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a b s t r a c t

Restoring communication in case of aphasia is a key challenge for neurotechnologies. To this end, brain-
computer strategies can be envisioned to allow artificial speech synthesis from the continuous decoding
of neural signals underlying speech imagination. Such speech brain-computer interfaces do not exist yet
and their design should consider three key choices that need to be made: the choice of appropriate brain
regions to record neural activity from, the choice of an appropriate recording technique, and the choice of
a neural decoding scheme in association with an appropriate speech synthesis method. These key consid-
erations are discussed here in light of (1) the current understanding of the functional neuroanatomy of
cortical areas underlying overt and covert speech production, (2) the available literature making use of
a variety of brain recording techniques to better characterize and address the challenge of decoding cor-
tical speech signals, and (3) the different speech synthesis approaches that can be considered depending
on the level of speech representation (phonetic, acoustic or articulatory) envisioned to be decoded at the
core of a speech BCI paradigm.

! 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

It is estimated that the prevalence of aphasia is about 0.3% of
the population, which corresponds to more than 20millions people
worldwide. Such impairment occurs most often after a brain
stroke, but this disability also affects people with severe tetraplegia
consequently to an upper spinal cord trauma, locked-in individu-
als, people suffering from neuro or muscular degenerative diseases
(such as amyotrophic lateral sclerosis (ALS), Parkinson’s disease, or
myopathies), and even comatose patients. For these people, speech
loss is an additional affliction that worsens their condition: It
makes the communication with caregivers very difficult, and more
generally, it can lead to profound social isolation and even depres-
sion. Restoring communication abilities is thus crucial for these
patients.

Different solutions for communication have been developed,
most often consisting of word spelling devices making use of resid-
ual physiological signals, for example based on eye-tracking strate-
gies possibly accompanied by a clicking capability. However, these
solutions become inappropriate when people have lost too much of
their motor functions. Communication systems controlled directly

by brain signals have thus started to be developed to overcome this
problem. This concept has been pioneered by Farwell and Donchin
who proposed a spelling device based on the evoked potential
P300 (Farwell and Donchin, 1988), a method that has since been
used successfully by an ALS patient to communicate (Sellers
et al., 2014). Other EEG-based approaches use steady-state poten-
tials tuned at different frequencies (Middendorf et al., 2000). A
great advantage of these approaches is their non-invasiveness.
However, they have been limited by a low spelling speed of a
few characters per minute, although recent improvements suggest
that higher speeds could be achieved (Townsend and Platsko,
2016). Another major limitations of EEG-based BCI systems for
communication is that they still require a high level of concentra-
tion of the subjects (Käthner et al., 2014; Baykara et al., 2016),
imposing a high cognitive workload limiting their easy use over
extensive periods of time. Interestingly, with the drawback to
require invasive recordings, BCI systems based on intracortical sig-
nals seem to alleviate the subject fatigue, the external device
becoming progressively embodied after a period of training
(Hochberg et al., 2006, 2012; Collinger et al., 2013; Wodlinger
et al., 2015). Recently, Jarosiewicz and colleagues showed that
incorporating self-recalibrating algorithms into an intracortical
brain-computer spelling interface allows spelling performances
of about 20–30 characters per minute by people with severe paral-
ysis over long periods of use (Jarosiewicz et al., 2015).
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The strategy of letter-selection BCI systems remains an indirect
way of communicating based on movement direction decoded
from the hand and/or arm area of the motor cortex. This is thus
conceptually different than using speech, which is the natural
and most efficient way of communication of the human species.
Moreover, communication is often needed while other motor
actions are performed requiring the resources of the hand/arm
regions of the motor cortex (e.g. giving a phone call while moving
in an environment or reaching for something). Thus, building a
‘‘speech BCI” to restore continuous speech directly from neural
activity of speech-selective brain areas, as pioneered by Guenther
and colleagues (Guenther et al., 2009), is an emerging field in
which increasing efforts need to be invested in. As illustrated in
Fig. 1, this strategy consists in extracting relevant neural signal fea-
tures and converting them into input parameters for a speech syn-
thesizer that runs in real time.

In this paper, we discuss several key requirements to restore
speech with a BCI, including the choice of the speech cortical areas
to record from, the recording techniques and decoding strategies
that can be used, and finally the choice of speech synthesis
approaches.

2. Choice of a brain region

Speech processing by the human brain involves a wide cortical
network, which has been modeled by two main information
streams linking auditory areas of the superior temporal plane to
articulatory areas of frontal regions, one ventral and the other dor-
sal (Hickok and Poeppel, 2004, 2007). The ventral stream involves
regions of the middle and inferior temporal lobe and maps speech
sounds to meaning, while the dorsal stream runs through the dor-
sal part of the posterior temporal lobe at the temporo-parietal
junction and is responsible for the sensori-motor integration of
speech by mapping speech sounds to articulatory representations
(Friederici, 2011; Hickok et al., 2011). Lesions of ventral stream
regions of the temporal lobe result in Wernicke aphasia character-
ized by impairments of speech comprehension, while lesions of
frontal areas result in Broca aphasia characterized by impairments
of speech production. Classically, the dorsal stream has been
described to be largely left-hemisphere dominant, but several
studies indicate that many aspects of speech production activate
cortical areas of the dorsal stream bilaterally (Pulvermüller et al.,
2006; Peeva et al., 2010; Cogan et al., 2014; Geranmayeh et al.,
2014; Keller and Kell, 2016).

Given this broad distribution of the speech network, to build a
speech BCI, a choice needs to be made on the cortical areas to
record and decode activity from. One possibility is to use signals
from auditory areas of the ventral stream, which are known to
encode the spectro-temporal representation of the acoustic con-
tent of speech, as assessed in both humans (Giraud et al., 2000;
Formisano et al., 2008; Leonard and Chang, 2014; Leonard et al.,
2015) and animals (Engineer et al., 2008; Mesgarani et al., 2008;

Steinschneider et al., 2013). However, these areas are non-
selectively involved in the sensory perception and integration of
all speech sounds a person is exposed to. This includes self-
produced speech but also other people speech, and even of non-
speech environmental sounds as in the case for primary auditory
areas. Thus, it can be expected that it would be difficult to identify
activities specific to self speech intention in these areas. For this
reason, probing neural activity in brain locations more specifically
dedicated to speech production seems more relevant for conversa-
tional applications using a speech BCI (Guenther et al., 2009).

Several speech production conditions can be distinguished,
including overt speech production, silent articulation (articulatory
movements without vocalization, i.e. with no laryngeal activity),
and inner (covert) speech production. The later condition
(Perrone-Bertolotti et al., 2014) is likely the one most relevant
when envisioning the use of a speech BCI by patients that intend
to speak while not being able to produce articulatory movements.
Articulatory speech production pathways originate from the
speech motor cortex and project to the brainstem trigeminal, facial
and ambiguus nuclei. Brainstem nuclei are difficult to access for
recordings and there has yet been no evidence for their activation
during covert intended speech. Thus, a speech BCI is likely to be
easier to achieve by probing cortical areas underlying the produc-
tion of inner speech.

Functional imaging studies have shown that overt word repeti-
tion activates motor and premotor cortices bilaterally (Petersen
et al., 1988, 1989; Palmer et al., 2001; Peeva et al., 2010; Cogan
et al., 2014). Continuous production of narrative speech was also
shown to activate frontal motor speech regions and temporal and
parietal areas bilaterally (Silbert et al., 2014). Intraoperative func-
tional mapping data collected in a high number of patients under-
going awake surgery also report bilateral critical motor and
premotor regions for overt speech production (Tate et al., 2014).
The right hemisphere is also clearly activated during synchronized
speaking in several regions including the temporal pole, inferior
frontal gyrus, and supramarginal gyrus (Jasmin et al., 2016). When
more complex tasks are considered that require additional seman-
tic, lexical, or phonological processing, then specific activations are
observed in the left inferior frontal cortex (Petersen et al., 1988,
1989; Price et al., 1994; Sörös et al., 2006; Basho et al., 2007). These
findings suggest that speech production becomes left lateralized
when inner high-level processing is required. In general, inner
speech has been found to activate similar brain areas but with a
lesser amplitude than overt speech across most ventral and dorsal
stream areas (Price et al., 1994; Ryding et al., 1996; Palmer et al.,
2001; Shuster and Lemieux, 2005). In particular, as for high-level
overt speech production, cortical activity underlying covert speech
production is left lateralized with strong activation of the left
motor, premotor and inferior frontal cortex (Ryding et al., 1996;
Palmer et al., 2001; Keller and Kell, 2016). The left inferior frontal
cortex has further been shown to be specifically activated during
covert word retrieval (Hirshorn and Thompson-Schill, 2006) and
to be important for inner speech production as assessed using
repetitive transcranial magnetic stimulation (Aziz-Zadeh et al.,
2005). A careful anatomical voxel-based lesion study further con-
firmed the importance of this region as well as the white matter
adjacent to the left supramarginal gyrus to achieve rhyme and
homophone tasks requiring inner speech production (Geva et al.,
2011).

Overall, the left inferior frontal region encompassing Broadman
areas 4, 6, 44, 45, and 47, thus appears as a pertinent candidate
from which to probe and decode neural activity for the control of
a speech BCI. It should be noted that this strategy can only apply
to aphasic patients whose speech networks remain intact, at least
in this region. This is generally the case for instance for locked-in
individuals or patients with ALS. To envision a speech BCI in people

Fig. 1. Principle of a speech brain-computer interface.
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that became aphasic following brain damage, for instance after a
stroke, a speech BCI would need to be adapted. In particular, this
would require training new brain regions not previously involved
in speech production to become active in this task. Thus, adapting
a speech BCI to brain-damaged patients will constitute a further
challenge beyond the achievement of a speech BCI in brain-intact
patients. Here, we thus focus on this latter case, for which no proof
of concept has been achieved yet.

3. Choice of a recording technique to monitor speech brain
signals

As mentioned above, imaging studies based on PET and fMRI
have been extensively used to highlight the brain areas involved
in speech production. An important prerequisite toward building
a speech BCI is to be able to decode brain signals to predict
intended speech. This strategy relies on the temporal dynamics
of both speech and brain activity and the correlation that exists
between these two dynamics. Several studies have shown that sin-
gle trial fMRI can be used to successfully predict with an accuracy
above chance level which of different speech items or types are
perceived by subjects from their BOLD activity recorded in audi-
tory areas (Formisano et al., 2008; Evans et al., 2013; Bonte et al.,
2014; Correia et al., 2014). Similarly, speech articulatory features
such as place of articulation can also be decoded with this
approach (Correia et al., 2015). Although not shown yet, it is possi-
ble that fMRI could also be used to predict features of overtly or
covertly produced speech. However, in these studies, the number
of speech categories that can be discriminated remains limited
(typically 2–3), and it is likely that fMRI signals lack the sufficient
temporal resolution to allow decoding ongoing sequences of pho-
nemes forming continuous speech. This constitutes a major limita-
tion to envision a real-time speech synthesis from ongoing brain
activity recorded with this technique. In addition fMRI equipment
makes it not compatible with an everyday life use of a BCI system
at home. By contrast, electrophysiological recording techniques
can fit into compact portable devices and offer a temporal resolu-
tion appropriate to track the time course of brain activity on the
scale of the dynamics of speech production.

Non-invasive electro- and magneto-encephalography (EEG/
MEG) recording techniques have been used to study the cortical
dynamics of speech perception. In particular, several studies have
shown that the envelope or rhythm of perceived speech is corre-
lated with oscillatory rhythms composing the activity of the audi-
tory cortex (Luo and Poeppel, 2007; Gross et al., 2013; Di Liberto
et al., 2015). It was also recently shown that scalp potentials
evoked by different phonemes (phoneme-related potentials or
PRPs) show different spatiotemporal distributions over the scalp
between 50 and 400 ms after phoneme onset, and that the similar-
ity of PRPs follows the acoustic similarity of phonemes
(Khalighinejad et al., 2016). Less data is available for speech pro-
duction, likely due to experimental limitations and artifacts gener-
ated by muscle activity during speech production. Nevertheless,
similar observations have been made in this case with low fre-
quency cortical rhythms of the mouth sensorimotor areas also
strongly correlating with EMG activity of the mouth during articu-
lation (Ruspantini et al., 2012). Moreover, attention was also found
to modulate MEG activity over the left frontal and temporal areas
during an overt speech production task (Carota et al., 2010). Non-
invasive EEG/MEG techniques have also been used in the quest to
decode continuous speech from ongoing brain activity. The fact
that brain rhythms get coupled to the envelope of speech during
perception could be exploited to classify fragments of speech
envelopes from ongoing MEG signals, with longer segments lead-
ing to more robust classification (Koskinen et al., 2013). Single trial

analysis of EEG responses to speech could also achieve above
chance level classification of four speech items differing from their
voice onset time (Brandmeyer et al., 2013).

Despite these very informative results, non-invasive electro-
physiology techniques likely lack the spatial resolution required
to track ongoing neural activity with sufficient details to enable
the prediction of continuous intelligible speech. To this end, inva-
sive recordings appear as a promising alternative (Llorens et al.,
2011). Intracerebral stereotaxic EEG (SEEG) performed in epileptic
patients undergoing presurgical evaluation of their epilepsy has
been of great help to detail the functional organization of the
human brain auditory system (Liégeois-Chauvel et al., 1991;
Yvert et al., 2002, Yvert et al., 2005). This approach has further been
used to decipher in more details the cortical dynamics underlying
speech and language perception (Liegeois-Chauvel et al., 1999;
Basirat et al., 2008; Sahin et al., 2009; Fontolan et al., 2014). In par-
ticular it has helped to highlight how brain oscillations encode the
rhythmic properties of speech, with a strong coupling of the theta
rhythm to the tempo of syllables occurrence in speech and associ-
ated nested modulation of gamma-band signals possibly encoding
transient acoustic speech features (Giraud and Poeppel, 2012;
Morillon et al., 2012). Intracerebral SEEG recordings have also
highlighted several aspects of cortical activity underlying silent
reading. In particular, it was shown that reading sentences gener-
ates broad gamma activity detectable on a single trial basis in the
left temporal lobe, supramarginal gyrus and inferior frontal cortex
(Mainy et al., 2008; Perrone-Bertolotti et al., 2012; Vidal et al.,
2012), the latter region showing an anterior subregion activated
by semantic sentences and a posterior subregion more specifically
activated by phonologic sentences (Vidal et al., 2012).

A nice feature of SEEG is not only that it offers direct and thus
more detailed cortical recordings but also that several regions dis-
tant from each other are usually recorded at the same time, thus
allowing the analysis of interactions between areas. The drawback
of this advantage is that only few electrode contacts can usually be
inserted in a given region of interest, for instance the infero-
temporal region. This limitation in spatial coverage precludes the
access to the detailed dynamics of frontal motor speech areas
and may limits the possibility to decode with sufficient details a
continuous speech flow produced either overtly or covertly.

Electrocorticographic (ECoG) recordings are also routinely per-
formed in epileptic patients undergoing a pre-surgical evaluation
of their pharmaco-resistant epilepsy. A grid housing multiple con-
tacts is positioned over the surface of the cortex, usually sub-
durally, and allows monitoring the activity of the brain during
speech production or imagination. One or several grids may cover
a large region encompassing frontal motor areas and temporal
auditory areas to advantageously record activity from the cortical
speech network during overt and cover speech production. Several
ECoG studies have shown that cortical oscillations are relevant cor-
relates of speech processing (Leuthardt et al., 2011; Pei et al.,
2011a; Pasley et al., 2012; Bouchard et al., 2013; Pasley and
Knight, 2013; Martin et al., 2014; Mugler et al., 2014) (see also
Fig. 2). In particular, speech production is classically associated
with a decrease of signal power in the beta frequency range (15–
25 Hz) and usually an increase in the high gamma frequency range
(70–200 Hz) over temporal and motor frontal areas (Canolty et al.,
2007; Pei et al., 2011b; Toyoda et al., 2014) while gamma attenu-
ation was observed in more anterior frontal speech cortex includ-
ing Broca area (Lachaux et al., 2008; Wu et al., 2011; Toyoda et al.,
2014). These oscillatory features can thus be used to map func-
tional cortical speech areas, for instance to help delineate func-
tional areas during resection surgeries (Kamada et al., 2014;
Tamura et al., 2016). In this respect high-gamma activity has been
shown to be informative to map cortical areas activated for differ-
ent place and manner of articulation (Lotte et al., 2015) and to
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determine causal interactions between the motor speech network
and the auditory areas (Korzeniewska et al., 2011). Dense ECoG
grids have further been used to detail with a higher spatial resolu-
tion the functional organization of the ventral sensory-motor cor-
tex with respect to the main speech articulators. Noticeably, it
was shown that this region is tuned to the articulatory content of
speech during production according to the somatotopic organiza-
tion of this area (Bouchard et al., 2013), while the auditory content
of speech is encoded in a subpart of this region during speech per-
ception (Cheung et al., 2016).

Several studies have further explored the extent to which ECoG
signal features could be decoded to predict the content of produced
speech. A first level of decoding is the detection of voice activity
irrespective of the phonetic content of speech, that is discriminat-
ing the time intervals during which the subject is speaking or not.
As reported previously, these intervals can be estimated with high
reliability from EcoG signals recorded over the frontal motor
speech areas or the posterior supratemporal gyrus (Kanas et al.,
2014). Fig. 2 also shows an example where voice activity detection
can be achieved with 75% reliability from a single electrode site
located over the lips-tongue area of the motor cortex. A second
level of decoding is the prediction of the actual speech content at
the level of individual words or syllables or phonemes. If success-
ful, such decoding could be used in a speech BCI paradigm to
reconstruct continuous speech from brain signals. Discriminating

between 2 and 10 words could be achieved above chance level
using discrete classification algorithms applied to ECoG neural fea-
tures (Kellis et al., 2010), indicating that ECoG signals contain
information that differs from word to word. Continuous spectro-
grams of speech have further been reconstructed from ECoG sig-
nals recorded during overt production over motor frontal and
auditory temporal areas (Pasley et al., 2012; Martin et al., 2014).
Although the resulting speech intelligibility remained limited, the
overall time-frequency structure of the speech spectrograms could
be well estimated. Such reconstruction was all the more accurate
that the number of electrode sites was high, and the most informa-
tive sites were found to be in temporal auditory areas (Pasley et al.,
2012). In another study, ECoG signals recorded from the speech
motor cortex were also used to decode all phonemes of American
English using discrete classification with a success rate of about
20% across 4 different subjects, this rate reaching 36% in one sub-
ject using 6 electrodes located over the ventral somatosensory
region (Mugler et al., 2014). To a lesser extent, ECoG data could
also be used to predict silently articulated or covertly imagined
speech not actually overtly pronounced by the subject (Pei et al.,
2011a; Ikeda et al., 2014; Martin et al., 2014) (see also Fig. 3 show-
ing an example of inner speech episode decoding from a single
electrode located over the articulator motor cortex). The recon-
struction of covert speech was in general more limited than for
overt speech but above chance level, and more reliable for vowels

Fig. 2. Example of functional cortical activity underlying overt speech production as recorded by ECoG on peri-tumoral speech motor cortex during awake surgery. A series of
isolated vowels and vowel-consonant-vowel speech sounds was presented to the patient with a loudspeaker positioned next to him. The patient was asked to repeat aloud
three times each item after its presentation. (A) Position of 4 ECoG electrodes on the reconstructed cortical surface. (B) Time-frequency decomposition of ECoG data
underlying speech production recorded on the electrode circled in A, located on the articulatory motor cortex. Top: sample sound recorded by a microphone positioned next
to the awake patient. Bottom: time-frequency representation of the ECoG signal showing clear beta suppression (blue, white arrow) and gamma-band responses to the cue
and for each sound occurrence (red, black arrows). ECoG data was recorded at 2 kHz and the time-frequency representation was computed using short-time Fourier transform
using a Hamming function on 512 samples sliding windows with 95% overlap. The time-frequency representation was then normalized by the 1-s pre-stimulus period and
averaged over 83 trials aligned on the beginning of the cue signal. (C) Example of decoding of voice activity using the neural features extracted from the single electrode
shown in A and B. The blue area shows the probability that the patient is speaking as continuously predicted by the decoding model. The decoding model consisted of an
artificial neural network (ANN) trained on the normalized time-frequency representation by keepings only the frequency bins in the beta (from 10 to 30 Hz) and gamma
(from 60 to 90 Hz) frequency bands and averaged over a 500 ms sliding window. The ANN was made of 2 hidden layers of 10 logistic units each, and non-speech segments of
the training set were randomly chosen in order to obtain the same number of speech and non-speech segments. This DNN was then continuously applied to the test data
(which was not part of the training set) on a frame-by-frame basis by concatenating previous frames over a 500-ms time window. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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than for consonants. Moreover, informative electrodes were local-
ized over both frontal and temporal regions for vowels, but only
over temporal sites for consonants. Thus, an open question remains
on whether the frontal motor area contains sufficient information
to allow an accurate prediction of covert speech, especially for
consonants.

In particular, more accurate prediction of speech sounds could
be expected from even more detailed recordings performed at
the cellular or multicellular level using microelectrodes implanted
intracortically. The five English vowels (o, a, e, i, u) could be
decoded with high accuracy (93%) from spiking data recorded in
medial frontal and temporal regions using depth electrodes
(Tankus et al., 2012). Ten words could also be classified with 40%
accuracy from population unit activity recorded using the intracor-
tical Utah array in the superior temporal gyrus (Chan et al., 2013), a
level comparable to the performance of ECoG decoding using 5
optimal electrodes over the frontal motor cortex (Kellis et al.,
2010). However, in these intracortical studies, the neural probes
were not optimally located in areas specific to speech production.
Hence, a higher accuracy is likely to be obtained with microelec-
trode arrays positioned into specific speech motor areas. To date,
only one group has recorded unit activity in the articulatory speech
areas using an intracortical Neurotrophic electrode. The recorded
signals were used to control a simple vowel synthesizer
(Guenther et al., 2009). A further study by the same group reported
that it was possible to discriminate 20 out of 38 imagined Ameri-
can English phonemes well above chance level (around 20%) from
signals recorded with this single 2-channel microelectrode in the
speech motor cortex of a locked-in syndrome individual
(Brumberg et al., 2011). These encouraging pioneer studies suggest
that high decoding and BCI performance is likely to be expected
from denser recordings in this region.

4. Choice of a decoding strategy and associated speech synthesis
method

Artificial production of speech can be achieved in several ways,
which can be classified based on the type of parameters that are
decoded from brain signals to serve as inputs for the speech syn-
thesis. As illustrated in Fig. 4, three different types of parameters
can be envisioned, each corresponding to a different representation
of speech: phonetic, acoustic, or articulatory. Each of these repre-
sentations is likely to be more specifically encoded in certain cor-
tical areas than others. For instance the acoustic content of

speech is more extensively encoded in temporal auditory areas,
while articulatory features are more specifically encoded is the
speech motor cortex. Hence, a decoding approach will likely be
more efficient if the parametric representation of speech it intends
to decode corresponds to the one encoded in the cortical areas
from which neural signals are recorded. As a result, different
speech synthesis methods can be considered depending on the
choice of the decoding strategy.

A first category of speech synthesis consists in concatenating
individual discrete phonemes or words. A BCI system based on
such synthesis would thus consist in first predicting discrete
speech items from brain activity, for instance using discrete classi-
fication of neural features as in (Mugler et al., 2014), and then to
convert the sequence of predicted phonemes or words into contin-
uous audio speech. This latter step can be done using algorithms
used in text-to-speech synthesis (TTS) (Taylor, 2009). TTS input is
typically a sequence of written words. In most implementations,
a natural language processing module converts this sequence into
a sequence of phonemes and other features related to the prosody
(e.g. whether a syllable is stressed or not). A second module gener-
ates the speech waveform from both phonetic labels and prosodic
features. The two main strategies currently used in most systems
are unit selection and statistical parametric synthesis. In unit selec-
tion, as in (Hunt and Black, 1996), the speech signal is obtained by
concatenating recorded speech segments stored in a very large
database. In statistical parametric synthesis, machine learning
techniques (such as hidden semi Markov models (Tokuda et al.,
1995) or recurrent deep neural networks (Zen et al., 2013)) are
used to directly estimate a sequence of acoustic parameters given
a target sequence of phonemes and prosodic features. The speech
waveform is finally synthesized by a vocoder. Since a TTS system
is driven by a sequence of words, its use in a BCI system requires
a front-end module able to decode brain activity at word (or at
least phoneme) level. Such front-end module can be seen as an
automatic speech recognition (ASR) system driven not by the
sound, but directly by the brain activity. Although the design of
such decoder and its use in a closed-loop BCI paradigm is still an
unsolved issue, a recent study (Herff et al., 2015) reported encour-
aging results on the offline decoding of EcoG data, with a word-
error-rate of 25%. As shown in this work, the major advantage of
combining a word-based decoder and a TTS system is probably
the possibility to regularize the brain-to-speech mapping by intro-
ducing prior linguistic knowledge. Similarly to a conventional
audio-based recognition system, such knowledge can be given by

Fig. 3. Example of functional cortical activity underlying covert speech production. A series of isolated vowels and vowel-consonant-vowel speech sounds was presented 3
times to the patient at a regular pace and the patient was asked to continue to imagine pronouncing these items at the same pace after their presentation, and to say ‘‘ok”
aloud when done. (A) The modulation of beta and high-gamma band activity over the speech motor cortex during speech listening is prolonged during the period the subject
is asked to imagine repeating what he has heard. Top: sound recorded by the microphone positioned next to the awake patient. Bottom: time-frequency representation of the
ECoG signal averaged over 24 trials on the same electrode and using the same methods as in Fig. 2B. The vertical pink line shows the mean position of the end of the
imagination period as notified by the patient by saying ‘‘ok” aloud. (B) The decoder previously built on overt speech data (Fig. 2C) still reliably predicts the instants of speech
imagination. They correspond closely to actual ones shown at the bottom of the graph. The decoding is performed identically to Fig. 2C. The pink lines indicate the position of
the ‘‘ok” pronounced by the patient to notify the end of each imagination period. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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a pronunciation dictionary (and thus a limitation on the authorized
vocabulary) and a statistical language model (giving the prior
probability of observing a given sequence of words in a given lan-
guage). One limitation of such mapping remains however the diffi-
culty of a real-time implementation. Indeed, even a short-term
decoding algorithm will necessarily introduce a delay of one or
two words which may be problematic for controlling the BCI in
closed-loop.

In a second category of speech synthesis, the input parameters
describe the spectral content of the target speech signal. Hence, a
BCI system based on this approach would typically convert brain
signals into a spectral representation of speech (Guenther et al.,
2009; Pasley et al., 2012; Martin et al., 2014), which in turn would
be converted into a speech waveform using a vocoder. As for the
decoded spectral representation, a privileged choice is to use for-
mants (Flanagan et al., 1962), which are the local maxima of
energy in the speech spectrum, since formants are both compact
and perceptually relevant descriptors of the speech content. Note
that formants are also related to the spatial positions of the speech
articulators. Such formantic representation could be used to
directly pilot a formant synthesizer such as the Klatt synthesizer
(Klatt, 1980). Since this type of synthesizer typically uses several
tens of parameters (there exist versions with more than 50 param-
eters to describe the position and bandwidth of the 6 first formants
and the glottal activity), a simplified version should be used. This
was the strategy used in the speech BCI described in (Guenther
et al., 2009). Since this study focused on vowels, only 2 parameters
were estimated from the brain activity: the position of the two first
formants (which are sufficient to discriminate vowels), while the
other parameters were set to constant values. As mentioned in
(Guenther et al., 2009), the formant synthesis is well adapted to
vowel synthesis but less to consonants, such as plosives, which
require a rapid and accurate control of several parameters to
achieve a realistic-sounding closure and burst. In the same cate-
gory, vocoders found in telecommunication systems use other rep-
resentations of the spectral content of sounds, from which speech
can be synthesized. The speech waveform is here obtained by mod-
ulating an excitation signal (representing the glottal activity)
through a time-varying filter representing the transfer function

of the vocal tract (i.e. the spectral envelope). One of the most com-
mon techniques is the Linear Predictive Coding (LPC, see
(O’Shaughnessy, 1988) for its use in speech processing), where
the spectral envelope is modeled by the transfer function of an
all-pole filter. In the context of low-bitrate speech coding, good
intelligibility can be obtained with a 10th order LPC filter, excited
either by a pulse train for voiced sound or by white noise for
unvoiced sound (Boite et al., 2000) (nevertheless such simple exci-
tation signal lead to an unnatural voice). An LPC vocoder models
the speech spectrum in a compact and accurate way. However,
directly mapping LPC prediction coefficients from brain signals in
a speech BCI does not appear as a proper choice, since the variation
of these coefficients with the speech spectrum content is quite ‘‘e
rratic’’. Rather, transcoding predicted formants into an LPC model
is an easy signal processing routine. Other models of the spectral
envelope can also be envisioned in the same line, among which
the mel-cepstrum model with the corresponding digital filter
MLSA (Imai et al., 1983).

Finally, the third category of approaches for synthesizing speech
is the so-called articulatory synthesis. The control parameters are
here the time-varying positions of the main speech organs, such
as the tongue, the lips, the jaw, the velum and the larynx. A BCI
based on such synthesis would thus consist in predicting the
movements of the articulators from brain activity and then to con-
vert these movements into acoustic speech. Two main approaches
have been proposed for articulatory speech synthesis. The first one
is a ‘‘physical” approach, in which the geometry of a generic vocal
tract (including the articulators) is described in two or three
dimensions (Birkholz et al., 2011). This geometry is converted into
an area function describing how the cross sectional area of the
vocal tract varies between the glottis and the mouth opening.
Then, an acoustic model of sound propagation is used to calculate
the speech wave from the sequence of area functions and corre-
sponding sound sources. In the second approach, supervised
machine learning is used to model the relationship between artic-
ulatory and acoustic observations. Articulatory and acoustic data
are typically recorded simultaneously on a reference speaker, using
a motion-capture technique such as electromagnetic-
articulography (EMA). Then these data are used to train a mapping

Fig. 4. Three representations of speech (phonetic, acoustic or articulatory) can be decoded from brain signals, each implying the use of specific speech synthesis techniques to
build a speech BCI.
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model. Several models have been proposed in the literature to
model the relationship between articulatory positions captured
by EMA and corresponding speech spectral features: Artificial neu-
ral networks (ANN) (Kello and Plaut, 2004; Richmond, 2006), Gaus-
sian Mixture Models (GMM) (Toda et al., 2008), and Hidden
Markov Models (HMM) (Hiroya and Honda, 2004; Hueber and
Bailly, 2016). Once calibrated, these models are used to estimate
acoustic trajectories from time-varying articulatory trajectories,
and a standard vocoder is finally used to generate the speech
waveform.

It should be noted that, after the initial neural signal decoding
into one of the three representations described above, speech syn-
thesis may further cascade or even combine other representations
to optimize the quality of synthesized speech. For instance, articu-
latory features have to be mapped into acoustic features, which
correspond to a different representation, before using a vocoder.
Another example could be the simultaneous decoding of both an
articulatory and a phonetic representations that could then be
combined before speech synthesis (Astrinaki et al., 2013). More-
over, beyond these three categories of speech representations,
one could also consider a higher representation of language at
higher linguistic level to shape the prosody of synthesized speech.

5. The special case of articulatory-based speech synthesis

The use of an articulatory speech synthesizer can be of particu-
lar interest for a BCI application for several reasons. First, as dis-
cussed in the previous section, an area of choice to probe the
neural activity in a BCI paradigm is the frontal speech motor
region. This area is activated during both speech production and
perception (Pulvermüller et al., 2006) but it has been shown that
it is tuned to the articulatory content of speech during speech pro-
duction and to the acoustic content of speech during speech listen-
ing (Pasley and Knight, 2013; Cheung et al., 2016). In particular, the
activity of the sensorimotor speech cortex was found to be similar
for similar places of articulation but not for similar acoustic con-
tent during speech production, and similar for similar acoustic con-
tent and not similar place of articulation during speech perception.
This result has not been extended to the case of imagined speech
but according to preliminary data showing similar activations dur-
ing covert and overt speech, it might be expected that this region
would also be tuned to articulatory features during speech imagi-
nation. This hypothesis remains to be tested but if true, then build-
ing a BCI paradigm relying on the activity of this region would
benefit from relying on an articulatory-based speech synthesis. A
second advantage of articulatory synthesis is that articulatory fea-
tures vary more slowly and more smoothly than spectral features.
It is thus possible to speculate that their time evolution might be
easier to estimate from brain activity. Moreover, as mentioned in
(Guenther et al., 2009), a third advantage of an articulatory synthe-
sizer is its ability to produce consonants with a limited amount of
control parameters. This is notably the case for some plosives that
can be estimated from relatively slowly time-varying control
parameters corresponding to the movement of an articulator (e.g.
the tongue) producing a vocal tract closure. Such pattern is more
difficult to produce with a formant synthesizer. Several articula-
tory speech synthesis systems have been described in the literature
including the model proposed by Maeda (Maeda, 1990) that was
further implemented in a compact analog electronic circuit board
compatible with BCI applications with 7 control parameters (Wee
et al., 2008).

In line with these considerations, we recently developed an
articulatory speech synthesizer adapted to a BCI application
(Bocquelet et al., 2016). This system is based on a deep neural net-
work (DNN) for the articulatory-to-acoustic mapping, which we

previously evaluated as being more robust to noisy inputs than
state-of-the-art GMM models (Bocquelet et al., 2014). The DNN
was trained on a dataset of EMA and audio recordings simultane-
ously acquired from a reference speaker. Once trained this DNN
was then able to convert the movement trajectories of the tongue,
lips, jaw and velum into continuously varying spectral parameters,
which, in turn, could be transformed by a vocoder to generate a
continuous speech waveform (with a proper excitation signal).
With a future BCI application in mind, we showed that this system
could (i) produce intelligible speech with no restriction on the
vocabulary and with as few as 7 control parameter (as the Maeda
articulatory synthesizer) (ii) run in real time, (iii) be easily adapted
to any arbitrary new speaker after a short calibration phase, and
(iv) be controlled in a closed-loop paradigm by several subjects
to produce intelligible speech from their articulatory movements
monitored using EMA while they articulated silently. Further stud-
ies should further expand this study to situations where such syn-
thesizer is controlled in real time from brain signals.

6. Conclusion

Designing a speech BCI requires targeting appropriate brain
regions with appropriate recording techniques and to choose a
strategy to decode neural signals into continuous speech audio sig-
nals. In this respect, the inferior frontal region appears as a key
region from which to decode activity specific to the covert produc-
tion of speech. This region being tuned to the articulatory content
of speech, we propose that a speech BCI controlled from this region
could use an articulatory-based speech synthesizer as developed
recently (Bocquelet et al., 2016). Because such synthesizer is typi-
cally controlled by a ten of parameters, neural activity should be
sufficiently detailed to allow the simultaneous control of such a
number of degrees of freedom (DoF). Recent advances in motor
BCI have shown that, provided careful training, a ten of DoF could
indeed be controlled from unit or multiunit activity recorded using
microelectrode arrays (Collinger et al., 2013; Wodlinger et al.,
2015). High-dimensional BCI control of a speech synthesizer from
microelectrode array recordings in the frontal speech network
could thus be a key challenge for future translational studies. Such
proof of principle would directly benefit to aphasic people with
preserved cortical speech networks as in Locked-In Syndrome or
ALS disease.
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