
HAL Id: hal-01978238
https://hal.science/hal-01978238v1

Submitted on 11 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Involving the Application Domain Expert in the
Construction of Systems of Systems

Imane Cherfa, Salah Sadou, Nicolas Belloir, Régis Fleurquin, Djamal
Bennouar

To cite this version:
Imane Cherfa, Salah Sadou, Nicolas Belloir, Régis Fleurquin, Djamal Bennouar. Involving the Appli-
cation Domain Expert in the Construction of Systems of Systems. IEEE – 13th System of Systems
Engineering Conference (SoSE 2018), Jun 2018, Paris, France. �hal-01978238�

https://hal.science/hal-01978238v1
https://hal.archives-ouvertes.fr

Involving the Application Domain Expert in the
Construction of Systems of Systems

Imane Cherfa∗§, Salah Sadou∗, Nicolas Belloir†, Régis Fleurquin∗ and Djamal Bennouar‡
∗Université Bretagne Sud - IRISA, France

†Military School of St Cyr Coetquidan - IRISA, France
§University of Blida - LRDSI, Algeria
‡University of Bouira - LIMPAF, Algeria

Email: firstname.lastname@irisa.fr

Abstract—The system of systems (SoS) is a system whose
definition is based on pre-existing independent systems in the
runtime environment. The latter is in perpetual evolution thus
forcing a recurrent adaptation of the SoS. Thus, during their
life cycle the SoS are very exposed to the problem related to the
evolution mentioned above. This problem is mainly due to a poor
communication between the requirement definition stage and the
design stage.

In this paper we propose a method for addressing SE for
SoS using the concepts Mission and Role. The first one allows
the definition of the SoS’s behavior, while the second allows to
abstract this definition with respect to the constituent systems
that may actually exist in the environment. This definition will
be translated into an abstract architecture. The later will serve
as a guide and controller of the choices proposed by the system
architect during the design and evolution stages. With our
approach we have correctly defined an SoS concerning crowd
management during a sport event.

I. INTRODUCTION

During system development process, choices and decisions
are made at each stage. For instance, the application domain
expert makes decisions on business aspects, while the system
architect is responsible of implementation choices. These two
stockholders cover the stages concerning the requirement
definition and the design. These two stages are crucial to
the system development as they form its base. Thus, the
choices made during the design must be consistent with the
decisions made during the definition of the requirements. This
is necessary to facilitate the evolution of the system [1]. If
the definition of the requirements is not formal, the risk of
deviation of the design from the initial objectives is real
with each evolution of the system. The system of systems
(SoS) is a system whose definition is based on pre-existing
independent systems in the runtime environment [2]. The latter
is in perpetual evolution thus forcing a recurrent adaptation
of the SoS. Thus, during their life cycle the SoS are very
exposed to the problem related to the evolution mentioned
above. To solve this problem, we propose to create a strong
link between the requirement definition stage and the SoS
design stage. The idea is to allow the application domain
expert to define her/his objectives and requirements in a
formal way that will serve as a guide and a controller of the
choices proposed by the system architect during the design and
evolution stages. We suggest to use the mission paradigm [3]

for the language intended for the application domain expert.
This definition must include a maximum of knowledge from
the domain expert. This definition will be translated to an
abstract architecture holding invariants that will guide the
choice among the possible solutions during the development
and adaptation of the SoS.

This approach requires a good understanding of all details
about capabilities of the constituent systems. However, it
is not possible at the requirement definition stage to know
which constituent systems will really contribute to the mission
accomplishment at run time. The application domain expert
has only prior knowledge of the systems that may be used
by the SoS. That’s why we propose to manipulate roles,
more abstract entities, during the mission definition instead
of concrete systems.

So, the purpose of the work presented in this paper, is to
provide a process-based model to specify the mission and
choose constituent systems that have the necessary capabilities
to its accomplishment.

We illustrate the global process in all its phases with the
Crowd Management case study, which is part of the Disaster
Response System of Systems case study.

The remainder of this paper is organized as follows: next
section presents our general approach for the SoS construction.
Section III describes mission modeling, goes into details of the
proposed language for describing capabilities and explains the
abstract architecture modeling and its realization. In Section IV
we illustrate the proposed approach through a case study.
Section V discusses some related work while Section VI
presents concluding remarks and directions for future work.

II. GENERAL APPROACH

The proposed approach is based on the idea that a model
can serve as a mean of transmitting knowledge from the
application domain expert to the system architect. However,
it is not always easy to find a form of modeling that suits two
actors from different domains. In our approach, we propose
a sufficiently generic SoS modeling to suit experts from the
non IT domain. Then, we generate a specific architecture for
the system architect. Figure 1 introduces the main steps, and
the involved stockholders, of the process implementing our
approach. In the following, we describe these steps.

Fig. 1. Actors and responsibilities

A. Mission and Role Modeling

In this step, we interlace the requirements analysis and de-
sign phases of system development process. As pointed by [4],
SoS is designed to enhance the overall robustness, lower the
cost of operation and increase reliability of the overall complex
(SoS) system. Thus, we believe that the application domain
expert is the most suited person to state the what and the
how about the business aspect of the SoS. Preserving this
information helps to achieve the properties planned for the
SoS. We use the mission paradigm for the definition of SoS by
the application domain expert. Not knowing what systems will
actually exist when running the SoS, the application domain
expert will describe the mission in the form of a collaborative
roles. The later correspond to an abstract representation of
what she/he hopes to find in the runtime environment. The
collaborative aspect will be described through SysML activity
diagrams, while the roles will be described with capability
diagrams that we propose (further described in next section).
The result is the SoS mission description model based on the
involved roles and their collaborations.

B. Abstract Architecture Modeling

The mission definition contains all the knowledge of the
application domain related to the mission. The mission de-
scription form is not adequate for a system architect. Indeed,
the purpose of the mission description language is to allow
non-IT experts to better express their needs. This step con-
sists of transforming the mission description into an abstract
architecture. The architecture is called abstract because it uses
roles instead of concrete systems. For the description of the
abstract architecture we use the SysML block diagram. To this
diagram, we associate OCL constraints in order to express all
the semantics drawn from the definition of the mission. At
this level, the architect holds an architecture representing a
first solution for the targeted SoS, but which does not take
into account the state of its execution environment.

C. Concrete Architecture Modeling

At this level, the system architect uses her/his knowledge
about the concrete systems in order to map them to the roles
from the abstract architecture. So, the system architect must
know the semantics of the capabilities, as described in the
roles, to identify their equivalents in the behavior of existing
systems. This is the only additional knowledge required for the
system architect to be able to manipulate abstract architecture.
Thus, the architect can use all his knowledge on architectural

aspects and on the environment of execution to transform
the abstract architecture into a concrete one. However, the
architect is limited in his choice of solutions by the constraints
defined in the abstract architecture and which will apply on
the concrete architecture. This is the guarantee of the good
respect of the requirements defined by the application domain
expert.

III. MISSION AND ROLE MODELING

To define SoS missions, we need to describe all important
concepts related to SoS functionalities. However, considering
mission as a main concept is not limited to SoS engineering.
Indeed, in the military domain, mission is a strong concept
that is defined in a rigorous manner, and generally expressed
throw a well structured document. The most famous one is
called Operation Order [5], which specifies how a mission
must be defined in case of the NATO organization. we make
the assumption that the military mission is based on a large and
long experience, we propose to transpose the military vision
of the mission to the SoS context. Thus, a SoS is built to
accomplish a given mission. So, we can specify a SoS through
the specification of its mission.

According to [5], a mission specification must express five
important elements defining the mission perimeter:

1) Situation: describes any items of information which
affect the mission planning.

2) Mission Statement: sets a concise statement of the mis-
sion to be accomplished. This is the main objective of
the mission.

3) Execution: specifies ordered and coordinated operations
that contain roles/tasks to be carried out.

4) Administration and Logistics: give the plan for admin-
istrative and service support of operations.

5) Signal and Command: define command and signal in-
structions used to communicate.

Transposing this five concepts to describe a SoS mission
may be done as followed. Situation concept can be used
to describe the environment in which the mission of the
SoS will evolve. Mission Statement allows to describe the
main objective of the SoS (for instance, rescuing as many
people as possible). Execution concept is used to organize
a sequence of actions that the SoS must perform. Signal
and command describe the constituent systems communication
under the SoS. As we focus on the operational aspect of the
mission, Administration and Logistics will not be taken into
consideration. This aspect will be the subject of a future work.

One of the differences between a military mission and a
SoS mission is that when specifying a SoS mission we have
no guaranty that the constituent systems remain the same
throughout the SoS life-cycle. While in the military case,
often the constituent systems are stable during the operation.
As explained in the introduction, we think that the best
way to deal with this uncertainty, about the state of the
runtime environment of the SoS, is to design the SoS without
considering the real existing constituent systems. We propose
to specify an abstraction called Role to designate constituent
systems. Role are characterized by what they are able to
do (called capability). To concretize the definition of the
SoS capabilities will be used to identify constituent systems
corresponding to abstract roles. Thus, our approach is based
on two complementary models: The first one is used to specify
the mission of the SoS, while the second one allows to specify
the roles involved in the mission and their capabilities. These
models are described in the following.

A. Mission Modeling

To specify a SoS mission we propose to use the SysML
Activity diagram. Indeed, SysML language [6] is the reference
ADL for system architects. It was defined in order to specify
complex systems. Activity Diagram is very suited to express
data and control flows between actions. In the SoS context,
data and flows are used to express collaboration between
roles (constituent systems). An action is something realized
by a constituent system. With activity entry parameters, we
can express the SoS situation. Activity name sets the mission
statement. Using signals and events we model Signal and
Command elements. Finally, the action scheduling can be
expressed using activities, actions, data and control flows.
Constraints can be set on actions to specify the business
semantics.

To summarize, a SoS mission is considered as a set of
processes, each one composed of an ordered set of activities
or actions representing a graph. This graphical representation
may be very helpful for other aims than SoS specification
(costs estimation, critical path identification. . .).

Modeling a SoS is basically realized by an application
domain expert throw a refinement process. The refinement is
stopped when the expert finds a needed role that may match
a realistic constituent system.

B. Capability Modeling

To be able to identify a matching between a role used in
a diagram, representing a mission, and a possible constituent
system, the system architect relies on the capabilities required
to play the role. Thus, the latter must be correctly specified by
the application domain expert in order to avoid any error in
the choice of the constituent systems by the system architect.

To this aim, we propose a new kind of diagram which allows
to model role capabilities. Figure 2 shows the metamodel
(called CMM) of the Capability Diagram highlighting the
involved concepts.

Based on her/his knowledge of the application domain,
the expert must maintain some level of abstraction so that
it allows to conceive the mission without prejudging on the
constituent systems that will actually exist at the launch of
the SoS. This is done through the concept of Role defined
by the metaclass Role in Figure 2, which is the main concept
in the CMM metamodel. It gathers the needed competences
(metaclass Capabilities) to play a role needed to accomplish
the mission. A capability of a role is defined as the ability
to provide some expertise to the wider needs in the SoS
context [7].

We define a role as an abstraction of the characterization
of the ideal behavior that will fulfill an action. In the final
concrete architecture, a role would be realized by various kind
forms of constituent systems: existing systems, organizations
or humans. A constituent system is chosen when its capabili-
ties match with those required by a role.

The metaclass Setting defines the information that we need
to know about a capability. It may encapsulate the specificities
of the application domain for a given capability. For instance,
the capability search and rescue at sea which is associated to
the role maritime rescue, needs information about wind speed
and wave height. This kind of information is defined by a
name (metaattribute Setting Name) and a value (metaattribute
Setting Value).

Capabilities in the role may not be feasible in certain
circumstances. For instance, if the wind speed is greater
then 103 Km/h (Beaufort 11), the capability search and
rescue at sea can not be done. All constraints related to
a role are expressed through ACL (Architecture Constraints
Language) [8] profile. The later, is composed of an OCL-
like language, and a MOF Metamodel(CMM in our case).
The metaattribute Expression in the metaclass Constraints
represents the constraint associated to the role.

C. From Mission to Abstract Architecture

The architecture modeling phase defines the SoS global ar-
chitecture in terms of systems interconnected through data and
control flows. In our approach, architecture is defined in two
stages: first through a transformation of the mission definition
into an abstract architecture. Then, by the concretization of
the latter in an architecture containing the existing constituent
systems in the SoS’s environment.

The application domain expert is at the origin of the
definition of SoS. She/he uses the definition of the mission
and the role diagram to express the objectives of the SoS while
making explicit her/his know-how. The aim of our approach
is to preserve this definition and make it useful to the system
architect. Thus, the construction and evolution of the SoS will
be conform with the decisions made by the application domain
expert. To this end, we generate an abstract architecture that
becomes the work base for the system architect. This abstract
architecture is defined using the SysML bloc diagram. So,
the main objective of our approach is the generation of this
abstract architecture.

Fig. 2. Capability Modeling Metamodel (CMM)

We transform the mission definition into an abstract archi-
tecture using the ATL1 model transformation language. The
transformation model is too long to be presented in this paper,
however, here are its principles:

Role transformation: Each role affected to an action is
translated into a bloc. Role capabilities are translated into
operations part of the bloc. Capability settings are defined
as properties of the bloc. To distinguish settings of each
capability, we used a special notation to the properties: ca-
pability.setting. Constraints related to roles are expressed in
the constraint part of the bloc.

Process transformation: To Each process in the activity
diagram corresponds a collaboration between several roles.
The role that handle an activity is represented as a bloc
composed of an already described collaboration of blocs. Data
and control flows exchanged between roles are expressed
through ports and flows, and are deducted from the activity
diagram.

IV. CASE STUDY

In this section, we go through and discuss the three stages of
the proposed process using the Crowd Management case study.
This case study is a part of the Disaster Response System of
Systems which is a widely used example of SoS [2], [9], [10].
The Crowd Management case study was defined in [10]. It
aims at developing an integrated crowd control system during
temporary events of mass transit, such as sport events or
political meetings. The considered case study concerns the
development of a Crowd Management SoS (CMSoS) related
to sport events.

The challenge is to describe the different activities and their
associated roles to achieve Managing Crowd mission of the
SoS.

A. Mission and Role Modeling

The high level process related to the main mission (Man-
aging Crowd) is composed of the seven activities proposed
in [10] (see Figure 3) . They are needed to control any emer-
gency situation, to which we add the Event Planning activity
that includes all processes related to the event planning and

1Atlas Transformation Language: http://www.eclipse.org/atl

the collect of venues informations (Understanding Visitors and
Stakeholders, Capacity Planning,...). This activity is essential
since we are interested by a determined event (sport event).

The Managing Pre-event Stage activity serves to control
crowd behavior and avoid any incident. It starts when the event
starts. It is a repeating activity and interruptible at the same
time. It can be interrupted by the End of Event or when there
is an Accident Alert.

Fig. 3. Crowd Managing SysML Activity Diagram

Once the Accident Alert signal received, the Managing Alert
Actions activity, which consists in applying the best emergency
protocol, is triggered. The three activities Acting, Preventing
and Restorating Normality aim respectively at consolidating
the first aid, avoiding disaster(minimizing damages) and work-
ing to restore normality. When the three activities are finished,
the Maintenance activity for repairing damages is launched
and followed by Learning activity that serves to improve
future actions and decisions. This activity can cause SoS model

updates.
Let us focus more on the processes related to Managing

Pre-event Stage. To avoid any accident, Training Staff and
Assessing Risks activities remain important activities (see
Figure 4): The Training Staff activity aims to test the impact
of decisions at different level of the crowd aggressiveness
by simulation and test, while Assessing Risks activity serves
to detect continuously any risk in event venues (Stadiums,
nearby parks, nearby streets, nearby parkings, nearby restau-
rants, nearby hotels,...etc). In case of risk detection the Put
Precaution action will be trigged.

Fig. 4. Managing Pre-event Stage SysML Activity Diagram

A simplified process related to the Assessing Risks activity
is shown in Figure 5. For Assess Risks activity, all event and
venues information collected by the Event Planning activity
constitute the entry parameters. For instance, the entry param-
eter Venue Characteristics includes Weather characteristics of
venue, geographical characteristics of venue, Floor charac-
teristics, Venue capacity,etc. The Assessing Risks activity
collects continuously useful information about event venues.
For instance, Cross Flow Information includes cross flow
location, causes, density, date and time elements and Hazard
Item Information includes item type, utility, location, date and
time elements. Date and time are necessary elements since
they allow to distinguish new information from the old one.
Information is putted in Data Stores to be stored permanently,
and used to detect risks. For the case of Detect Risk of
Crushing Between People, venue characteristics, entrance and
exit characteristics, crowd characteristics, crowd density, cross
flows informations and crowd behavior give complementary
information that allow making decision about presence or not
of risks. In case of presence of risk, alarm signal is sent.

Sub-activities in the Assessing Risks activity are considered
as actions, because we can directly match roles that handle
them. So, the refinement of this activity is completed. The
attribution of roles is done through simultaneous modeling of
roles and processes where a role represents an abstraction of
characterization of ideal behavior, which has realistic capabil-
ities. Figure 6 shows an example of role modeling where the
role Observer, which is responsible of Sending Continuously
Informations About Event Venues, has the following capabili-
ties: Locating, Estimating Measures and Quantities, Detecting
Anomalies, Predicting Changes, Tracking People, Communi-
cating, and Observing Crowd. Capabilities may be associated

to settings. For instance, the capability Communicating is
associated to the setting communication_type, which is
an information about the type of the used communication
medium. The capability Observing is associated to the setting
property type that informs if the venue is private or public,
and to the setting permission which is a boolean that informs
if there is a permission to observe. Constraints are expressed
at the role level(see Figure 6).

The constraint related to the role Observer is a conjunction
of three constraints. The first one expresses that it should be
at list one common type of communication medium between
an observer and a risk detector to communicate (another role
having communicating capability). The second one expresses
that observer must have permission to track people (protection
of private property). And the last one requires that if the
property is private, observer must have permission to observe.
These constraints must be persistent in the SoS architecture in
order to prevent the system architect from making choices that
are incompatible with the decisions made by the application
domain expert.

B. Architecture Modeling

The abstract architecture blocks represents the roles respon-
sible of actions. The communicational aspects are deducted
from the activity diagram. Figure 7 represents the abstract
architecture related to Assessing Risks activity where the
Observer role collects information from event venues, send
them to the Risk Detector role in charge of analyzing them
and deciding if there is a risk or no. A signal alarm is sent to
the Coordinator role if risk is detected. The constrained part
of the blocks is taken from the definition of the corresponding
roles.

The abstract architecture is used to get one of the possible
concrete ones by replacing abstract items with concrete ones.
Possible solutions are limited by the constraints defined on the
blocks. For instance, Figure 8 shows a concrete architecture
based on the abstract one presented in Figure 7.

Let’s take example of assessing risks in a small park
nearby a stadium where spectators wait for bus. Monitoring
Agent, which is a human, can play the role of Observer
since she/he has all needed capabilities and permissions to
observe people. So She/he satisfies all the constraints needed
by the played role. A Qualified Staff can play a role of
Risk Detector since she/he has the competence requested and
satisfy the communicating constraint with Monitoring Agent.
In fact, There is several types of communication medium
possible between them. Finally, The Control and Command
Coordinator is the most appropriate person to play the role of
Coordinator. Indeed, she/he also satisfies the communicating
constraint with other constituent systems (emergency services,
police,...) .

C. Discussion

The intended purpose for Crowd Management SoS is to
minimize the risk of accident in sport event, and in case of
accident to minimize the victims number. In such a system

Fig. 5. Assessing Risk SysML Activity Diagram

Fig. 6. Observer Role Modeling Diagram

it will be necessary to be able to respond to any eventuality.
Knowing that the constituent systems often have managerial
independence, it is possible that a system which the application
domain expert would have thought, when defining the mission,
may fail at a time in the life of the SoS. In addition, the
system architect can respond to this failure by combining
available systems to meet the expected role. For instance,
which has been attributed to a human agent may also played by
collaboration between a camera and a CCTV Agent systems.
Indeed, this collaboration covers all capabilities expected by
the Observer role. However, checking the constraint imposed

by the role becomes more difficult to achieve.
Despite these drawbacks, the approach can be used as it is

currently to provide a clear description of the SoS mission, the
needed capabilities and produce the abstract architecture. We
think that the global activity diagram may be used as a graph
to open new possible investigations as the optimization of the
redundant actions, the calculus of costs and the identification
of critical paths .

V. RELATED WORK

Our work concerns mission and capability modeling in SoS.
In this context, authors in [3] proposed mKAOS, an SoS
mission description language. mKAOS extends KAOS [11]
by specializing the KAOS elements and models to the SoS
domain. In MKAOS, mission is a specialization of goal to
SoS domain. The mission is refined with and/or operators
until finding submissions that can be handled by a constituent
system. In our approach, mission is an activity encapsulating
the way to achieve the goal of the SoS. In mKaos, capabilities
are classified into two types: operational capabilities and com-
municational capabilities. An operational capability represents
an operation that a constituent system is able to execute. A
communicational capability defines the connectivity intrinsic
to the constituent systems, which enables them to cooperate
to achieve global missions. In our approach, communication
is a capability as well as an operational capability. Further,
constraints can be used to impose a communication medium
if it is necessary.

Authors of [7] propose an approach to model SoS throw
capability specification of subsystems. The authors propose
a taxonomy for capability concept. Thus, they broken down
capabilities by type (Technical, Socio-technical Resources,
Manual, Information Resources, Personnel Resources) and

Fig. 7. Assessing Risk Abstract Architecture Modeling

Fig. 8. Assessing Risks Concrete Architecture Modeling

maturity (Current, Legacy, Development). The authors pro-
pose a graphical notation to illustrate dependencies between
subsystems throw capability dependencies. This work gives
some interesting features about capabilities (type and ma-
turity). However, this information is directly related to the
constituent systems that will be used at run-time, whereas
the SoS designer does not have a clear idea about them.
This information is more useful during the creation of the
concrete architecture of the SoS. In our approach, we consider
the design stage and use the concept of Role, which is an
abstract concept, to specify capabilities independently of the
constituent systems that may exist during the execution stage.

The Department of Defense Architecture Framework
(DoDAF) [12] is an architecture framework for the United
States Department of Defense (DoD). In the DoDAF frame-
work, there is several views, each of which is broken down
into products and data: operational view, capability view,
systems and services view, etc. The operational view aims
to describe the tasks and activities, operational elements, and
resource flow exchanges required to conduct operations while
the capability view aims to describe the mapping between
the required capabilities and the activities that enable those
capabilities. The Ministry of Defense Architecture Frame-
work(MoDAF) [13] is an architecture framework for the UK
Ministry of Defense(MOD). Similarly to DoDAF, MoDAF
provides a set of views that provide a standard notation to

capture information about a business in order to identify ways
to improve it. With our approach, we consider that the expert
of the application domain is the most appropriate person to
model activities and capabilities. As the domain expert is not
necessarily an ICT expert, thus the proposed approach does not
impose significant IT competences. Despite of being presented
as a potential SoS modeling technique, DoDAF and MoDAF
frameworks constitutes an in depth modeling approach which
requires significant resources [7].

In [14], authors propose a conceptual model that can be
used for SoS modeling. The main concepts used in this
model are: roles, assumptions, capabilities, constituent sys-
tems. The authors consider that the capabilities of the SoS
are totally or partially determined by the capabilities of its
constituent systems. The authors do not address a way to
model capabilities of constituent systems. They only addressed
a list of relations on the constituent systems (communication,
coordination, etc.). What is proposed corresponds to a bottom
up approach for defining a mission while we propose a top
down approach.

In [15], authors propose to model an SoS with MAS and to
differentiate between the concepts of goal and mission.The
SoS’s goal is decomposed into subgoals, each of them is
associated to a mission. The later is considered as a set of
actions. In our approach we consider a mission as a set of
activities that can be refined. The authors’ approach focuses
on the way of organizing the subsystems to satisfy the goal.

Our proposed meta-model aims to exploit the concept of role
by focusing on the needed capabilities to achieve a mission.
We do not focus on the existing systems. In this way, the roles
can be attributed easily to actions. Thus, we promote a more
abstract view of the mission.

In addition to the differences noted above, with existing
work, we support that capability specification languages must
also allow to express some constraints. The constraints may
represent a condition of use of a resource, a condition of
capability realization or a need of other capabilities. These
concern the SoS business knowledge that must be respected
during its design. We notice that no one of the cited work
deals with that.

VI. CONCLUSION

This paper provides an approach to support design activities
in the SoS development process. We highlighted the impor-
tance of the mission concept for SoS design. The explicit and
precise definition of a mission is a prerequisite to generate,
control and adapt the architecture of an SoS. Thus, the idea
supported by our approach is to allow the application domain
expert to define her/his objectives and requirements in a
formal way that will serve as a guide and controller of the
choices proposed by the system architect during the design
and evolution stages. To rigorously design the mission, we
referred to a military standard which defines how a mission
must be specified in the case of NATO organization. The re-
tained concepts where described thanks to the SysML activity
diagram.

With this approach we propose an intermediary between the
requirements definition stage and the design stage. The goal
is to create a safe transfer of information between these two
stages. One can think that our approach resolve a problem that
really exists only when the application domain is far from the
IT domain. However, the separation between the definition
specific to the application domain and that specific to the
choices made by the system architect makes it possible to
preserve the business decisions. Indeed, future evolutions of
the SoS may be performed by another system architect, who
needs to know the limits for the possible choices.

As a first extension to our approach, we plan to provide
the system architect with a means to build a constituent
system corresponding to a collaboration of existing constituent
systems. Thus, we will respond to the problem raised by the
discussion at the end of the case study section. The challenge
is that this representation should facilitate the evaluation of
the constraint imposed by the role in question.

In the approach presented in this paper, we have limited
the transfer of information from the requirements definition
stage to the design stage. In future work we want to allow the
transfer of information also to the simulation stage. Simula-
tion plays an important role in SoS engineering, mainly for
managing emergent behaviors [16]–[18]. We believe that the
rules that come from the definition of the mission can help to
identify, if not avoid, emerging behaviors harmful to the good
functioning of the SoS.

REFERENCES

[1] C. Tibermacine, R. Fleurquin, and S. Sadou, “Preserving architectural
choices throughout the component-based software development pro-
cess,” in Fifth Working IEEE / IFIP Conference on Software Architecture,
November.

[2] C. B. Nielsen, G. Peter Larsen, J. Fitzgerald, J. Woodcock, and
J. Peleska, “Systems of systems engineering: Basic concepts, model-
based techniques, and research directions,” ACM Computing Survey,
vol. 48, no. 2, pp. 18:1–18:41, sep 2015. [Online]. Available:
http://doi.acm.org/10.1145/2794381

[3] E. Silva, T. Batista, and F. Oquendo, “A mission-oriented approach for
designing system-of-systems,” in 10th System of Systems Engineering
Conference, ser. SoSE 2015, May 2015, pp. 346–351.

[4] M. Jamshidi, “System of systems engineering - new challenges for
the 21st century,” IEEE Aerospace and Electronic Systems Magazine,
vol. 23, no. 5, pp. 4–19, May 2008.

[5] M. A. F. Standardization, STANAG: Formats for ordres and designation
of timings, locations and boundaries, 9th ed., NATO, 2014.

[6] O. M. Group, “Systems modeling language v1.5,” Object Management
Group, http://www.omg.org/spec/SysML/1.5/, Tech. Rep. formal/2017-
05-01, 2017.

[7] R. Lock and I. Sommerville, “Modelling and analysis of socio-technical
system of systems,” in Proceedings of the 2010 15th IEEE International
Conference on Engineering of Complex Computer Systems, ser. ICECCS
’10. IEEE Computer Society, March 2010, pp. 224–232. [Online].
Available: http://dx.doi.org/10.1109/ICECCS.2010.40

[8] C. Tibermacine, R. Fleurquin, and S. Sadou, “A family of
languages for architecture constraint specification,” J. Syst. Softw.,
vol. 83, no. 5, pp. 815–831, may 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2009.11.736

[9] C. Group, “The compass project,” http://www.compass-research.eu/,
2014.

[10] A. Gorod, B. E.White, V. Ireland, S. J. Gandhi, and B. Sauser, Case
Studies in System of Systems, Enterprise Systems, and Complex Systems
Engineering, ser. Complex and Enterprise Systems Engineering. CRC
Press; 1 edition (July 1, 2014).

[11] A. Van Lamsweerde, “Requirements engineering: From craft to
discipline,” in Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. SIGSOFT
’08/FSE-16. New York, NY, USA: ACM, November 2008, pp. 238–
249. [Online]. Available: http://doi.acm.org/10.1145/1453101.1453133

[12] U. D. of Defense, “Dodaf,” dod-
cio.defense.gov/Portals/0/Documents/DODAF.

[13] U. M. of Defence, “Modaf,” gov.uk/guidance/mod-architecture-
framework.

[14] D. Werner and A. S. Vincentelli, “A conceptual model of system of
systems,” in Proceedings of the Second International Workshop on the
Swarm at the Edge of the Cloud, ser. SWEC ’15. New York, NY, USA:
ACM, April 2015, pp. 19–27.

[15] S. Jean Baptiste, “Conception and modeling of systems of systems : a
multi-level mult-agent approach,” Theses, Université de Lille 1, Dec
2013. [Online]. Available: https://tel.archives-ouvertes.fr/tel-01099382

[16] R. Benabidallah, I. Cherfa, S. Sadou, and M. A. Nacer, “Situa-
tion/reaction paradigm for sos simulation,” in 2017 IEEE 26th In-
ternational Conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE), June 2017, pp. 48–53.

[17] E. Bonabeau, “Agent-based modeling: Methods and techniques for
simulating human systems,” Proceedings of the National Academy of
Sciences, vol. 99, no. suppl 3, pp. 7280–7287, 2002.

[18] C. Parisi, F. Sahin, and M. Jamshidi, “A discrete event xml based system
of systems simulation for robust threat detection and integration,” in
2008 IEEE International Conference on System of Systems Engineering,
June 2008, pp. 1–8.

