aforementioned equation, we obtain respectively:

ŵs (a, ω) = -R1 E s I s G(a, a) + -R2 E s I s G(a, -a) ŵs (-a, ω) = -R1 E s I s G(-a, a) + -R2 E s I s G(-a, -a) (10) 
By combining equations ( 4) and (10), we obtain:

R1 = E s I s K Q 1 [G(-a, -a) + χ] -Q 2 G(a, -a) [χ + G(a, a)] [χ + G(-a, -a)] -G(-a, a)G(a, -a) R2 = E s I s K Q 2 [G(a, a) + χ] -Q 1 G(-a, a) [χ + G(a, a)] [χ + G(-a, -a)] -G(-a, a)G(a, -a) (11) 
where χ = E s I s k p +K k p K . Equation (11) defines the reaction force of the sleeper on the two rails. Then, the sleeper displacement in the frequency domain can be obtained by replacing R1 and R2 in equation (9). By using the inverse Fourier transform, we can get the sleeper response in the time domain.

Applications 3.1 The sleeper response under a static load

Consider a railway track with parameters given in Tab.1. The sleeper response is calculated for two cases: the same loads on the two rails (

Q 1 = Q 2 = 125kN) and different loads (Q 1 = 125kN, Q 2 = 180kN) on each rail.
Fig. 2 shows the sleeper deformed shapes in the two cases. When the loads are the same, the deformation of the sleeper is symmetric and the rail displacements are the same. When the two loads on the two rails are different, the rail displacements are not the same and it leads to leveling (which has a value of 0.23 mm in this example).

The reaction forces R1 and R2 are calculated by equation (11) and Fig. 3 shows the forces in the time domain. We see that the reaction forces at the rail seat R1 and R2 are equal when the two rails are subjected to the same loads. When the two loads are different, the reaction force is higher for the rail subjected to a higher load. 

Comparison with measurements

We compare the sleeper responses from the model and the measurements in situ. The measurement has been performed by Sateba at Creil, France, with a sleeper in which are integrated 6 Fibre Bragg Grating sensors (FBG) in the longitudinal direction as shown in Fig. 4. These sensors are positioned to correspond to the rail seats and at the middle of the sleeper sections. The sensors measure the strain and temperature of the sleeper during normal traffic. The presented results are recorded on the 11th of January 2017 by the passing of a Corail train which contains a locomotive and 20 wagons with parameters given in Tab.2. The track parameters remain the same as in Tab.1.

By using the Euler-Bernoulli beam theory, the sleeper strain at the sensor position can be calculated from the sleeper displacement as shown in Appendix C. Here, the train load is modeled by a series of identical moving loads (Q j = Q) which are characterized by the distances to the first and in traction at the rail seats (negative strain) which is characteristic of a beam in flexion. Moreover, Fig. 8 presents the responses in the frequency domain. We see that most of the peaks have the same frequency, corresponding to that of the wheels passing.

(b) Q 1 = 125kN, Q 2 = 180kN
(b) Q 1 = 125kN, Q 2 = 180kN

Conclusions

In this study, an analytical model for the dynamics of railway sleepers has been developed by considering a model of abeam on Kelvin Voigt foundation. By using the relation between the reaction force and displacement of the rail form the periodically supported beam, the sleeper response cal- 

Nomenclature E s

 s Young's modulus of sleeper I s Cross-sectional moment inertia of sleeper ρ s Sleeper density S s Sleeper section area w s Sleeper displacement in the time domain ŵs Sleeper displacement in the frequency domain ε s Sleeper strain in the time domain εs Sleeper strain in the frequency domain z s Distance to the neutral axis of the sleeper T Pre-stress of sleeper 2L Sleeper length * Corresponding author l Sleeper spacing k rp Stiffness coefficient of the rail pad ζ rp Damping coefficient of the rail pad k p Dynamic stiffness of the rail pad k f Stiffness coefficient of the ballast ζ f Damping coefficient of the ballast k b Dynamic stiffness of the ballast E r Young's modulus of rail I r Cross-sectional moment inertia of rail ρ r Rail density S r Rail section area w j Displacement of rail number j at the sleeper position in the time domain ŵ j Displacement of rail number j at the sleeper position in the frequency domain 2a Track gauge v Train speed R j Force applied due to rail number j on the sleeper in the time domain R j Force applied due to rail number j on the sleeper in the frequency domain
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 1 Fig. 1: Railway track (a) and the analytical model representation (b)

Fig. 2 :

 2 Fig. 2: Sleeper displacement for the same loads (a) and for different loads (b) on the two rails

Fig. 3 :Fig. 4 :

 34 Fig. 3: Sleeper reaction force for the same loads (a) and for different loads (b) on the two rails

Fig. 5 :

 5 Fig. 5: Diagram of a train showing wheel layout

Fig. 6 :Fig. 7 :

 67 Fig. 6: Sleeper response under the passing of a train

Fig. 8 :

 8 Fig. 8: Strain in the frequency domain

Table 1 :

 1 Parameters of the railway track [8] and[START_REF] Azoh | Modeling of train track vibrations for maintenance perspectives: application[END_REF] 

	Content	Unit	Notation Value
	Young's modulus	GPa	E r	210
	of rail			
	Cross-sectional moment m 4	I r	4.32E-04
	inertia of rail			
	Rail density	kgm -3	ρ r	7850
	Rail section area	m 2	S r	7.69E-3
	Young's modulus	GPa	E s	48
	of sleeper			
	Cross-sectional moment m 4	I s	2.09E-4
	inertia of sleeper			
	Density of sleeper	kgm -3	ρ s	2475
	Sleeper section area	m 2	S r	54.9E-3
	Length of sleeper	m	2L	2.41
	Track gauge	m	2a	1.435
	Stiffness of ballast	MNm -1	k f	240
	Damping coefficient	kNms -1	ζ f	58.8
	of ballast			
	Stiffness of rail pad	MNm -1	k rp	192
	Damping coefficient	MNms -1	ζ rp	1.97
	of rail pad			
	Train speed	ms -1	v	42.5
	Pre-stress of sleeper	kN	T	300
	Sleeper spacing	m	l	0.6

Table 2 :

 2 Parameters of the periodic charge

	Content		Unit Notation Value
	Locomotive length		m	H l	19
	Distance of locomotive		m	D l	3.2
	bogies wheels			
	Distance of locomotive		m	d l	10
	inner wheels			
	Wagon length		m	H w	15.5
	Distance of wagon bogie wheels m	D w	2.2
	Distance of wagon inner wheels m	d w	9.7
	Load per wheel		kN	Q	125
	Number of wagons			n w	20
	n 2	n 1	locomotive
	H w	H l	
		d w	D w	d l	D l
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Appendix A: Model of a periodically supported beam

When each rail is modeled by an infinite beam and the sleeper reaction as concentrated forces, we have a system as shown in Fig. 9. Each rail is subjected to moving loads Q j which are characterized by their initial positions D j and speed v. This analytical model has been developed in the 1970s [START_REF] Mead | Free wave propagation in periodically supported, infinite beams[END_REF] and is called a periodically supported beam sub- 

where K (ω) and Q (ω) are the so-called equivalent stiffness and pre-force of the periodically supported beam. By taking the case of an Euler-Bernoulli beam for the rail, the expression for K (ω) and Q (ω) is given by:

where λ r = 4 ρ r S r ω 2 E r I r . The parameters ρ r , E r , S r and I r are the density, Young's modulus, section and the cross-sectional inertia of the rail respectively.

Appendix B: Calculation of the Green's function

The characteristic function of equation ( 7) is given by [START_REF] Zauderer | Partial differential equations of applied mathematics[END_REF]:

This function has 4 complex roots λ i (i = 1, 2, 3, 4) which are defined as λ 2 1,2 =

The general form of the Green's function is given by:

In addition, the Green's function has to satisfy the boundary condition of the free-free beam and the continuity at x = a. Thus, the eight constants A i (ω) and B i (ω) with 1 ≤ i ≤ 4, are evaluated such that the Green's function G(x, a) satisfies the following conditions [START_REF] Roach | Green's Functions[END_REF] [31]:

1. Two boudary conditions at each end of the beam depending on the type of the end support, for a free-free beam:

2. Continuity conditions of displacement, slope and moment at x = a:

3. Shear force discontinuity of magnitude one at x = a:

By substituting the equations ( 16), ( 17) and ( 18) into equation ( 15), we obtain:

+ λ 3 (B 3 -A 3 )e λ 3 a + λ 4 (B 4 -A 4 )e λ 4 a = 0

The aforementioned equation is linear with 8 unknowns and we can solve it by an analytic or numerical method to obtain A i (ω) and B i (ω) with 1 ≤ i ≤ 4.

Appendix C: Calculation of sleeper strains

The strain of an Euler-Bernoulli beam can be calculated from the beam deflection w as follows:

where z s is the distance to the neutral axis of the sleeper. For the sleeper, the beam deflection is calculated by equation (9). By combining this equation and equation [START_REF] Aikawa | Dynamic characterisation of a ballast layer subject to traffic impact loads using three-dimensional sensing stones and a special sensing sleeper[END_REF], the sleeper strain in the frequency domain is the following: