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Abstract

We devise and evaluate numerically a Hybrid High-Order (HHO) method for finite plas-
ticity within a logarithmic strain framework. The HHO method uses as discrete unknowns
piecewise polynomials of order k � 1 on the mesh skeleton, together with cell-based polynomi-
als that can be eliminated locally by static condensation. The HHO method leads to a primal
formulation, supports polyhedral meshes with non-matching interfaces, is free of volumetric
locking, the integration of the behavior law is performed only at cell-based quadrature nodes,
and the tangent matrix in Newton’s method is symmetric. Moreover, the principle of vir-
tual work is satisfied locally with equilibrated tractions. Various two- and three-dimensional
benchmarks are presented, as well as comparison against known solutions with an industrial
software using conforming and mixed finite elements.

Keywords: Finite strain plasticity – Hybrid High-Order methods – Polyhedral meshes – Locking-
free

1 Introduction

Modelling plasticity, particularly in the regime of finite deformations, is of a major importance
in industrial applications since this is one of the main nonlinearites that can be encountered in
nonlinear solid mechanics. Moreover, finite elastoplastic deformations have a major influence on
the life time of a mechanical structure. The present contribution is an extension to the finite strain
regime of the Hybrid High-Order (HHO) method for incremental associative plasticity with small
deformations [2]. This extension hinges on a logarithmic strain framework [38] for anisotropic finite
elastoplasticity. This framework provides a natural extension of small elastoplastic deformations
to finite elastoplastic deformations by means of purely geometric transformations. Indeed, the
weak form of the plasticity problem is derived from the minimization of an energy functional
based on an incremental pseudo-energy density.

The present work aims at addressing the following important issues. Firstly, the incompress-
ibility of the plastic deformations generally leads to volumetric locking when employing a contin-
uous Galerkin (cG) approximation based on low-order H1-conforming finite elements. In these
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methods, only the displacement field is approximated globally whereas the variables associated
with the plastic behavior are computed locally in each mesh cell (typically at quadrature nodes).
A way to circumvent the volumetric locking is to use high-order H1-conforming finite elements
or NURBS for small [26] and finite [27] elastoplastic deformations. Therein, the displacement
is still the only field which is approximated globally. However, the resulting discrete problem is
more costly to solve because of the larger support of the basis functions. Another possible way
to prevent volumetric locking is to introduce additional global unknowns as in the Enhanced As-
sumed Strain (EAS) methods [42] and in mixed methods [3, 4, 17, 45] on simplicial or hexahedral
meshes (the variables associated with the plastic behavior are still computed locally). However,
the introduction of additional globally coupled unknowns generally increases the cost of building
and solving the discrete problem. Moreover, devising mixed methods on polyhedral meshes with
non-matching interfaces is a delicate question. On the positive side, cG methods as well as EAS
and mixed methods require to perform the integration of the behavior law only at the quadrature
nodes in the mesh cells. Another class of methods free of volumetric locking are discontinuous
Galerkin (dG) methods. We mention in particular [40, 46–48] for hyperelasticity. Interior penalty
dG methods have been developed for classical plasticity with small [29, 35] and finite [36] defor-
mations, and for gradient plasticity with small [23, 24] and finite [37] deformations. However, dG
methods from the literature generally require to perform the integration of the behavior law also
at additional quadrature nodes located at the mesh faces. Moreover, if the plasticity problem is
solved using a Newton’s method, which is often the case, the tangent matrix from the dG formu-
lation is generally non-symmetric owing to the nonlinear nature of the consistency term. Thus,
the solving cost can increase significantly, particularly with direct solvers. We also mention the
lowest-order Virtual Element Method (VEM) for inelastic problems with small deformations [9]
(and its two-dimensional higher-order extension [5]), whereas the case of finite deformations is
treated in [30, 49], still in the lowest-order case. We also mention the recent study of low-order
hybrid dG methods with conforming traces [50] and the hybridizable weakly conforming Galerkin
method with nonconforming traces [32] in the context of nonlinear solid mechanics [8].

In the present work, we devise and evaluate numerically a HHO method for finite plasticity
within a logarithmic stain framework. HHO methods have been introduced a few years ago for
diffusion problems [20] and for linear elasticity problems [18]. Recently, the development of HHO
methods has received a vigorous interest. Examples include in solids mechanics Biot’s problem [10],
nonlinear elasticity [11] and associative plasticity [2] with small deformations, and hyperelasticity
with finite deformations [1], and in fluid mechanics, the incompressible Stokes equations [21],
the steady incompressible Navier–Stokes equations [19], and viscoplatic flows with yield stress
[12]. The discrete unknowns in HHO methods in computational mechanics are face-based vector-
valued polynomials of arbitrary order k � 1 on the mesh skeleton. Cell-based vector-valued
polynomials are also introduced for the stability and approximation properties of the method.
These cell-based vector-valued polynomials are eliminated locally by using the well-known static
condensation technique (based on a local Schur complement).

The devising of HHO methods hinges on two key ideas: (i) a local reconstruction operator
acting on the face and cell unknowns that builds a tensor-valued polynomial representing the
displacement gradient in the polynomial space Pk

d
(T ;Rd⇥d), where T is a generic mesh cell and

d is the space dimension [1, 11]; (ii) a local stabilization operator that weakly enforces on each
mesh face the consistency between the local face unknowns and the trace of the cell unknowns.
A somewhat subtle design of the stabilization operator in [18, 20] leads to O(hk+1) energy-error
estimates for linear model problems with smooth solutions, where h is the mesh-size. HHO meth-
ods offer several advantages: (i) general meshes (including fairly general polyhedral mesh cells
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and non-matching interfaces) are supported; (ii) a local formulation using equilibrated fluxes is
available; (iii) computational benefits owing to the static condensation of the cell unknowns and
the higher-order convergence rates, and (iv) the construction is dimension-independent. Moreover,
an open-source implementation of HHO methods, the DiSk++ library, is available using generic
programming tools [14]. In computational mechanics, other salient features of HHO methods
are: (i) a displacement-based formulation avoiding the need to introduce additional globally cou-
pled unknowns; (ii) absence of volumetric locking; (iii) the integration of the behavior law only
at the cell quadrature nodes; and (iv) the tangent matrix arising in the Newton’s method is
symmetric. Furthermore, HHO methods have been bridged [16] to Hybridizable Discontinuous
Galerkin (HDG) methods [15] and to nonconforming Virtual Element Methods (ncVEM) [6]. The
essential difference with HDG methods is that the HHO stabilization is different so as to deliver
higher-order convergence rates on general meshes. Concerning ncVEM, the devising viewpoint is
different (ncVEM considers the computable projection of virtual functions instead of a reconstruc-
tion operator), whereas the stabilization achieves similar convergence rates as HHO but is written
differently. We also notice that, to our knowledge, HDG methods have not yet been devised for
finite elastoplasticity problems (in contrast to hyperelasticity problems [31, 39]). Owing to the
close links between HHO and HDG methods, this work can thus be seen as the first HDG-like
method for plasticity problems in finite deformations.

This paper is organized as follows: in Section 2, we present the plasticity model within a
logarithmic stain framework and the weak formulation of the governing equations. In Section 3, we
devise the HHO method and highlight some of its theoretical aspects. In Section 4, we investigate
numerically the HHO method on two- and three-dimensional benchmarks from the literature,
and we compare our results to analytical solutions whenever available and to numerical results
obtained using established cG and mixed methods implemented in the open-source industrial
software code_aster [25].

2 Plasticity model

In what follows, we write v or V for scalar-valued fields, v or V for vector-valued fields, v or V
for second-order tensor-valued fields, and V for fourth-order tensor-valued fields. Contrary to the
hyperelastic model, the elastoplastic model is based on the assumption that the deformations are
no longer reversible.

2.1 Kinematics

Let B0 be an elastoplastic material body that occupies the domain ⌦0 in the reference config-
uration. Here, ⌦0 ⇢ Rd, d 2 {2, 3}, is a bounded connected polyhedral domain with Lipschitz
boundary � := @⌦0 decomposed in the two relatively open subsets �N and �D, where a Neumann
and a Dirichlet condition is enforced respectively, and such that �N [ �D = �, �N \ �D = ;, and
�D has positive Hausdorff-measure (so as to prevent rigid-body motions). Due to the deformation,
a point X 2 ⌦0 is mapped to a point x(t) = X + u(X, t) in the equilibrium configuration, where
u : ⌦0 ⇥ I ! Rd is the displacement mapping. The deformation gradient F (u) = I +rX u takes
values in Rd⇥d

+ which is the set of Rd⇥d-matrices with positive determinant. In what follows, the
gradient and divergence operators are taken with respect to the coordinate X of the reference
configuration (we use the subscript X to indicate it).

We use the logarithmic strain framework [38] developed for anisotropic finite elastoplasticity.
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Hence, it allows us to define the logarithmic strain tensor E 2 Rd⇥d
sym as

E :=
1

2
ln(F TF ). (1)

This measure of the deformations E is objective and is particularly interesting since if the eigen-
vectors of E do not change with time (the eigenvalues may change in time) then Ė = d, where
d = 1

2(Ḟ F�1+(Ḟ F�1)T ) is the rate of deformation tensor and measures the rates of extension of
elements in the current configuration at the current time. This provides an extension to the finite
deformation setting of the classic relation "̇ = d in the context of small deformations, where " is
the linearized deformation tensor. The plastic deformations are measured by means of the plastic
logarithmic strain tensor Ep 2 Rd⇥d

sym . Moreover, we assume the following additive decomposition
of the logarithmic strain tensor E:

Ee := E �Ep, (2)

where Ee 2 Rd⇥d
sym is the elastic logarithmic strain tensor. Finally, the plastic strain are assumed

to be incompressible, i.e.
traceEp = 0. (3)

2.2 Constitutive logarithmic strain model

In what follows, we place ourselves within the framework of generalized standard materials initially
introduced in [28] and further developed in [34]. Moreover, the plasticity model is assumed
to be strain-hardening (or perfect) and rate-independent, i.e., the time and the speed of the
deformations have no influence on the strains. For this reason, only the incremental plasticity
problem is considered. The local material state is described by the logarithmic strain tensor
E 2 Rd⇥d

sym , the plastic logarithmic strain tensor Ep 2 Rd⇥d
sym , and a finite collection of internal

variables ↵ := (↵1, · · · ,↵m) 2 Rm. For simplicity, we denote � := (Ep,↵) 2 X the generalized
internal variables, where the space of the generalized internal variables is

X :=
n
� = (Ep,↵) 2 Rd⇥d

sym ⇥ Rm | trace(Ep) = 0
o
. (4)

Moreover, we assume that there exits a Helmholtz free energy  : Rd⇥d
sym ⇥ Rm ! R acting on the

pair (Ee,↵) and satisfying the following hypothesis.

Hypothesis 1 (Helmholtz free energy)  can be decomposed additively into an elastic and a
plastic part as follows:

 (Ee,↵) =  e(Ee) +  p(↵) (5)

where the function  p is strictly convex and the function  e is polyconvex.

Following the second principle of thermodynamics, the logarithmic stress tensor T 2 Rd⇥d
sym and

the thermodynamic forces q are derived from  as follows:

T = @Ee e(Ee) and q = @↵ 
p(↵). (6)

The criterion to determine whether the deformations become plastic hinges on the scalar-valued
yield function � : Rd⇥d

sym ⇥ Rm ! R, which is a continuous and convex function of the logarithmic
stress tensor T and the thermodynamic forces q. Setting A :=

�
(T , q) 2 Rd⇥d

sym ⇥ Rm |�(T , q)  0
 

the convex set of admissible states, the elastic domain Ae which is all the pair (T , q) such that
�(T , q) < 0, and the yield surface @A the pairs (T , q) such that �(T , q) = 0.
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Hypothesis 2 (Yield function) The yield function � : Rd⇥d
sym ⇥ Rm ! R satisfies the following

properties: (i) � is a piecewise analytical function; (ii) the point (0, 0) lies in the elastic domain,
i.e., �(0, 0) < 0; and (iii) � is differentiable at all points on the yield surface @A.

Finally, the incremental dissipation function D : X ! R is a convex function which is positively
homogeneous of degree one and is defined as follows:

D(d�) = sup
(T ,q)2A

�
T : dEp � q·d↵

�
. (7)

2.3 Finite elastoplasticity model problem in incremental form

We are interested in finding the quasi-static evolution in the pseudo-time interval I = [0, tF ],
tF > 0, of the elastoplastic material body B0. The pseudo-time interval I is discretized into N
subintervals such that t0 = 0 < t1 < · · · < tN = tF . The evolution occurs under the action of a
body force f : ⌦0⇥I ! Rd, a traction force t : �N⇥I ! Rd on the Neumann boundary �N, and a
prescribed displacement uD : �D⇥ I ! Rd on the Dirichlet boundary �D. We denote by V n

D , resp.
V0, the set of all kinematically admissible displacements which satisfy the Dirichlet conditions,
resp. homogeneous Dirichlet conditions on �D:

V n

D =
n
v 2 H1(⌦0;Rd) | v = uD(t

n) on �D

o
, V0 =

n
v 2 H1(⌦0;Rd) | v = 0 on �D

o
. (8)

Following [38], we define for any pseudo-time step 1  n  N , the incremental pseudo-energy
density  : Rd⇥d

+ ⇥ X ! R acting on the pair (F ,�) such that

 (F ,�) =
��
 e(Ee) +  p(↵)

�
�
�
 e(Ee(un�1)) +  p(↵n�1)

� 
+D(�� �n�1), (9)

where un�1 2 V n�1
D and �n�1 2 L2(⌦0;X ) are given from the previous pseudo-time step or the

initial condition. Note that the second term in (9) is constant and is added so that the pseudo-
energy is in incremental form. This allows us to define the energy functional En : V n

D⇥L2(⌦0;X ) !
R such that for all kinematically admissible displacements v 2 V n

D and all generalized internal
variables � 2 L2(⌦0;X ).

En(v,�) =

Z

⌦0

 (F (v),�) d⌦0 �
Z

⌦0

fn·v d⌦0 �
Z

�N

tn·v d�. (10)

The static equilibrium of the elastoplastic body B0 is determined at each pseudo-time step 1  n 
N by finding a displacement mapping un 2 V n

D and generalized internal variables �n 2 L2(⌦0;X )
which minimize the energy functional En in (10), i.e.,

(un,�n) = argmin
v2V n

D ,�2L2(⌦0;X )
En(v,�) (11)

On the one hand, the first variation of En with respect to the displacement field leads to the
following form:

0 = DEn(un,�n)[v] =

Z

⌦0

P n : rXv d⌦0 �
Z

⌦0

fn·v d⌦0 �
Z

�N

tn·v d�, for all v 2 V0, (12)

where P n := @F (F (un),�n) is the first Piola–Kirchhoff stress tensor. On the other hand,
the first variation of En with respect to the generalized internal variables leads to the following
incremental nonlinear equations (see [38, 41] for example):

Ep,n �Ep,n�1 = ⇤(T n, qn) @T�(T
n, qn), and ↵n � ↵n�1 = �⇤(T n, qn) @q�(T

n, qn), (13)
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where the plastic multiplier ⇤ verifies the Kuhn–Tucker conditions

⇤(T n, qn) � 0, �(T n, qn)  0, and ⇤(T n, qn)�(T n, qn) = 0. (14)

Thus, the minimization problem (11) can be reformulated, in a more classical way as follows: For
all 1  n  N , given un�1 2 V n�1

D and �n�1 2 L2(⌦0;X ) from the previous pseudo-time step or
the initial condition, find un 2 V n

D and �n 2 L2(⌦0;X ) such that
Z

⌦0

P n : rXv d⌦0 =

Z

⌦0

fn·v d⌦0 +

Z

�N

tn·v d�, for all v 2 V0, (15a)

and
(�n,P n,An

ep) = FINITE_PLASTICITY(�n�1,F (un�1),F (un)). (15b)

The procedure FINITE_PLASTICITY allows one to compute the new values of the generalized
internal variables �, the first Piola–Kirchhoff stress tensor P and the consistent nominal elasto-
plastic tangent modulus Aep at each pseudo-time step. This procedure is detailed in Section 2.4.

2.4 Algorithmic aspects

Algorithm 1 presents the incremental elastoplasticity problem that has to be solved in order to find
the new value, after incrementation, of the generalized internal variables �new = (Ep,new,↵new) 2
X , the first Piola–Kirchhoff stress tensor P new 2 Rd⇥d

sym , and the consistent nominal elastoplastic
tangent modulus Anew

ep , given the generalized internal variables � 2 X , the deformation gradient
F 2 Rd⇥d

+ , and the new value of the deformation gradient F new 2 Rd⇥d

+ . Solving this problem is
denoted as previously

(�new,P new,Anew

ep ) = FINITE_PLASTICITY(�,F ,F new). (16)

The procedure to compute (�new,P new,Anew
ep ) is described in Algorithm 1 and is composed of three

different steps. Firstly, a geometric pre-processing is applied in order to compute the logarithmic
strain tensors E and Enew. Secondly, we use the procedure SMALL_PLASTICITY which solves
the nonlinear incremental problem (13)-(14) to compute (�new,T new,Enew

ep ). The resolution of
(13)-(14) is the same as in the case of plasticity with small deformations and thus makes it
possible to extend the procedures already developed for small deformations to finite deformations
without modifications. One significant example of such procedure is the standard radial return
mapping [41, 43]. Finally, a geometric post-processing step is applied to compute the new value
of the first Piola–Kirchhoff stress tensor P new and the consistent nominal elastoplastic tangent
modulus Anew

ep from the logarithmic stress tensor T new and the consistent logarithmic elastoplastic
tangent modulus Enew

ep . Detailed explanations to compute the pre- and post-processing steps are
given in [38, Box. 4]. Anew

ep := @FF (F
new,�new) is the consistent elastoplastic tangent modulus

and is a fourth-order tensor having only the major symmetries contrary to Enew
ep which has the

major and minor symmetries. For a finite incremental strain, the consistent elastoplastic tangent
modulus generally differs from the so-called continuous elastoplastic tangent modulus which is
obtained by letting the incremental strain tend to zero [44].

2.5 Example: nonlinear isotropic hardening with a von Mises yield criterion

An illustration of the plasticity model defined above is the nonlinear isotropic hardening model
with a von Mises criterion. A Saint Venant–Kirchhoff hyperelastic energy is considered for the
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Algorithm 1 Computation of (�new,P new,Anew
ep )

1: procedure FINITE_PLASTICITY(�,F ,F new)
2: Set E = 1

2 ln(F
TF ), Enew = 1

2 ln(F
new,TF new) and dE := Enew �E

3: Compute (�new,T new,Enew
ep ) = SMALL_PLASTICITY(�,E, dE).

4: Compute P new = T new : (@FE)new and Anew
ep = (@FE)new,T : Enew

ep : (@FE)new + T new :
(@FFE)new

5: return (�new,P new,Anew
ep )

6: end procedure

elastic part of free energy such that

 e(Ee) = Ee : C : Ee, (17)

where the elastic modulus is C = 2µIs+�I⌦I, with µ > 0, 3�+2µ > 0, (Is)ij,kl = 1
2(�ik�jl+�il�jk),

and (I ⌦ I)ij,kl = �ij�kl. The internal variable is ↵ := p, where p � 0 is the equivalent plastic
strain. We assume that the plastic part of the free energy is so that

 p(↵) = �y,0p+
H

2
p2 + (�y,1 � �y,0)(p+

e��p

�
), (18)

where H � 0 is the isotropic hardening modulus, �y,0 > 0, resp. �y,1 � 0, is the initial, resp.
infinite, yield stress and � � 0 is the saturation parameter. The associated thermodynamic force
q = �y,0+Hp+(�y,1��y,0)(1�e��p) is called the internal stress. Concerning the yield function,
we consider a J2-plasticity model with a von Mises criterion:

�(T , q) =

r
3

2
k dev(T )k`2 � q. (19)

where dev(⌧ ) := ⌧ � 1
d
trace(⌧ )I is the deviatoric operator, and the Frobenius norm is defined as

k⌧k`2 =
p
⌧ : ⌧ , for all ⌧ 2 Rd⇥d. Since, we use a Saint Venant–Kirchhoff hyperelastic energy,

the elastic deformations have to remain low compared to the plastic deformations in order to
ensure the existence of a solution to (15), see for example [7, 38]. In this case, the above model
describes with a reasonable accuracy the behaviour of metals (see [34]). This model is used for
the numerical examples of Section 4.

3 The Hybrid High-Order method

3.1 Discrete setting

We consider a mesh sequence (Th)h>0, where for each h > 0, the mesh Th is composed of
nonempty disjoint open polyhedra with planar faces such that ⌦0 =

S
T2Th T . The mesh-size

is h = maxT2Th hT , where hT stands for the diameter of the cell T . A closed subset F of ⌦0 is
called a mesh face if it is a subset with nonempty relative interior of some affine hyperplane HF

and (i) if either there exist two distinct mesh cells T�, T+ 2 Th such that F = @T� \ @T+ \HF

(and F is called an interface) or (ii) there exists one mesh cell T 2 Th such that F = @T \�\HF

(and F is called a boundary face). The mesh faces are collected in the set Fh which is further
partitioned into the subset F i

h
which is the collection of the interfaces and the subset Fb

h
which is

the collection of the boundary faces. We assume that the mesh is compatible with the partition of
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(a) U1,1
T (b) U1,2

T (c) U2,2
T (d) U2,3

T

Figure 1: Face (black) and cell (gray) degrees of freedom in Uk,l

T
for different values of the pair

(k, l) in the two-dimensional case (each dot represents a degree of freedom which is not necessarily
a point evaluation).

the boundary � into �D and �N, so that we can further split the set Fb
h

into the disjoint subsets
Fb,D
h

and Fb,N
h

with obvious notation. For all T 2 Th, F@T is the collection of the mesh faces that
are subsets of @T and nT is the unit outward normal to T . We assume that the mesh sequence
(Th)h>0 is shape-regular in the sense specified in [18], i.e., there is a matching simplicial submesh
of Th that belongs to a shape-regular family of simplicial meshes in the usual sense of Ciarlet [13]
and such that each mesh cell T 2 Th (resp., mesh face F 2 Fh) can be decomposed in a finite
number of sub-cells (resp., sub-faces) which belong to only one mesh cell (resp., to only one mesh
face or to the interior of a mesh cell) with uniformly comparable diameter.

Let k � 1 be a fixed polynomial degree and l 2 {k, k+1}. In each mesh cell T 2 Th, the local
HHO unknowns consist of a pair (vT , v@T ), where the cell unknown vT 2 Pl

d
(T ;Rd) is a vector-

valued d-variate polynomial of degree at most l in the mesh cell T , and v@T 2 Pk

d�1(F@T ;Rd) =ë
F2F@T

Pk

d�1(F ;Rd) is a piecewise, vector-valued (d� 1)-variate polynomial of degree at most k
on each face F 2 F@T . We write more concisely that

(vT , v@T ) 2 Uk,l

T
:= Pl

d
(T ;Rd)⇥ Pk

d�1(F@T ;Rd). (20)

We write the supscript k first since k is the value that determines the convergence rates of the
approximation. The degrees of freedom are illustrated in Fig. 1, where a dot indicates one degree
of freedom (which is not necessarily computed as a point evaluation). We equip the space Uk,l

T

with the following local discrete strain semi-norm:

|(vT , v@T )|21,T := krXvT k2L2(T ) + k�
1
2
@T

(vT � v@T )k2L2(@T ), (21)

with the piecewise constant function �@T such that �@T |F = h�1
F

for all F 2 F@T , where hF is the
diameter of F . We notice that |(vT , v@T )|1,T = 0 implies that vT is a rigid-body motion and that
v@T is the trace of vT on @T .

3.2 Local gradient reconstruction and stabilization

The first key ingredient in the devising of the HHO method is a local gradient reconstruction
in each mesh cell T 2 Th. This reconstruction is materialized by an operator Gk

T
: Uk,l

T
!

Pk

d
(T ;Rd⇥d) mapping onto the space composed of Rd⇥d-valued polynomials in T . The main

reason for reconstructing the gradient in a larger space than the space rXPk+1
d

(T ;Rd) (as for the
linear elasticity problem [18] ) is that the reconstructed gradient of a test function acts against
a discrete stress tensor which is not in gradient form, see [22, Section 4] for further insight. For
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all (vT , v@T ) 2 Uk,l

T
, the reconstructed gradient Gk

T
(vT , v@T ) 2 Pk

d
(T ;Rd⇥d) is obtained by solving

the following local problem: For all ⌧ 2 Pk

d
(T ;Rd⇥d),

(Gk

T (vT , v@T ), ⌧ )L2(T ) = (rXvT , ⌧ )L2(T ) + (v@T � vT |@T , ⌧ ·nT )L2(@T ). (22)

Solving this problem entails choosing a basis of the polynomial space Pk

d
(T ;R) and inverting the

associated mass matrix for each component of the tensor Gk

T
(vT , v@T ). The second key ingredient

in the HHO method is a local stabilization operator that enforces weakly the matching between the
faces unknowns and the trace of the cell unknowns. Following [18, 20], the stabilization operator
Sk

@T
: Pl

d�1(F@T ;Rd) ! Pk

d�1(F@T ;Rd) acts on the difference ✓ = v@T � vT |@T 2 Pl

d�1(F@T ;Rd),
and in the mixed-order case l = k + 1 is such that, for all ✓ 2 Pk+1

d�1(F@T ;Rd),

Sk

@T
(✓) = ⇧k

@T

�
✓
�
, (23)

where ⇧k

@T
denotes the L2-orthogonal projectors onto Pk

d�1(F@T ;Rd), and in the equal-order case
l = k is such that, for all ✓ 2 Pk

d�1(F@T ;Rd),

Sk

@T
(✓) = ⇧k

@T

�
✓ � (I �⇧k

T )D
k+1
T

(0, ✓)|@T
�
, (24)

where ⇧k

T
denotes the L2-orthogonal projectors onto Pk

d
(T ;Rd). The local displacement recon-

struction operator Dk+1
T

: Uk,l

T
! Pk+1

d
(T ;Rd) is such that, for all (vT , v@T ) 2 Uk,l

T
, Dk+1

T
(vT , v@T ) 2

Pk+1
d

(T ;Rd) is obtained by solving the following local Neumann problem: For all w 2 Pk+1
d

(T ;Rd),

(rXDk+1
T

(vT , v@T ),rXw)L2(T ) = (rXvT ,rXw)L2(T ) + (v@T � vT |@T ,rXw·nT )L2(@T ). (25)

together with the mean-value conditions
R
T
Dk+1

T
(vT , v@T ) dT =

R
T
vT dT . Comparing with (22),

one readily sees that rXDk+1
T

(vT , v@T ) is the L2-orthogonal projection of Gk

T
(vT , v@T ) onto the

subspace rXPk+1
d

(T ;Rd). Note also that the right-hand side of (24) can be rewritten as ⇧k

@T
(v@T�

vT |@T � (I � ⇧k

T
)Dk+1

T
(vT , v@T )|@T ). Adapting [18, Lemma 4], it is straightforward to establish

the following stability and boundedness properties (the proof is omitted for brevity).

Lemma 3 (Boundedness and stability) Let the gradient reconstruction operator be defined
by (22) and the stabilization operator be defined by (23) or (24). Let �@T be defined below (21).
Then, we have the following properties: (i) Boundedness: there exists ↵] < +1, uniform w.r.t. h,
such that, for all T 2 Th and for (vT , v@T ) 2 Uk,l

T
,

✓
kGk

T (vT , v@T )k2L2(T ) + k�
1
2
@T

Sk

@T
(v@T � vT |@T )k2L2(@T )

◆ 1
2

 ↵]|(vT , v@T )|1,T . (26)

(ii) Stability: there exists ↵[ > 0, uniform w.r.t. h, such that, for all T 2 Th and all (vT , v@T ) 2
Uk,l

T
,

↵[|(vT , v@T )|1,T 
✓
kGk

T (vT , v@T )k2L2(T ) + k�
1
2
@T

Sk

@T
(v@T � vT |@T )k2L2(@T )

◆ 1
2

. (27)

As shown in [18], the following important commuting property holds true:

Gk

T (IT,@T (v)) = ⇧k

T (rXv), 8v 2 H1(T ;Rd), (28)
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with the reduction operator IT,@T : H1(T ;Rd) ! Uk,l

T
defined as IT,@T (v) = (⇧l

T
(v),⇧k

@T
(v|@T )).

Taking the trace in (28), we infer that

trace
�
Gk

T (IT,@T (v))
�
= ⇧k

T (rX ·v), 8v 2 H1(T ;Rd), (29)

which is the key commuting property used to prove robustness for quasi-incompressible linear
elasticity, see [18]. This absence of volumetric locking is confirmed in the numerical experiments
performed in Section 4 in the nonlinear setting of finite elastoplasticity. Finally, proceeding as in
[18, Thm. 8], one can show that for the linear elasticity problem and smooth solutions, the energy
error converges as hk+1|u|

H
k+2(⌦0)

.

Remark 4 (HDG-type stabilization) In general, HDG methods use the stabilization operator
Sk

@T
(✓) = ✓ in the equal-order case which differ of the stabilization operator (24) of the proposed

HHO method and allows us to show only that the energy error converges as hk|u|
H

k+2(⌦0)
for linear

problems and smooth solution. In the mixed-order case, the stabilization operator (23) has been
initially introduced in [33] and the same convergence rates than for HHO method have been proved.

3.3 Global discrete problem

Let us now devise the global discrete problem. We set Pl

d
(Th;Rd) :=

ë
T2Th P

l

d
(T ;Rd) and

Pk

d�1(Fh;Rd) :=
ë

F2Fh
Pk

d�1(F ;Rd). The global space of discrete HHO unknowns is defined
as

Uk,l

h
:= Pl

d
(Th;Rd)⇥ Pk

d�1(Fh;Rd). (30)

For an element vh 2 Uk,l

h
, we use the generic notation vh = (vTh , vFh

). For any mesh cell T 2 Th,
we denote by (vT , v@T ) 2 Uk,l

T
the local components of vh attached to the mesh cell T and to the

faces composing its boundary @T , and for any mesh face F 2 Fh, we denote by vF the component
of vh attached to the face F . The Dirichlet boundary condition on the displacement field can be
enforced explicitly on the discrete unknowns attached to the boundary faces in Fb,D

h
. Letting ⇧k

F

denote the L2-orthogonal projector onto Pk

d�1(F ;Rd), we set

Uk,l,n

h,D :=
n
(vTh , vFh

) 2 Uk,l

h
| vF = ⇧k

F (uD(t
n)), 8F 2 Fb,D

h

o
, (31a)

Uk,l

h,0 :=
n
(vTh , vFh

) 2 Uk,l

h
| vF = 0, 8F 2 Fb,D

h

o
. (31b)

Note that the map vh 7! (
P

T2Th |(vT , v@T )|
2
1,T )

1
2 defines a norm on Uk,l

h,0.
A key feature of the present HHO method is that the discrete generalized internal variables

are computed only at some quadrature points in each mesh cell. We introduce for all T 2 Th,
the quadrature points ⇠

T
= (⇠

T,j
)1jmQ , with ⇠

T,j
2 T for all 1  j  mQ, and the quadrature

weights !T = (!T,j)1jmQ , with !T,j 2 R for all 1  j  mQ. We denote by kQ the order of the
quadrature. Then, the discrete internal variables are sought in the space

X̃mQ

Th :=
°

T2Th

XmQ , (32)

that is, for all T 2 Th, the internal variables attached to T form a vector �̃
T
= (�̃

T
(⇠

T,j
))1jmQ

with �̃
T
(⇠

T,j
) 2 X for all 1  j  mQ.

10



We can now formulate the global discrete problem. We will use the following notation for two
tensor-valued functions (p, q) defined on T :

(p, q)L2
Q(T ) :=

mQX

j=1

!T,j p(⇠
T,j

) : q(⇠
T,j

). (33)

We will also need to consider the case where we know the tensor p̃ only at the quadrature nodes
(we use a tilde to indicate this situation), i.e., we have p̃ = (p̃(⇠

T,j
))1jmQ 2 (Rd⇥d)mQ . In this

case, we slightly abuse the notation by denoting again by (p̃, q)L2
Q(T ) the quantity equal to the

right-hand side of (33). The discrete energy functional En

h
: Uk,l,n

h,D ⇥ X̃mQ

Th ! R is defined for any
pseudo-time step 1  n  N by

En

h

�
(vTh , vFh

), �̃Th

�
=

X

T2Th

n
( ̃(F k

T (vT , v@T ), �̃T
), 1)

L
2
Q(T ) � (fn, vT )L2(T )

o
�

X

F2Fb,N
h

(tn, vF )L2(F )

+
X

T2Th

�

2
k�

1
2
@T

Sk

@T
(v@T � vT |@T )k2L2(@T ), (34)

for all (vTh , vFh
) 2 Uk,l,n

h,D and �̃Th
2 X̃mQ

Th , with the local deformation gradient operator F k

T
:

Uk,l

T
! Pk

d
(T ;Rd⇥d) such that F k

T
(vT , v@T ) := I + Gk

T
(vT , v@T ). Moreover, in the second line

of (34), the stabilization employs a weight of the form � = 2µ�0 with �0 > 0. In the original
HHO method for linear elasticity [18], the choice �0 = 1 is considered. In the present setting, the
choice for �0 is further discussed in Section 3.5 and in Section 5.3. The global discrete problem
consists in seeking for any pseudo-time step, 1  n  N , a stationary point of the discrete energy
functional: Find the pair of discrete displacements (unTh , u

n

Fh
) 2 Uk,l,n

h,D and the discrete internal
variables �̃n

Th
2 X̃mQ

Th such that, for all (�vTh , �vFh
) 2 Uk,l

h,0,

X

T2Th

(P̃
n

,Gk

T (�vT , �v@T ))L2
Q(T ) +

X

T2Th

�(�@TS
k

@T
(un

@T
� unT |@T ), S

k

@T
(�v@T � �vT |@T ))L2(@T )

=
X

T2Th

(fn, �vT )L2(T ) +
X

F2Fb,N
h

(tn, �vF )L2(F ), (35)

where for all T 2 Th and all 1  j  mQ,

(�̃n

T
(⇠

T,j
), P̃

n

(⇠
T,j

), Ãn

ep(⇠T,j)) =

FINITE_PLASTICITY(�̃n�1
T

(⇠
T,j

),F k

T (u
n�1
T

, un�1
@T

)(⇠
T,j

),F k

T (u
n

T , u
n

@T
)(⇠

T,j
)), (36)

with (un�1
Th , un�1

Fh
) 2 Uk,l,n�1

h,D and �̃n�1
Th

2 X̃mQ

Th given either from the previous pseudo-time step or
the initial condition.

3.4 Discrete principle of virtual work

The discrete problem (35) expresses the principle of virtual work at the global level, and adapting
the ideas introduced in [16] (see also [2, 11]), it is possible to infer a local principle of virtual work
in terms of face-based discrete tractions that comply with the law of action and reaction.
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Let Sk⇤
@T

: Pk

d�1(F@T ;Rd) ! Pk

d�1(F@T ;Rd) be the adjoint operator of Sk

@T
with respect to the

L2(@T ;Rd)-inner product so that we have (�@TSk

@T
(✓), Sk

@T
(⇣))

L
2(@T ) = (Sk⇤

@T
(�@TS

k

@T
(✓)), ⇣)

L
2(@T )

(recall that the weight �@T is piecewise constant on @T ). Let ⇧k

Q,T
: (Rd⇥d)mQ ! Pk

d
(T ;Rd⇥d) de-

note the L2
Q
-orthogonal projector such that for all p̃ 2 (Rd⇥d)mQ , (⇧k

Q,T
(p̃), q)L2(T ) = (p̃, q)L2

Q(T )

for all q 2 Pk

d
(T ;Rd⇥d). Finally, for any pseudo-time step 1  n  N and all T 2 Th, let us define

the discrete traction:

Tn

T := ⇧k

Q,T (P̃
n

T )·nT + �Sk⇤
@T

(�@TS
k

@T
(un

@T
� unT |@T )) 2 Pk

d�1(F@T ;Rd), (37)

where P̃
n

T = (P̃
n

T (⇠T,j))1jmQ 2 (Rd⇥d)mQ and (un
T
, un

@T
) 2 Uk,l

T
.

Lemma 5 (Equilibrated tractions) Assume that kQ � 2k. Then, for any pseudo-time step
1  n  N , the following local principle of virtual work holds true for all T 2 Th:

(P̃
n

T ,rX�vT )L2
Q(T ) � (Tn

T , �vT |@T )L2(@T ) = (fn, �vT )L2(T ), 8�vT 2 Pl

d
(T ;Rd), (38)

where the discrete tractions Tn

T
defined by (37) satisfy the following law of action and reaction for

all F 2 F i
h
[ Fb,N

h
:

Tn

T�|F + Tn

T+|F = 0, if F 2 F i
h

with F = @T� \ @T+ \HF , (39a)

Tn

T |F = ⇧k

F (t
n), if F 2 Fb,N

h
with F = @T \ �N \HF . (39b)

3.5 Nonlinear solver and implementation

The nonlinear problem (35)-(36) arising at any pseudo-time step 1  n  N is solved using a
Newton’s method. Given (un�1

Th , un�1
Fh

) 2 Uk,l,n�1
h,D and �̃n�1

Th
2 X̃mQ

Th from the previous pseudo-
time step or the initial condition, the Newton’s method is initialized by setting (un,0Th , u

n,0
Fh

) =

(un�1
Th , un�1

Fh
) up to the update of the Dirichlet condition and �̃n,0

Th
= �̃n�1

Th
. Then, at each Newton’s

step i � 0, one computes the incremental displacement (�un,iTh , �u
n,i

Fh
) 2 Uk,l

h,0 and updates the
discrete displacement as (un,i+1

Th un,i+1
Fh

) = (un,iTh , u
n,i

Fh
)+(�un,iTh , �u

n,i

Fh
). The linear system of equations

to be solved is
X

T2Th

(Ãn,i

ep : Gk

T (�u
n,i

T
, �un,i

@T
),Gk

T (�vT , �v@T ))L2
Q(T )

+
X

T2Th

�(�@TS
k

@T
(�un,i

@T
� �un,i

T |@T ), S
k

@T
(�v@T � �vT |@T ))L2(@T )

= �Rn,i

h
(�vTh , �vFh

), (40)

for all (�vT , �v@T ) 2 Uk,l

h,0, where for all T 2 Th and all 1  j  mQ,

(�̃n,i

T
(⇠

T,j
), P̃

n,i

(⇠
T,j

), Ãn,i

ep (⇠T,j)) = FINITE_PLASTICITY(�n�1
T,j

,F n�1
T,j

,F n,i

T,j
), (41)

with �n�1
T,j

:= �̃n�1
T

(⇠
T,j

), F n,i

T,j
:= F k

T
(un,i

T
, un,i

@T
)(⇠

T,j
), F n�1

T,j
:= F k

T
(un�1

T
, un�1

@T
)(⇠

T,j
), and the

residual term

Rn,i

h
(�vTh , �vFh

) =
X

T2Th

(P̃
n,i

,Gk

T (�vT , �v@T ))L2
Q(T ) �

X

T2Th

(fn, �vT )L2(T ) �
X

F2Fb,N
h

(tn, �vF )L2(F )

+
X

T2Th

�(�@TS
k

@T
(un,i

@T
� un,i

T |@T ), S
k

@T
(�v@T � �vT |@T ))L2(@T ). (42)
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The assembling of the stiffness matrix resulting from the left-hand side of (40) is local (and thus
fully parallelizable). The discrete internal variables �̃n

Th
2 X̃mQ

Th are updated at the end of each
pseudo-time step. Moreover, since the consistent elastoplastic tangent modulus Aep has major
symmetries, its eigenvalues are real. Let us set ✓Th,Q := min(T,j)2Th⇥{1,...,mQ} ✓

min(Ãep(⇠
T,j

)),
where ✓min(M) denotes the smallest eigenvalue of the symmetric fourth-order tensor M. The
following result shows that the linear system (40) arising at each Newton’s step is coercive under
the simple choice �0 > 0 on the stabilization parameter if Ãep is positive-definite (strain-hardening
plasticity is not a sufficient condition for positive-definiteness of Ãep).

Theorem 6 (Coercivity) Assume that kQ � 2k and that all the quadrature weights are positive.
Moreover, assume that the consistent elastoplastic tangent modulus Aep is positive-definite, i.e.,
✓Th,Q > 0 . Then, the linear system (40) in each Newton’s step is coercive for all �0 > 0, i.e.,
there exists Cell > 0, independent of h, such that for all (vTh , vFh

) 2 Uk,l

h,0,

X

T2Th

(Ãep : G
k

T (vT , v@T ),G
k

T (vT , v@T ))L2
Q(T ) +

X

T2Th

�k�
1
2
@T

Sk

@T
(v@T � vT |@T )k2L2(@T )

� Cellmin

✓
�0,

✓Th,Q
2µ

◆
2µ

X

T2Th

|(vT , v@T )|21,T . (43)

The proof follows directly from [2, Theorem 6]. A reasonable choice of the stabilization parameter
appears to be �0 � max(1,

✓Th,Q

2µ ) because �0 = 1 is a natural choice for linear elasticity (see

[18]) and the choice �0 �
✓Th,Q

2µ allows one to adjust the stabilization parameter if the evolution is
plastic. We investigate numerically the choice of �0 in Section 5.3.

From a numerical point of view, as is classical with HHO methods [18, 20], and more gen-
erally with hybrid approximation methods, the cell unknowns �un,i

T
in (40) can be eliminated

locally by using a static condensation (or Schur complement) technique. This allows us one to
reduce (40) to a linear system in terms of the face unknowns only. The reduced system is of size
NFh ⇥ d

�
k+d�1
d�1

�
, where NFh denotes the number of mesh faces (Dirichlet boundary faces can be

eliminated by enforcing the boundary condition explicitly). The implementation of HHO methods
is realized using the open-source library DiSk++ [14] which provides generic programming tools
for the implementation of HHO methods and is available online1. We refer the reader to [14] and
[2, Section 3.6] for further aspects about the implementation.

4 Numerical examples

The goal of this section is to evaluate the proposed HHO method on two- and three-dimensional
benchmarks from the literature: (i) a necking of a 2D rectangular bar subjected to uniaxial ex-
tension, (ii) a Cook’s membrane subjected to bending, (iii) a torsion of a square-section bar, and
(iv) a quasi-incompressible sphere under internal pressure. We compare our results to the analyt-
ical solution whenever available or to numerical results obtained using the industrial open-source
FEM code code_aster [25]. In this case, we consider a linear, resp. quadratic, cG formulation,
referred to as Q1, resp. T2 or Q2, depending on the mesh, and a three-field mixed formulation in
which the unknowns are the displacement, the pressure and the volumetric strain fields referred
to as UPG [4]; in the UPG method, the displacement field is quadratic, whereas both the pressure

1 https://github.com/wareHHOuse/diskpp
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and the volumetric strain fields are linear. The conforming Q1, T2 and Q2 methods are known to
present volumetric locking due to plastic incompressibility, whereas the UPG method is known to
be robust but costly. Numerical results obtained using the UPG method are used as a reference
solution whenever an analytical solution is not available.

The nonlinear isotropic plasticity model with a von Mises yield criterion described in Sec-
tion 2.5 is used for the test cases. For the first three test cases, strain-hardening plasticity is
considered with the following material parameters: Young modulus E = 206.9 GPa, Poisson ratio
⌫ = 0.29, hardening parameter H = 129.2 MPa, initial yield stress �y,0 = 450 MPa, infinite
yield stress �y,1 = 715 MPa, and saturation parameter � = 16.93. For the fourth case, perfect
plasticity is considered with the following material parameters: Young modulus E = 28.85 MPa,
Poisson ratio ⌫ = 0.499, hardening parameter H = 0 MPa, initial and infinite yield stresses
�y,0 = �y,1 = 6 MPa, and saturation parameter � = 0. Moreover, for the two-dimensional test
cases (i) and (ii), we assume additionally a plane strain condition. In the numerical experiments
reported in this section, the stabilization parameter is taken to be � = 2µ (�0 = 1), and all the
quadratures use positive weights. In particular, for the HHO method, we employ a quadrature of
order kQ = 2k for the behavior cell integration. We employ the notation HHO(k, l) when using
face polynomials of order k and cell polynomials of order l.

In Section 5, we perform further numerical investigations to test other capacities of HHO
methods such as the support of general meshes with possibly non-conforming interfaces, the
possibility of considering the lowest-order case k = 0, and the dependence on the stabilization
parameter �.

4.1 Necking of a 2D rectangular bar

In this first benchmark, we consider a 2D rectangular bar with an initial imperfection. The bar is
subjected to uniaxial extension. This example has been studied previously by many authors as a
necking problem [3, 17, 26, 42, 49] and can be used to test the robustness of the different methods.
The bar has a length of 53.334 mm and a variable width from an initial width value of 12.826 mm
at the top to a width of 12.595 mm at the center of the bar to create a geometric imperfection. A
horizontal displacement u = 5 mm is imposed at both ends, as shown in Fig. 2a. For symmetry
reasons, only one-quarter of the bar is discretized, and the mesh is composed of 400 quadrangles,
see Fig. 2b. The load-displacement curve is plotted in Fig. 2c. We observe that except for Q1, all
the other methods give very similar results. Moreover, the equivalent plastic strain p, respectively
the trace of the Cauchy stress tensor �, are shown in Fig. 3, resp. in Fig. 4, at the quadrature
points on the final configuration. A sign of locking is the presence of strong oscillations in the
trace of the Cauchy stress tensor �. Thus, we notice that the cG formulations Q1 and Q2 lock,
contrary to the HHO and UPG methods which deliver similar results. We remark that the results
for HHO(1;1), and HHO(1;2) are slightly less smooth than for HHO(2;2), HHO(2;3) and UPG. The
reason is that on a fixed mesh, the two former methods have less quadrature points than the three
latter ones, see Table 1 (HHO(2;2), HHO(2;3) and UPG have the same number of quadrature
points). Therefore, the stress is evaluated using less points in HHO(1;1) and HHO(1;2). It is
sufficient to refine the mesh or to increase the order of the quadrature by two in HHO(1;1) and
HHO(1;2) to retrieve similar results as for the three other methods (not shown for brevity).

4.2 Cook’s membrane problem

We consider the Cook’s membrane problem which is a well known bending-dominated test case
[4, 27, 42]. It consists of a tapered panel, clamped on one side, and subjected to a vertical load
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Method Q1 Q2 UPG HHO(1;1) HHO(1;2) HHO(2;2) HHO(2;3)
Number of dofs 884 2566 3450 3364 3364 5046 5046
Number of QPs 1600 3600 3600 1600 1600 3600 3600

Table 1: Necking of a 2D rectangular bar: number of globally coupled degrees of freedom (dofs)
and quadrature points (QPs) for the different methods.

(a) (b)

0 1 2 3 4 5
0

2

4

6

Q1 Q2 UPG
HHO(1;1) HHO(1;2) HHO(2;2)
HHO(2;3)

(c)

Figure 2: Necking of a 2D rectangular bar: (a) Geometry and boundary conditions (dimensions
in mm). For symmetric reasons only the upper right-quarter of the bar is considered (b) Mesh
composed of 400 quadrangles used for the computations. (c) Vertical reaction versus imposed
displacement for the different methods.
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(a) Q1 (b) Q2 (c) UPG

(d) HHO(1;1) (e) HHO(1;2) (f) HHO(2;2) (g) HHO(2;3)

Figure 3: Necking of a 2D rectangular bar: Equivalent plastic strain p at the quadrature points
on the final configuration for the different methods.
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(a) Q1 (b) Q2 (c) UPG

(d) HHO(1;1) (e) HHO(1;2) (f) HHO(2;2) (g) HHO(2;3)

Figure 4: Necking of a 2D rectangular bar: trace of the Cauchy stress tensor � (in MPa) at the
quadrature points on the final configuration for the different methods.
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(a)
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Q1 Q2 UPG
HHO(1;1) HHO(1;2) HHO(2;2)
HHO(2;3)

(b)

Figure 5: Cook’s membrane: (a) Geometry and boundary conditions (dimensions in mm). (b)
Convergence of the vertical displacement of the point A (in mm) vs. the number of degrees of
freedom for Q1, Q2, UPG, and HHO methods.

Fy = 5 kN on the opposite side, as shown in Fig. 5a. The simulation is performed for a sequence
of refined quadrangular meshes such that each side contains 2N edges with 0  N  6. The
vertical displacement of the point A versus the number of degrees of freedom is plotted in Fig. 5b
for the different methods. As expected when comparing the number of degrees of freedom, the
linear cG formulation Q1 has the slower convergence, HHO(1;2) and UPG converge slightly faster
than HHO(1;1) and Q2, whereas HHO(2;2) and HHO(2;3) outperform all the other methods
and give almost the same results. Moreover, we show in Fig. 6 the trace of the Cauchy stress
tensor � at the quadrature points on the final configuration. The cG formulations Q1 and Q2
present oscillations that confirm the presence of volumetric locking, contrary to the HHO and
UPG methods which deliver similar and smooth results. However, if we compare the trace of
the Cauchy stress tensor � for HHO(1;1) and HHO(1;2), we remark that the trace is slightly
smoother near the upper-right corner for HHO(1;2) than for HHO(1;1). This can be explained by
the presence of non-physical vertical localization bands of plastic deformations for HHO(1;1) and
not for HHO(1;2). Localization bands constitute a well-known problem when the plasticity model
is local. Computational pratice with cG approximations indicates that increasing the order of the
finite elements mitigates this issue. The same effect is therefore observed here by increasing the
degree of the cell unknowns. An alternative is to use a non-local plasticity model [37].

4.3 Torsion test of a square-section bar

This third benchmark [30] allows one to test the robustness of HHO methods under large torsion.
The bar has a square-section of length L = 1 mm and a height of H = 5 mm along the z-direction.
The bottom end is clamped and the top end is subjected to a rotation of an angle ⇥ around its
center along the z-direction, see Fig. 7a. The equivalent plastic strain p is plotted in Fig. 8
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(a) Q1 (b) Q2 (c) UPG

(d) HHO(1;1) (e) HHO(1;2)

(f) HHO(2;2) (g) HHO(2;3)

Figure 6: Cook’s membrane: trace of the Cauchy stress tensor � (in GPa) at the quadrature
points on the final configuration for a 32⇥ 32 quadrangular mesh and for the different methods.
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for HHO(1;1) and for different rotation angles ⇥. There is no sign of localization of the plastic
deformations even for large rotations whatever the HHO variant is used. Moreover, the trace of
the Cauchy stress tensor � is plotted on the final configuration for ⇥ = 360� and for the Q2,
UPG, and HHO methods in Fig. 9. As expected, there is no sign of volumetric locking for the
HHO and UPG methods which give similar results contrary to Q2.

(a) (b)

Figure 7: Torsion test of a square-section bar: (a) Geometry and boundary conditions (dimensions
in mm) (b) Mesh in the reference configuration composed of 1920 hexahedra.

4.4 Quasi-incompressible sphere under internal pressure

This last benchmark [4] consists of a quasi-incompressible sphere under internal pressure for which
an analytical solution is known when the entire sphere has reached a plastic state. This benchmark
is particularly challenging compared to the previous ones since we consider here perfect plasticity.
The sphere has an inner radius Rin = 0.8 mm and an outer radius Rout = 1 mm. An internal
radial pressure P is imposed. For symmetry reasons, only one-eighth of the sphere is discretized,
and the mesh is composed of 1580 tetrahedra, see Fig. 10a. The simulation is performed until
the limit load corresponding to an internal pressure Plim ' 2.54 MPa is reached. The equivalent
plastic strain p is plotted for HHO(1;2) in Fig. 10b, and the trace of the Cauchy stress tensor
� is compared for HHO, UPG and T2 methods in Fig. 11 at all the quadrature points on the
final configuration for the limit load. We notice that the quadratic element T2 locks, whereas
HHO and UPG do not present any sign of locking and produce results that are very close to the
analytical solution. However, HHO(2;2) and HHO(2;3) are slightly less accurate than HHO(1;1)
and HHO(1;2) near the outer boundary. For this test case, we do not expect that HHO(2;2) and
HHO(2;3) will deliver more accurate solutions than HHO(1;1) and HHO(1;2) since the geometry
is discretized using tetrahedra with planar faces.

We next investigate the influence of the quadrature order kQ on the accuracy of the solution.
The trace of the Cauchy stress tensor � is compared for HHO(1;1), HHO(2;2), and UPG methods
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(a) ⇥ = 0� (b) ⇥ = 90� (c) ⇥ = 180� (d) ⇥ = 270� (e) ⇥ = 360�

Figure 8: Torsion of a square-section bar: Equivalent plastic strain p for HHO(1;1) at the quadra-
ture points for different rotation angles ⇥.

(a) Q2 (b) UPG (c) HHO(1;1) (d) HHO(1;2) (e) HHO(2;2) (f) HHO(2;3)

Figure 9: Torsion of a square-section bar: trace of the Cauchy stress tensor � (in MPa) at the
quadrature points for ⇥ = 360� and for the HHO, UPG, and Q2 methods .
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(a) (b)

Figure 10: Quasi-incompressible sphere under internal pressure: (a) Mesh in the reference con-
figuration composed of 1580 tetrahedra (dimensions in mm). (b) Equivalent plastic strain p for
HHO(1;2) on the final configuration.

in Fig. 12 at all the quadrature points on the final configuration for the limit load, and for a
quadrature order kQ higher than the one employed in Fig. 11 (HHO(1;2) and HHO(2;3) give sim-
ilar results and are not shown for brevity). We remark that UPG locks for quasi-incompressible
finite deformations when we increase the quadrature order, whereas for HHO, the results are (only)
less accurate. Moreover, HHO(2;2) is less sensitive than HHO(1;1) to the choice of the quadrature
order kQ. Note that this problem is not present for HHO methods with small deformations [2].
Furthermore, this sensitivity to the quadrature order seems to be absent for finite deformations
when the elastic deformations are compressible (the plastic deformations are still incompressible).
To illustrate this claim, we perform the same simulations as before but for a compressible material.
The Poisson ratio is taken now as ⌫ = 0.3 (⌫ = 0.499 in the quasi-incompressible case) whereas
the other material parameters are unchanged. Unfortunately, an analytical solution is no longer
available in the compressible case. We compare again the trace of the Cauchy stress tensor �
for HHO(1;1), HHO(2;2), and UPG methods in Fig. 13 at all the quadrature points on the final
configuration and for different quadrature orders kQ. We observe a quite marginal dependence on
the quadrature order for HHO methods (as in the quasi-incompressible case); whereas the UPG
method still locks if the order of the quadrature is increased. Moreover, in the compressible case,
HHO(2;2) gives a more accurate solution than HHO(1;1).

4.5 Summary of the previous results

The proposed HHO method has been tested successfully on four benchmarks in two- and three-
dimensions. A first conclusion is that the proposed HHO method is robust for large elastoplastic
deformations and is locking-free as mixed methods but without the need to introduce additional
globally coupled unknowns. HHO(2;2) and HHO(2;3) give generally more accurate results both
for the displacement and the Cauchy stress tensor than HHO(1;1), HHO(1;2) and UPG on a fixed
mesh (cG methods lock). Moreover, contrary to the UPG method, HHO methods are not very

22



(a) HHO(1;1) (b) HHO(1;2;)

(c) HHO(2;2) (d) HHO(2;3)

(e) T2 (f) UPG

Figure 11: Quasi-incompressible sphere under internal pressure: trace of the Cauchy stress tensor
� (in MPa) vs. the deformed radius r (in mm) for the different methods at all the quadrature
points and for the limit load.

23



(a) HHO (b) UPG

Figure 12: Quasi-incompressible sphere under internal pressure: trace of the Cauchy stress tensor
� (in MPa) vs. the deformed radius r (in mm) for HHO(1;1), HHO(2;2) and UPG at all the
quadrature points for the limit load and for a higher quadrature order kQ.

sensitive to the choice of the quadrature order (particularly for k = 2). Finally, HHO(1;1) appears
to be more prone to the localization of the plastic deformations, contrary to the other variants
HHO(1;2), HHO(2;2) and HHO(2;3).

5 Further numerical investigations

In this section, we perform further numerical investigations to test other capacities of HHO meth-
ods such as the support of general meshes with possibly non-conforming interfaces, the possibility
of considering the lowest-order case k = 0, and the dependence on the stabilization parameter �.

5.1 Polygonal meshes

In the previous sections, the proposed HHO method has been tested on simplicial and hexahedral
meshes so as to be able to compare it to the UPG method which only supports this type of meshes.
Our goal now is to illustrate that the HHO method supports general meshes with possibly non-
matching interfaces. For our test cases, the polygonal meshes are generated from quadrangular
meshes by removing the common face for some pairs of neighbouring cells and then merging
the two cells in question (about 30% of the cells are merged) thereby producing non-matching
interfaces materialized by hanging nodes for a significant portion of the mesh cells. We consider
the Cook’s membrane problem from Section 4.2 and we use a mesh composed of 719 cells. The
trace of the Cauchy stress tensor � is shown in Fig. 11 at the quadrature points on the reference
configuration; and we compare the results with a reference solution computed with HHO(2;3) on
a 32⇥ 32 quadrangular mesh. The results agree very well except for HHO(1;1) where the trace is
not smooth due to the localization of the plastic deformations (as for the quadrangular mesh, see
Section 4.2).
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(a) HHO with kQ = 2k (b) HHO with kQ = 2k + 2

(c) UPG

Figure 13: Compressible sphere under internal pressure: trace of the Cauchy stress tensor � (in
MPa) vs. the deformed radius r (in mm) for the different methods at all the quadrature points
and for the limit load.
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(a) Reference solution with HHO(2;3)
on a quadrangular mesh

(b) HH0(1;1) (c) HHO(1;2)

(d) HHO(2;2) (e) HHO(2;3)

Figure 14: Cook’s membrane: trace of the Cauchy stress tensor � (in GPa) at the quadra-
ture points on the reference configuration (a) Reference solution with HHO(2;3) on a 32 ⇥ 32
quadrangular mesh composed of 1024 cells. (b)-(e) Results for the different HHO variants on a
non-conforming mesh composed of 719 cells.
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(a) Equivalent plastic
strain p

(b) Trace of the Cauchy
stress tensor �

Figure 15: Low-order variant HHO(0;1): Equivalent plastic strain p and trace of the Cauchy
stress tensor � (in MPa) at the quadrature points on the final configuration for the necking of a
rectangular bar.

5.2 Lowest-order variant

The main reason to take k � 1 in the HHO method is that the rigid-body motions are then a
subset of U1,1

T
. The lowest-order case k = 0 and l = 1 is interesting since there are only d unknowns

per face, i.e, two in 2D and three in 3D; and we could expect that the energy error converges as
h|u|

H
2(⌦0) for the linear elasticity problem. The difficulty with this lowest-order case is to deal with

the rigid-body motions on the faces since unfortunately RM(T )|@T * P0
d�1(F@T ;Rd). Therefore,

at the theoretical level, it is not clear that Lemma 3 still holds true. Nevertheless, we observed
numerically that for the linear elasticity problem, the energy error converges as h|u|

H
2(⌦0) if all

the cells have at least 2d faces, i.e, four faces in 2D and six faces in 3D. This observation seems
to be confirmed for small elastoplasticity. However, for finite elastoplasticity the conclusions are
less clear. The equivalent plastic strain p and the trace of the Cauchy stress tensor � are plotted
in Fig. 15 at the quadrature points on the final configuration for the necking of a rectangular bar
(see Section 4.1) approximated using the HHO(0;1) variant. We observe the absence of volumetric
locking and that the results are close to those obtained for k � 1 (see Fig. 3 and Fig. 4). However,
for the Cook’s membrane problem (see Section 4.2), the displacement is not correct (not shown
for brevety). Therefore, we conclude that the devising of a lowest-order HHO variant for finite
elastoplasticity remains an open problem.
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5.3 Influence of the stabilization parameter

To evaluate the influence of the stabilization parameter �0, we compare the total number of
Newton’s iterations needed to solve the nonlinear problem (35) versus the magnitude of the sta-
bilization parameter �0. We perform this comparison on two of the previous benchmarks, the
Cook’s membrane problem (see Section 4.2) and the quasi-incompressible sphere under internal
pressure (see Section 4.4). In Fig. 16a, we report the total number of Newton’s iterations for the
Cook’s membrane problem with strain-hardening plasticity. We use a 32⇥ 32 quadrangular mesh
and 15 load increments of equal size are considered. On the one hand, we remark that the different
HHO variants need almost the same total number of Newton’s iterations (around 78 compared to
75 for UPG) if �0 � 0.1; On the other hand, if �0 < 0.01, the Newton’s method stops converging
whatever the HHO variant and number of load increments. For the quasi-incompressible sphere
under internal pressure, the pressure is applied in 15 increments of equal size. This experiment
is particularly challenging since we are considering here perfect plasticity for which the stability
result from Theorem 6 is not applicable. In Fig. 16b, we plot the total number of Newton’s
iterations to perform the simulation. On the one hand, if �0 � 10, all the HHO variants need
almost to the same total number of Newton’s iterations (around 57 compared to 55 for UPG). On
the other hand, if �0  1, we observe that for the quasi-incompressible sphere, the HHO variants
with k = 2 need more Newton’s iterations than the HHO variants with k = 1. As previously, if
�0 < 0.1, the Newton’s method stops converging.

A first conclusion is therefore that the proposed HHO methods are stable for a large range of
values of the stabilization parameter �0. A second conclusion is that it seems reasonable to take
�0 2 [1, 100] since the number of Newton’s iterations is lower and close to the value for UPG, and
the condition number does not increase too much.

10�2 10�1 100 101 102 103

100

150

200

75

HHO(1;1) HHO(1;2)
HHO(2;2) HHO(2;3)

(a) Number of total Newton’s iterations vs. �0 for
the Cook’s membrane problem

10�1 100 101 102 103
50

60

70

80

55

HHO(1;1) HHO(1;2)
HHO(2;2) HHO(2;3)

(b) Number of total Newton’s iterations vs. �0

for the quasi-incompressible sphere under internal
pressure

Figure 16: Influence of the stabilization parameter: Total number of Newton’s iterations vs. �0
for (a) the Cook’s membrane and (b) the quasi-incompressible sphere.
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6 Conclusions

We have devised and evaluated numerically a Hybrid High-Order (HHO) method to approximate
finite elastoplastic deformations within a logarithmic strain framework. This framework allows
one to re-use behavior laws developed originally for small deformations in the context of finite
deformations.The HHO method exhibits a robust behavior for strain-hardening plasticity as well
as for perfect plasticity, and produces accurate solutions with a moderate number of degrees of
freedom for various benchmarks from the literature. In particular, as mixed methods, the HHO
method avoids volumetric locking due to plastic incompressiblity, but with less unknowns than
mixed methods for the same accuracy. Moreover, the HHO method supports general meshes with
possibly non-matching interfaces.

This work can be pursued in several directions. One could use a non-local plasticity model,
as for example a strain-gradient plasticity model, to take into account scale-dependent effects [37]
and prevent unphysical localization of the plastic deformations. Furthermore, the extension of the
present HHO method to contact and friction problems is the subject of ongoing work.
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