
HAL Id: hal-01978174
https://hal.science/hal-01978174v1

Submitted on 11 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Co-clustering of ordinal data via latent continuous
random variables and not missing at random entries

Marco Corneli, Charles Bouveyron, Pierre Latouche

To cite this version:
Marco Corneli, Charles Bouveyron, Pierre Latouche. Co-clustering of ordinal data via latent contin-
uous random variables and not missing at random entries. Journal of Computational and Graphical
Statistics, 2020, �10.1080/10618600.2020.1739533�. �hal-01978174�

https://hal.science/hal-01978174v1
https://hal.archives-ouvertes.fr

Co-Clustering of ordinal data via latent
continuous random variables and a

classification EM algorithm

Marco Corneli
Department of Statistics (LJAD), University Côte d’Azur, Nice, France

and
Charles Bouveyron

Department of Statistics (LJAD), University Côte d’Azur, Nice, France
Epione, INRIA Sophia-Antipolis, Valbonne, France

and
Pierre Latouche

Department of Statistics (MAP5), University Paris Descartes, Paris, France

January 11, 2019

Abstract

This paper is about the co-clustering of ordinal data. Such data are very common
on e-commerce platforms where customers rank the products/services they bought.
More in details, we focus on arrays of ordinal (possibly missing) data involving two
disjoint sets of individuals/objects corresponding to the rows/columns of the arrays.
Typically, an observed entry (i, j) in the array is an ordinal score assigned by the
individual/row i to the object/column j. A generative model for arrays of ordinal data
is introduced along with an inference algorithm for parameters estimation. The model
relies on latent continuous random variables and the fitting allows to simultaneously
co-cluster the rows and columns of an array. The estimation of the model parameters
is performed via a classification expectation maximization (C-EM) algorithm. A
model selection criterion is formally obtained to select the number of row and column
clusters. In order to show that our approach reaches and often outperforms the state
of the art, we carry out numerical experiments on synthetic data. Finally, applications
on real datasets highlight the model capacity to deal with very sparse arrays.

Keywords: categorical data, model based clustering, ICL.

1

1 Introduction

Data clustering plays a central role in all scientific and industrial fields where there is a

need of data analysis. The goal of data clustering is to group similar data together, to

provide a synthetic view of a dataset. Thus, clusters are homogeneous groups of data that

can be interpreted in a common way. The nature of the data requires different types of

clustering techniques to be applied. This paper focuses on peculiar categorical data in

which categories are ordered: the ordinal data (Agresti, 2010). Such data is very common

in marketing researches (see for instance Dillon et al., 1990), where people are asked to

evaluate products and/or services on an ordinal scale. As an example, the last section of

this paper focuses on a related dataset, where Amazom customers review fine foods. In

more details, the dataset consists of an ordinal data matrix whose entry (i, j) is the note

attributed to the j-th products by the i-th customer.

In the last decades, several clustering algorithms for ordinal data have been introduced

in the literature (D’Elia and Piccolo, 2005; Podani, 2006; Gouget, 2006; Jollois and Nadif,

2009; Giordan and Diana, 2011; Fernández et al., 2016; Ranalli and Rocci, 2016; Biernacki

and Jacques, 2016). Moreover, a recent work of McParland and Gormley (2016) adopted

a model-based clustering approach for mixed data (including ordinal data) based on latent

Gaussian random variables. In the example of the Amazon dataset, the clustering algo-

rithms listed above can group the rows of the ordinal data matrix such that two customers

share the same cluster if they tend to rate products similarly.

However, when the number of columns of the matrix is high, uncovering relevant row

clusters is a particularly hard problem. Moreover, the number of variables makes the

interpretation of the row clusters challenging. A solution to this issue is provided by co-

clustering, which aims at simultaneously clustering the rows and the columns of a data ma-

trix, thus providing a partition for rows and another one for columns. Several model-based

co-clustering methods rely on the latent block model (LBM, Govaert and Nadif, 2008) who

deals with matrices of binary data. Other extensions of LBM can tackle counting (Govaert

and Nadif, 2010), real (Lomet, 2012), categorical (Keribin et al., 2015), functional (Bouvey-

ron et al., 2018) and ordinal data (Jacques and Biernacki, 2018). Up to our knowledge, the

2

model described in Jacques and Biernacki (2018) is the only one specifically designed for

the co-clustering of ordinal data. In that paper, the authors rely on a generative model for

ordinal data, called the binary ordinal search (BOS, Biernacki and Jacques, 2016) model.

This statistical model is both parsimonious, since each co-cluster is summarized by only

two parameters, and easily interpretable. However, the inference procedure to learn the

model parameters is based on a stochastic version of the EM algorithm (see both Dempster

et al., 1977; Celeux and Govaert, 1991) which suffers scalability issues. Furthermore, the

co-clustering approach proposed by Jacques and Biernacki (2018) only takes into account

missing at random data. In other words, the frequency of missing data is assumed to be

constant on average on each data co-cluster. As a matter of fact, in real applications,

this assumption can be restrictive. For instance, a group of users could systematically

review and note one subset of products more than another one, thus discriminating the

two subsets, otherwise (possibly) indistinguishable. To overcome these issues, this work

proposes an extension of the LBM to perform ordinal data co-clustering. Our approach

takes advantage of the binary formulation of LBM to manage missing data possibly not

missing at random. Moreover, the latent Gaussian modeling introduced in Gormley and

Murphy (2010) is adapted to the co-clustering framework. We show in turn that the pos-

terior distribution of the latent random variables is fully tractable. A classification EM

algorithm (Celeux and Govaert, 1991) is then used to estimate the model parameters and

simultaneously cluster the rows as well the columns of an ordinal data matrix. A model

selection criterion is formally obtained to simultaneously select the number of row and

column clusters.

This paper is organised as follows. Section 2 describes the co-clustering generative model

that we introduce. The inference of the model parameters is detailed in Section 3. This

section also focuses on further issues such as the algorithm initialization and the selection

of the number of co-clusters. Section 4 presents some numerical experiments on synthetic

data to assess the proposed methodology and shows that it performs favourably, compared

to the state of the art. Section 5 presents a real data application on the Amazon fine foods

dataset.

3

2 The model

The present section describes a statistical model to generate arrays of ordinal data. In

order to properly take into account data sparsity (see Section 2.2), the model extends the

binary LBM of the original paper of Govaert and Nadif (2008). Thus, the first part of this

section is devoted to a description of the binary LBM, while the second part focuses on the

latent framework adopted to model ordinal data.

2.1 Latent block model

Consider an M×P incidence matrix A such that Aij is equal to 1 if one interaction between

i and j is observed (e.g. the i-th user assigns a score to the j-th product), 0 otherwise.

Rows are assumed to be clustered into Q row clusters and columns into L column clusters.

An hidden vector R, of length M , is such that Ri = q if the i-th row of A is in the q-th row

cluster. Moreover, the i-th row of A is assumed to be assigned to its row cluster according

to a multinomial distribution

M(1, ρ := {ρ1, . . . , ρQ}),

where ρq > 0, for all q, and
∑Q

q=1 ρq = 1. Thence, being the cluster of the i-th row recorded

into Ri, it holds that

P(Ri = q) = ρq, ∀i.

Similarly, an hidden vector C, of length P , is such that Cj = l iff the j-th column of A is in

the l-th column cluster. The j-th column of A is assigned to its column cluster according

to a multinomial distribution

M(1, δ := {δ1, . . . , δL}),

where δl > 0, for all l and
∑L

l=1 δl = 1, so that

P(Cj = l) = δl, ∀j.

The two vectors R and C are further assumed to be independent. In the following, when no

confusion arises, the equivalent 0-1 notation will be employed. In that case, R will denote

4

a binary M × Q matrix and if the i-th row of A is in the q-th row cluster, Riq = 1 and

Riv = 0, for all v 6= q. Similarly, C will denote a binary P × L matrix.

Conditionally on R and C, the entries of A are all independent and such that

Aij|{R,C} ∼ B(πRiCj), ∀i ≤M, j ≤ P

where B(p) denotes a Bernoulli distribution of parameter p, πql ∈ [0, 1], for all q, l and

π := {πql}q,l. According to this model, the complete data likelihood is

p(A,R,C|π, ρ, δ) =

(
M∏
i=1

P∏
j=1

π
Aij
RiCj

(1− πRiCj)1−Aij

)(
M∏
i=1

ρRi

)(
P∏
j=1

δCj

)
. (1)

2.2 Modeling ordinal data

Let us now consider an M×P matrix Y , whose ordinal entry Yij, conditionally on Aij = 1,

is a random variable taking values in {1, . . . , K}, for some K ∈ N∗, not depending on the

pair (i, j). For the pairs (i, j) such that Aij = 0, we assume that Yij = 0. Note that the

matrix Y contains both observed and missing data. The observed data are the values Yij

corresponding to Aij = 1 and in real applications these values could be scores that users

assign to some products. However, one user could (and generally will) rate only a subset of

products. Thus, the unrated products are seen as missing values and coded as 0 in Y . Now,

the sparsity of A is modelled by LBM. For instance, users densely ranking a single class

of products are more likely to be clustered together (via π) when fitting the model to the

data. Hence, the link between Y and A has an important consequence: the missing data

in Y are not missing at random (see both Little and Rubin, 2014; Jacques and Biernacki,

2018). Before going further, two assumptions should be made.

Assumption 1. Henceforth, we assume that an ordinal scale is consistently defined. For

instance, in the example of customers evaluating products, 1 always means “very poor” and

K always means “excellent”. The assumption is necessary, otherwise the results obtained

when fitting the model to the data would be completely misleading. The analyst should

therefore take this into account when designing the data collection.

5

Assumption 2. The number of ordered levels K is assumed to be the same for all Yij|Aij =

1. If it was not the case, a scale conversion pre-processing algorithm (see for instance Gilula

et al., 2018) should be employed to normalize the number of levels.

The model that we assume to be generating Y relies on hidden Gaussian random vari-

ables Zij such that

Zij|{Aij = 1, R, C} ∼ N (µRiCj , σ
2
RiCj

). (2)

Henceforth, µ := {µql}q,l and σ2 := {σ2
ql}q,l will denote the sets of the Gaussian parameters.

Similarly to Y ,

Zij|{Aij = 0, R, C} = 0 a.s. (3)

and all the random variables Zij are collected into an hidden M ×P matrix denoted by Z.

Assume that K − 1 unknown real numbers (thresholds) γ := (γ1, . . . , γK−1) are such that

−∞ =: γ0 < γ1 < · · · < γK−1 < γK :=∞.

Then, conditionally on the event {Aij = 1}

Yij :=
K∑
k=1

k1]γk−1,γk[(Zij), (4)

where 1Ω(·) is the indicator function over the set Ω ⊂ R. Finally, conditionally on {Aij = 1}

as well as R and C, we assume that the pairs (Yij, Zij) are mutually independent. Hence,

the joint density of (Y, Z) can be written as

p(Y, Z|A,R,C, µ, σ2) =
M∏
i=1

P∏
j=1

(
φ(Zij;µRiCj , σ

2
RiCj

)1]γYij−1,γYij [(Zij)
)Aij

, (5)

where φ(·;µql, σ2
ql) is the probability density function of a Gaussian distribution N (µql, σ

2
ql)

and we used that, conditionally on {Aij = 0}, the pairs (Yij, Zij) are equal to (0, 0) a.s.

Eqs. 1-5 can be combined to obtain the complete data likelihood

p(Y, Z,A,R,C|θ) = p(Y, Z|A,R,C, µ, σ2)p(A,R,C|π, ρ, δ), (6)

where θ := {µ, σ2, π, ρ, δ} denotes the set of the model parameters.

6

3 Inference

In the first part of this section, the numbers Q of row clusters and L of column clusters

are assumed to be given. A model selection criterion will be detailed later. Now, we aim

at estimating the model parameters θ as well as the most likely posterior values of R and

C. Let us start with a remark.

Remark 1 (Thresholds). It is immediate to see that either γ or (µ, σ2) need to be fixed

in order for the model parameters to be identifiable and, from a generative point of view, it

seems reasonable to fix γ, as it can be seen in Eq. (4). However, notice that once γ is fixed

to some value (for instance by randomly selecting K − 1 Gaussian quantiles and sorting

them) and the model fitted to the data, the estimated (parameters of the) random variables

in Z lie in a space which is in general not related with the range of the ordinal entries in

Y . Thus, in order to have easily interpretable results, γ is fixed as

γ = (1.5, 2.5, . . . , (K − 0.5)).

In order to illustrate the estimation strategy in detail, we need the following proposition.

Proposition 1. Conditionally on the event {Aij = 1, Riq = 1, Cjl = 1}, the random

variable Yij has probability mass function

P(Yij = k|Aij = 1, Riq = 1, Cjl = 1) = η
(q,l)
k 1{1,...,K}(k), (7)

where

η
(q,l)
k := Φ

(
γk − µql
σql

)
− Φ

(
γk−1 − µql

σql

)
. (8)

Proof. By the definition of marginal probability density function, it follows that

p(Yij|Aij = 1, R, C, θ) =

∫
R
p(Yij, z|Aij = 1, R, C, θ)dz

=

∫
R
φ(z;µRiCj , σ

2
RiCj

)1]γYij−1,γYij [(z)dz

= Φ

(
γYij − µRiCj

σRiCj

)
− Φ

(
γYij−1 − µRiCj

σRiCj

)
,

7

where Φ(·) denotes the cumulative density function of the Gaussian distribution N (0, 1).

If we denote

η
(q,l)
k := Φ

(
γk − µql
σql

)
− Φ

(
γk−1 − µql

σql

)
,

it is immediate to verify that
∑K

k=1 η
(q,l)
k = 1.

Propostion 1 has two important consequences. First, the posterior density function of

Zij can be obtained by

p(Zij|Yij, Aij = 1, R, C, θ) =
φ(Zij;µRiCj , σ

2
RiCj

)

η
(Ri,Cj)
Yij

1]γYij−1,γYij [(Zij). (9)

The above probability density function defines a truncated Gaussian distribution and

it is fully tractable. Second, due to independence arguments, the marginal likelihood

p(Y |A,R,C, θ) can be computed as

p(Y |A,R,C, θ) =
M∏
i=1

P∏
j=1

(
η

(Ri,Cj)
Yij

)Aij
, (10)

where we used again that Yij = 0 when Aij = 0, a.s.

In the light of these results, it is possible to design an estimation strategy, called C-EM,

consisting of the following two steps:

1. C step. The model parameters being fixed to a local optimum, log p(Y,A,R,C|θ)

is maximized with respect to R and C in a greedy fashion. This classification step

replaces the Expectation step in the EM algorithm (Dempster et al., 1977). See also

Celeux and Govaert (1991) for a description of Classification EM algorithms.

2. M step. R and C being fixed, the likelihood

log p(Y,A,R,C|θ) = log p(Y |A,R,C, µ, σ2) + log p(A,R,C|π, ρ, δ) (11)

is maximised with respect to the model parameters θ. As we will see in the next

sections, the maximization with respect to (π, ρ, δ) is straightforward. On the con-

trary, the first term on the right hand side of the above equation (detailed in Eq. 10)

cannot be directly maximized with respect to µ and σ2 and no close formulas can be

derived for these Gaussian parameters. Therefore, we will rely on Q×L independent

EM algorithms to maximize this term with respect to (µ, σ2).

8

The above two steps are alternatively repeated until convergence of log p(Y,A,R,C|θ).

Each step is detailed in the following sections.

3.1 C step

Let us focus on the log-likelihood in Eq. (11) and assume that the model parameters are

fixed to the (local) optima θ̂, obtained in the M step (see Section 3.2). The goal of the C step

is to maximize the left hand side of Eq. (11) with respect to R and C . No closed formula

exists for such combinatorial maximization problem and testing all possible combinations

(QMLP) would be computational prohibitive. Thus, we rely on a greedy search strategy not

looking for all the possible solutions. Greedy strategies are quite popular in network and

bipartite network analysis (see for instance Côme and Latouche, 2015; Wyse et al., 2017).

The basic idea is to swap each row (column) of A to the row (column) cluster leading to

the highest increase of the log-likelihood log p(Y,A,R,C|θ̂). Of course, if no swap increases

the log-likelihood, the row (column) is not moved.

Assume that the i-th row of A formerly belonging to the cluster q′ is now moved to the

cluster q′′. Furthermore, let us denote by R∗ the row label vector R after that the swap

occurred. Thus

∆i:q′→q′′ := log p(Y,A,R∗, C|θ̂)− log p(Y,A,R,C|θ̂)

= log
p(Y |A,R∗, C, η̂)

p(Y |A,R,C, η̂)
+ log

p(A|R∗, C, π̂)

p(A|R,C, π̂)
+ log

p(R∗|ρ̂)

p(R|ρ̂)

is the increase (possibly null or negative) of the log-likelihood in Eq. 11 when moving row

i from cluster q′ to cluster q′′. Moreover, we used η := {η(q,l)
k }q,l,k, where η

(q,l)
k is defined in

(8). By using Eqs. 1 and 10, we can further obtain

∆i:q′→q′′ =
P∑
j=1

Aij log
η̂

(q′′,Cj)
Yij

η̂
(q′,Cj)
Yij

+
P∑
j=1

(
Aij log

π̂q′′Cj
π̂q′Cj

+ (1− Aij) log
1− π̂q′′Cj
1− π̂q′Cj

)
+ log

ρ̂q′′

ρ̂q′
.

(12)

9

This quantity can be computed in O(P) and can be used to rank the possible swaps of

the i-th row of A to all row clusters. An equivalent formula can be obtained to assess the

contribution of a column swap into a column cluster.

It is important to notice that, since Q and L are fixed, one row (column) alone in its

current row (column) cluster is not allowed to move. In case one row (column) remains

alone in its group, another criterion (that will be introduced in Section 3.4) will decide

whether that group is suppressed or not.

3.2 M step

The label vectors R and C are fixed throughout this section. Notice that the maximization

of the right hand side of Eq. (11) with respect to (π, ρ, δ) only involves the second term.

Moreover, this maximization is straightforward. Taking the logarithm in Eq. 1, differen-

tiating with respect to π, ρ and δ and setting the derivatives equal to zero leads to the

following stationary points

π̂ql : =

∑M
i=1

∑P
j=1RiqCjlAij∑M

i=1

∑P
j=1 RiqCjl

, (13)

ρ̂q : =

∑M
i=1 Riq

M
, (14)

δ̂l : =

∑P
j=1Cjl

P
, (15)

for all q, l.

As anticipated in Section 3.1, the maximization of the first term on the right hand side

of Eq. (11) is more challenging. Since no close formula for such optimization does exist, let

us consider the following inequality

log p(Y |A,R,C, µ, σ2) ≥ EZ
[
log

p(Y, Z|A,R,C, µ, σ2)

p(Z|Y,A,R,C, µ0, σ2
0)

]
, (16)

where the expectation is taken with respect to Z following the posterior probability density

function p(·|Y,A,R,C, µ0, σ
2
0). The inequality comes from a standard variational decom-

position (see for instance Ch.10, Bishop, 2006), it holds for all (µ, σ2) and it turns into an

equality when (µ, σ2) is equal to (µ0, σ
2
0). Since the posterior distribution of Z is known

and tractable, the EM algorithm can be used to provide numerical estimates of µ̂ and σ̂2.

10

M-Expectation. We now focus on the right hand side of the inequality in Eq. (16). By

taking the logarithm of Eq. 5, it holds that

EZ
[
log p(Y, Z|A,R,C, µ, σ2)

]
= −1

2

M∑
i=1

P∑
j=1

Aij

(
log σ2

RiCj + EZij

[
(Zij − µRiCj)2

σ2
RiCj

])
+ c

= −1

2

Q∑
q=1

L∑
l=1

M∑
i=1

P∑
j=1

AijRiqCjl

(
m

(2)
ij + µ2

ql − 2µqlm
(1)
ij

σ2
ql

+ log σ2
ql

)
+ c,

(17)

where c regroups the constant terms not depending on (µ, σ2). We assumed that Zij ∈

]γYij−1, γYij [a.s. for all i, j such that Aij = 1 and

m
(1)
ij : = EZij [Zij] = µRiCj − σRiCj

φ(βij)− φ(αij)

Φ (βij)− Φ (αij)
, (18)

m
(2)
ij : = EZij [(Zij)2] = (µRiCj)

2 − 2σRiCjµRiCj

(
φ(βij)− φ(αij)

Φ(βij)− Φ(αij)

)
− σ2

RiCj

[(
βijφ(βij)− αijφ(αij)

Φ(βij)− Φ(αij)

)
− 1

]
, (19)

with

αij =
γYij−1 − µRiCj

σRiCj
, βij =

γYij − µRiCj
σRiCj

,

and EZij is the expectation taken with respect to Zij following the probability density

function in Eq. 9. Notice that both m
(1)
ij and m

(2)
ij only depend on the pair (i, j) via Ri, Cj

and Yij. Thus, m
(1)
ij and m

(2)
ij are the same for all pairs (i, j) in clusters (q, l), respectively,

associated with the score k.

M-Maximization. Once the expectation in Eq. 17 is computed, the right hand side of

the equality can be maximized with respect to (µ, σ2). The maximization of µql can be

performed independently of σ2
ql, but the opposite is not true. Thus, we first differentiate

the right hand side of Eq. 19 with respect to µql and set the derivative equal to zero to

obtain the following stationary point

µ̂ql :=

∑M
i=1

∑P
j=1AijRiqCjlm

(1)
ij∑M

i=1

∑P
j=1AijRiqCjl

, (20)

for all q, l. In order to compute the optimal σ2
ql, µ̂ is plugged into Eq. 17 in place of µ and

then differentiating with respect to σ2
ql and setting the partial derivative to zero leads to

σ̂2
ql :=

∑M
i=1

∑P
j=1AijRiqCjlm

(2)
ij∑M

i=1

∑P
j=1AijRiqCjl

− µ̂2
ql, (21)

11

for all q, l.

The two steps of the EM algorithm described so far are part of the M step. Therefore

they are called M-Expectation (Eqs. 18-19) and M-Maximization (Eqs. 20-21). They are

alternatively applied up to convergence. We stress that all the equations involving M-

Expectation and M-Maximization factorized over q and l. Thus, Q × L independent EM

algorithms are used, one for each pair (q, l) of clusters and this task can be done in parallel.

3.3 Initialization

Assuming that Q and L are momentarily fixed, the C-EM algorithm described in the

previous sections needs some initial values of R and C to be provided. Then, a first M

step can be implemented, followed by a greedy search C step and so on. In this paper two

different initialization strategies are considered:

1. Multiple random initializations. Both the initial R and C are independently

sampled from multinomial distributions with uniform parameters. Since the C-EM

algorithm is not guaranteed to converge toward a global optimum, the algorithm is

provided in the applications with several independent initializations. The estimates

R̂ and Ĉ leading to the highest log-likelihood are finally retained. This initialization

strategy is assessed in Section 4.4.

2. K-means initialization. Two k-means algorithms are independently run on the

rows and the columns of the matrix Y . The C-EM algorithm is then initialised with

the estimates R̂ and Ĉ provided by the two k-means.

Notice that missing values could be present in Y . This is not a problem when adopting

random initializations, but it can be one when using k-means. Indeed, when the proportion

of missing data (i.e. zeros) in Y is very large, the k-means algorithm will provide very poor

initial estimates of R and C. In a similar scenario, it is preferable to opt for multiple

random initializations.

The pseudocode in Algorithm 1 summarizes the estimation routine detailed so far.

12

Algorithm 1 Pseudocode

1: function Estim(Y ,A,Q,L, type)

2: (R,C)← Init(Y , type) . type is “multiple random” or “k-means”

3: while log p(Y,A,R,C|θ) increases do

4: θ ← M step . Including Q× L M-EM algorithms

5: (R,C)← C step

6: end while

7: return (R̂, Ĉ, θ̂)

8: end function

3.4 Model selection

So far, the numbers Q and L of row and column clusters were assumed to be known. Of

course, in real applications, this assumption is too restrictive. Thus, we now detail a model

selection criterion we propose to select the numbers of row and column clusters.

In clustering contexts, the integrated classification likelihood (ICL, Biernacki et al.,

2003) criterion is often used to approximate a complete data integrated log-likelihood and

to select the number of components. In our case

ICL(Q,L) ≈ log p(Y,A,R,C) =

∫
Dθ

log p(Y,A,R,C|θ)ν(θ)dθ,

where, in a Bayesian framework, the model parameters θ are seen as random variables and

the integral is taken over the support Dθ of any prior probability density function ν(·). The

following proposition details the functional form of the ICL for our model.

Proposition 2. An ICL(Q,L) criterion for the generative model described in Section 2 is

ICL(Q,L) = log p(Y,A, R̂, Ĉ|θ̂)−QL logD − QL

2
log(MP)− Q− 1

2
logM − L− 1

2
logP,

(22)

where θ̂, R̂, Ĉ are the stationary points obtained after convergence of the algorithm described

in Sections 3.2-3.1.

Proof. By definition of conditional probability density function, it follows that

ICL(Q,L) ≈ log p(Y |A,R,C) + log p(A,R,C).

13

The last term on the right hand side is the complete data integrated log-likelihood of a

binary LBM. This log-likelihood can be approximated as follows

log p(A,R,C) ≈ max
π,ρ,δ

log p(A,R,C|π, ρ, δ)− QL

2
log(MP)− Q− 1

2
logM − L− 1

2
logP,

(23)

see for instance Keribin et al. (2012). In order to approximate log p(Y |A,R,C) we propose

a BIC-like approximation (Schwarz et al., 1978)

log p(Y |A,R,C) ≈ max
µ,σ2

log p(Y |A,R,C, µ, σ2)−QL logD, (24)

where D is the number of ordinal (i.e. not zero) entries in Y and 2QL accounts for the

number of parameters in µ and σ2. Combining Eqs. 23-24, the proposition is proven.

When fitting to data the model presented in Section 2, the ICL criterion in Eq. (22)

is computed for several values of Q and L. The pair (Q̂, L̂) leading to the highest value

of ICL(Q,L) is finally retained. An exhaustive strategy would consist into fixing some

sufficiently high values Qmax and Lmax and computing ICL(Q,L) for all (Q,L) in the grid

{1, . . . , Qmax} × {1, . . . , Lmax}.

Notice that, as long as either Q̂ or L̂ lie on the boundary of the grid, Qmax and/or Lmax can

be increased to obtain a solution which is interior. In this sense, the grid search described

so far is exhaustive.

However, when dealing with massive datasets, this strategy could be computationally

prohibitive since the number of elements in the grid is Q×L. Alternatively, a greedy search

algorithm can be employed to select Q and L. The ICL criterion is still used, but it is not

computed for all values of Q and L in the grid. We propose here a greedy search algorithm

inspired by the one introduced in Keribin et al. (2017). Initially, both Q and L are set to

1. In a second step, Q is increased by one and the value of ICL(2, 1) is computed via the

C-EM algorithm and recorded. Then, ICL(2, 1) is compared with ICL(1, 2), obtained by

setting Q = 1 and L = 2. Thus, if

ICL(2, 1) > ICL(1, 2)

14

Q is definitely set to 2 and L to 1. The opposite otherwise. This routine is recursively

applied in such a way that, if Q∗ and L∗ are the current values of Q and L, then ICL(Q∗+

1, L∗) is compared with ICL(Q∗, L∗ + 1) and Q∗ and L∗ are updated accordingly. The

algorithm stops when no further increase in the ICL criterion is possible. A pseudo-code

illustrating the greedy search detailed so far is reported in Appendix A.1.

4 Experiments on synthetic data

The estimation procedure detailed in Section 3 is now tested on simulated data. Two main

scenarios are considered: the former adopting the generative model described in Section 2

and the latter adopting the generative model described in Jacques and Biernacki (2018).

Henceforth, these two generative models will be referred to as OLBM (Ordinal Latent Block

Model, our proposal) Co-Clustering and BOS (Binary Ordinal Search) Co-Clustering. For

each simulated scenario, both OLBM-CC and BOS-CC are fitted to the data to provide

estimates of R and C, and the results are compared. The parameters of BOS-CC are

estimated via the R package ordinalClust1. A third competitor approach is considered in

this section, namely LBM for continuous data (cLBM) as described in Bhatia et al. (2017).

This model is fitted to the data via the R package blockcluster2. Unfortunately, this

package does not support missing data in Y . Therefore, comparisons will not always be

possible.

4.1 Data simulated according to OLBM-CC

For this first experiment, the data are simulated according to the generative model described

in Section 2. We consider incidence matrices with M = 150 rows, grouped into Q = 3 row

clusters and P = 100 columns, grouped into L = 2 column clusters. Rows and columns are

randomly assigned to their clusters in uniform proportions. The observed ordinal entries in

Y take values in {1, . . . , K} and K = 5. Recalling that Φ(·) denotes the standard Gaussian

cumulative distribution function, the thresholds γ1, . . . , γK are set as follows. We sample

1https://cran.r-project.org/web/packages/ordinalClust/index.html
2https://cran.r-project.org/web/packages/blockcluster/index.html

15

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

ρ1δ1 = 16.67 % π11 = 100 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

ρ1δ2 = 16.67 % π12 = 100 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

ρ2δ1 = 16.67 % π21 = 100 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

ρ2δ2 = 16.67 % π22 = 100 %

D
en

si
ty

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

ρ3δ1 = 16.67 % π31 = 100 %

D
en

si
ty

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

ρ3δ2 = 16.67 % π32 = 100 %

(a) ζ = 2.

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

ρ1δ1 = 16.67 % π11 = 100 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

ρ1δ2 = 16.67 % π12 = 100 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

ρ2δ1 = 16.67 % π21 = 100 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

ρ2δ2 = 16.67 % π22 = 100 %

D
en

si
ty

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

ρ3δ1 = 16.67 % π31 = 100 %

D
en

si
ty

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

ρ3δ2 = 16.67 % π32 = 100 %

(b) ζ = 0.

Figure 1: Histograms of the ordinal entries of Y organized by block pairs. On the left hand

side figure, a high value of ζ induces asymmetries in both the histograms and the underlying

Gaussian distributions. See in particular the block pairs (2, 1),(2, 2) and (3, 1),(3, 2). On

the right hand side figure, ζ = 0 and the two columns are indistinguishable.

U1, . . . , UK−1 independent random variables, uniformly distributed in [0, 1]. Without loss

of of generality, let us assumed that they are sorted. A last variable UK = 1 is introduced.

Then:

γi :=
K + 1

2
+ Φ−1 (Ui) ,

for all i ∈ {1, . . . , 5} and γ0 = −∞. Then, the Gaussian parameters µ and σ2 are set to

µ =

0 0

ζ −ζ

−ζ ζ

 , σ2 =

1.2 1.2

1.4 1.4

1.0 1.0

 ,

where ζ ≥ 0 is a real parameter controlling how the block distributions differ: as long as

ζ is far enough from 0, we expect that the estimation algorithms would correctly estimate

16

the row and the column clusters. When ζ approaches to 0, the column clusters become

indistinguishable and the row groups are only separated via the matrix σ2 (see Figure 1).

The last parameter to set is π, defining the probability of observing an ordinal entry in

Y . Three different setups are considered.

No missing data. In this framework, πql = 1, for all q, l and only the Gaussian parame-

ters (µ, σ2) induce a block structure. For each value of ζ, fifty datasets Y are independently

simulated according to the setup described so far and the three approaches (OLBM-CC,

cLBM, BOS-CC) are fitted to each dataset. At first, the selection of Q and L is not consid-

0.
0

0.
2

0.
4

0.
6

0.
8

ζ

A
R

I r
ow

s
(R

)

0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0

OLBM−CC

cLBM

BOS−CC

(a) Adjusted Rand Indexes (rows).

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ζ

A
R

I c
ol

um
ns

 (
C

)

0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0

OLBM−CC

cLBM

BOS−CC

(b) Adjusted Rand Indexes (cols).

Figure 2: Results on the dataset simulated according to OLBM-CC - Not missing data.

ered and the three estimation algorithms are provided with the actual values of Q = 3 and

L = 2. OLBM-CC is initialized through a k-means initialization (see Section 3.3) whereas

the standard initialization in the blockcluster and ordinalClust packages is adopted for

cLBM and BOS-CC, respectively. For each simulated data matrix Y , the estimates pro-

vided by the three methods are assessed via the adjusted Rand index (ARI, Rand, 1971).

This metric compares the estimated label vectors R̂ and Ĉ with their actual counterparts

R and C. The ARI takes real values in [0, 1], where 0 means that the obtained clustering

is poor (as good as a random assignment to each class) and 1 means perfect recovery, up

to label switching.

The results of the experiment are reported in Figure 2, where boxplots of the ARIs

17

can be observed in two sub-figures. The one on the left hand side reports the ARIs for

the row label estimates (R̂). Blue bars refer to OLBM-CC, green bars to cLBM and red

bars to BOS-CC. Not surprisingly, as ζ decreases, the performance of the three methods

deteriorates. However, the structure of σ2 still slightly discriminates the three row clusters,

thus allowing OLBM-CC to reach a median ARI around 0.3, even when ζ is null. In

these simulations, OLBM-CC clearly outperforms its competitors. The right hand side of

Figure 2 confirms the intuition raised by Figure 1: when ζ approaches to zero, the column

clusters become indistinguishable. However, also in this case, OBLM-CC outperforms its

competitors.

Missing at random data. In this framework, the probability of a missing data in Y is

independent of the cluster assignments. In other words, it is the same for each entry Yij. We

set πql = 0.7, for all q, l (30% of missing data in Y , on average) and repeat the experiment.

As previously mentioned, the blockcluster package does not support missing data. Thus,

in the reminder of this section, OLBM-CC will only be compared with BOS-CC.

0.
0

0.
2

0.
4

0.
6

0.
8

ζ

A
R

I r
ow

s
(R

)

0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0

OLBM−CC

BOS−CC

(a) Adjusted Rand Indexes (rows).

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ζ

A
R

I c
ol

um
ns

 (
C

)

0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0

OLBM−CC

BOS−CC

(b) Adjusted Rand Indexes (cols).

Figure 3: Results on the dataset simulated according to OLBM-CC - Missing at random

data.

The results can be observed in Figure 3, where boxplots of the ARIs can be observed

in two sub-figures. The one on the left hand side reports the ARIs for the row labels

estimates. The ARIs for the column labels estimates are reported in Figure 3b. These

18

results are coherent with the ones in Figure 2. Since missing at random data does not

bring any information, this experiment reduces to the previous one with less ordinal data.

This explains the slightly worse performance of OLBM-CC and BOS-CC in Figure 3 with

respect to Figure 2.

Not missing at random data. In the reminder of this section, the assumption of

missing at random data is relaxed. An alternative setup can be obtained by adopting the

following connectivity matrix

π =

0.5 0.7

0.7 0.5

0.7 0.5

 ,

meaning that the probability of a missing data in Y is no longer independent on the cluster

assignments. It is lower (30%) in cluster pairs (1, 2), (2, 1) and (3, 1) and higher (50%) for

the remaining block pairs. Other settings being unchanged, the experiment is repeated (50

simulated data matrices Y for each value of ζ and Q,L known). Results can be seen in

Figure 4. As expected, with respect to the missing at random setup, the estimates obtained

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ζ

A
R

I r
ow

s
(R

)

0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0

OLBM−CC

BOS−CC

(a) Adjusted Rand Indexes (rows).

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ζ

A
R

I c
ol

um
ns

 (
C

)

0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0

OLBM−CC

BOS−CC

(b) Adjusted Rand Indexes (cols).

Figure 4: Results on the dataset simulated according to OLBM-CC - Not missing at random

data.

via OLBM-CC (blue bars) are more accurate (higher ARIs) for both rows and columns. In

particular, the average column ARI is around 1 even when ζ = 0. Indeed, the π matrix itself

19

induces an additional block structure that discriminates the two column clusters although

ζ = 0. Such a framework, in which the block structure is accentuated by the connectivity

patterns, is very common in real data (see also Section 5). In contrast with OLBM-CC,

BOS-CC has very similar performances with or without missing at random data. Since it

cannot deal with block dependent missing data, the additional information carried by π

cannot be exploited by the model.

4.2 Data simulated according to BOS-CC

In order to present fair results regarding methods other than ours, the datasets are now

generated according to the BOS-CC model. The reader is referred to Jacques and Biernacki

(2018) for a full description of the model. The simulated incidence matrices have now

M = 100 rows and P = 150 columns. The rows are clustered in Q = 2 groups and the

columns in L = 3 groups. The model parameters are

µ =

2 3 1

2 1 3

 , % =

(0.4− ζ) (0.4− ζ) (0.4− ζ)

(0.4− ζ) (0.4− ζ) (0.4− ζ)

 ,

where, as long as %ql 6= 0, µql can be seen as the mode of the ordinal entries associated

with the pair (q, l). The parameter %ql measures the dispersion around the mode, which

is minimal when %ql = 1 and maximal when %ql = 0 (in this case the ordinal entries of

the pair (q, l) are uniformly distributed in {1, . . . , K}). As in the previous section, ζ is

a real parameter which controls how different the block distributions are. Here, however,

ζ ∈ [0, 0.4] and the contrast is maximum when ζ = 0 whereas the row and column clusters

are indistinguishable when ζ = 0.4. Missing values are injected into Y in two different

ways.

Missing at random data. For some values of ζ in [0, 4] fifty data matrices Y are

independently sampled according to the setup detailed so far. Then, 30% of the entries

of each matrix Y is randomly selected and replaced by missing values. The true values of

Q and L are assumed to be known and both OLBM-CC and BOS-CC are fitted to each

dataset. Results can be seen in Figure 5. Not surprisingly, BOS-CC globally provides

20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ζ

A
R

I r
ow

s
(R

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

OLBM−CC

BOS−CC

(a) Adjusted Rand Indexes (rows).

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ζ

A
R

I c
ol

um
ns

 (
C

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

OLBM−CC

BOS−CC

(b) Adjusted Rand Indexes (cols).

Figure 5: Results on the dataset simulated according to BOS-CC - Missing at random data.

better estimates than OLBM-CC in this scenario. Notice that, when ζ is small (< 0.05),

BOS-CC produces outlier ARIs both for rows and column estimates. The same does not

happen to OLBM-CC. However, let us recall that the estimation procedures adopted for

the two models are very different. For instance, increasing the burn-in step and/or the

number of EM iterations in the stochastic EM for BOS-CC could reduce the variance of

BOS-CC results.

Not missing at random data. In this framework, once an ordinal data matrix Y is

sampled, missing data are no longer uniformly injected into Y . As in the previous section,

a connectivity matrix π can be introduced to model block pair missing data

π =

0.7 0.5 0.5

0.5 0.7 0.7

 .

As it can be seen, 50% of the ordinal entries corresponding to the block pairs (2, 1), (2, 2)

and (3, 2) are randomly replaced by 0 according to π. Instead, only 30% of the ordinal

entries corresponding to the remaining block pairs are replaced by 0. Other settings be-

ing unchanged, the experiment is repeated and results can be seen in Figure 6. As in

the previous section, OLBM-CC exploits the information carried by π to produce better

estimates of R and C, whereas BOS-CC performs slightly worse than in the missing at

random framework. Notice that, when ζ approaches to zero, the only parameter allowing

21

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ζ

A
R

I r
ow

s
(R

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

OLBM−CC

BOS−CC

(a) Adjusted Rand Indexes (rows).

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ζ

A
R

I c
ol

um
ns

 (
C

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

OLBM−CC

BOS−CC

(b) Adjusted Rand Indexes (cols).

Figure 6: Results on the dataset simulated according to BOS-CC - Not missing at random

data.

to discriminate clusters is π. However, while the row clusters are perfectly discriminated,

the second and the third column clusters are indistinguishable when looking at π. This

explains why the median columns ARI for OLBM-CC is around 0.6 on the right hand side

of Figure 6.

4.3 Scalability

When dealing with massive datasets, the question of the scalability of the algorithm is of

course of great interest. A deep understanding of the computational complexity of the C-

EM algorithm (see Sections 3.2 and 3.1) is outside the scope of this paper. Nonetheless, this

section aims at providing some insights about the scalability of the OLBM-CC estimation

algorithm. In particular, we aim at assessing how the algorithm behaves when either the

number of rows/columns of Y or the number of ordinal levels K increase. At first, M is

set equal to P and both vary between 50 and 500. Data are missing at random, in such

a way that the (mean) number of ordinal entries in Y is equal to 10 × M . Then, the

data are simulated according to the OLBM-CC generative model and all the remaining

parameters (Q,L,K, µ, σ2, γ) are as in Section 4.1. For each simulated matrix Y , the three

estimation algorithms considered so far (OLBM-CC, cLBM, BOS-CC) are provided with

22

0
50

10
0

15
0

20
0

25
0

30
0

M

T
im

e
(s

ec
s.

)

50 100 150 200 250 300 350 400 450 500

−−−
BOS−CC

OLBM−CC

cLBM

(a) Running times.

1
2

3
4

5

M

T
im

e
(s

ec
s.

)

50 100 150 200 250 300 350 400 450 500

−−OLBM−CC

cLBM

(b) Running times (without BOS-CC).

Figure 7: Figure 7a reports the running times of the three competitor algorithms versus the

number of rows of Y , with (M = P). Figure 7b zooms on the running times of OLBM-CC

and cLBM.

the true values of Q and L and fitted to the data. Their running times for each value of M

(equal to P) are recorded and reported in Figure 7a. Since the stochastic EM algorithm

for BOS-CC is much slower than its competitors, Figure 7b only focuses on the running

times of OLBM-CC and cLBM, showing that the estimation algorithm of cLBM is slightly

faster.

Figure 8 highlights another feature of the C-EM estimation algorithm: its scalability

with respect to number of ordinal levels K. The previous experiment was repeated with

M = P = 100, but now K ranges is {3, . . . , 13}. For each value of K, 10 OLBM-CC

estimation algorithms are independently run. In Figure 8, the average running times are

plotted versus the number of ordinal levels K. As it can be seen, the computing time of

OLBM-CC does not seem to be dependent on the number of ordinal levels.

4.4 Initialization

In the previous experiments, for each simulated matrix Y , the OLBM-CC estimation algo-

rithm was provided with a single k-means initialization. This section aims at comparing

23

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

K

 T
im

e
(s

ec
s.

)

3 4 5 6 7 8 9 10 11 12 13

Figure 8: The number K of ordinal levels (on the horizontal axis) varies between 3 and 13.

The running times of the C-EM estimation algorithm for OLBM-CC are computed and

box-plotted (10 runs for each K).

k-means and random initializations (see Section 3.3). Here, the data is simulated according

to the BOS-CC generative model described in Section 4.2, with ζ = 0.125 and missing at

random values. As in can be seen in Figure 5, our approach (blue bars) works quite well

when ζ = 0.125. However, some outliers can be observed both in row and column ARIs.

Thus, 50 matrices Y are independently sampled according to the setup described in Sec-

tion 4.2 and the OLMB-CC estimation algorithm is run on each matrix, provided with two

different initializations: a k-means initialization and a purely random one. Not surpris-

ingly, as in can be seen in Figure 9a, both the row and the column label estimates are more

accurate when a k-means initialization is provided. The experiment is now repeated but

the multiple random initializations detailed in Section 3.3 is adopted in place of a single

k-means. More in details, 10 independent random initializations are used for each dataset.

The results can be seen in Figure 9b. Two remarks can be made: first, 10 random initial-

izations are enough to sensibly reduce the gap between the multiple random initializations

and k-means initializations; second, the outliers ARIs in Figure 5 are no more present, due

24

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ARI (Rows) ARI (Cols) ARI (Rows) ARI (Cols)

k−means init
random init

(a) One initialization provided.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ARI (Rows) ARI (Cols) ARI (Rows) ARI (Cols)

k−means init
random init

(b) Ten initializations provided.

Figure 9: Fifty data matrices Y are simulated according to the BOS-CC generative model,

with ζ = 0.125. The OLBM-CC estimation algorithm is run on each dataset provided with

one k- means initialization and one random initialization. Boxplots of the resulting ARIs

are plotted in Figure 9a. Figure 9b reports the results of the same experiment but the

number of provided initializations of each type is 10.

to the increased number of k-means initializations. We stress that Figures 9a and 9b refer

to the very same simulated dataset.

4.5 Model selection

So far, the numbers Q of row clusters and L of column clusters were assumed to be known.

However, in real applications, the pair (Q,L) needs to be estimated from the data. This

can be done via the ICL criterion in Eq. (22). In order to assess the criterion, the BOS-CC

generative model described in Section 4.2 is employed to simulate 50 data matrices Y , with

missing at random data, in two different scenarios. The former (easier scenario) is obtained

by setting ζ = 0, the latter (harder scenario) is adopted by setting ζ = 0.125. The OLBM-

CC estimation algorithm is run on each Y for different values of (Q,L) ∈ {1, . . . , 6}2, thus

leading to 36 models to test for each simulated dataset. For each value of (Q,L), the

algorithm is initialised via a k-means (one initialization). The results of the easier scenario

can be observed in Table 1. In bold, the number of times the true values of Q and L are

25

Q/L 1 2 3 4 5 6

1 0 0 0 0 0 0

2 0 0 49 1 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

Table 1: Easier setup, 50 simulated

datasets. In bold, the number of times

the actual values of Q and L are recov-

ered by ICL.

Q/L 1 2 3 4 5 6

1 0 0 0 0 0 0

2 0 3 40 6 0 0

3 0 1 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

Table 2: Harder setup, 50 simulated

datasets. In bold, the number of times

the actual values of Q and L are recov-

ered by ICL.

correctly estimated by the ICL criterion. The criterion succeeds 49 times over 50 and only

fails once, by selecting L = 4. In the harder scenario (Table 2), the number of times ICL

correctly estimates Q and L is lower and it is not surprising. As it can be seen in Eq. 22,

the estimated complete data log-likelihood plays a central role in the computation of ICL.

Thus, a less accurate estimate of R and/or C leads to a lower value of the log-likelihood

and hence of the ICL.

5 Amazon fine foods

This section focuses on a real dataset consisting of reviews of fine foods from Amazon. The

dataset can be freely downloaded at https://snap.stanford.edu/data/web-FineFoods.

html. A time horizon of 10 years is considered, up to October 2012. The number of reviews

reported is 568,464 and in the original dataset, each row corresponds to one review. Some

additional information is reported for each review: the user/product numerical identifiers,

a summary of the review and a rating attributed to the product by the user. The rating is

expressed via an integer number spanning from 1 (very bad) to 5 (very good). To focus on

the most meaningful part of the data, we only considered the users reviewing more than

26

20 times and the products being reviewed more than 50 times.

By doing that, an ordinal data matrix Y with M = 1, 644 rows and P = 1, 733 columns

was obtained by neglecting all the information but the ratings. The entry Yij was either

an ordinal entry (a score) or a missing value. The number of observed ordinal entries in Y

(the scores) is 32, 836, corresponding to 98.85% of missing data. The score frequencies are

reported are reported in Table 3.

Scores 1 2 3 4 5

Frequencies 1849 2126 4174 7912 16775

Table 3: The score frequencies in Y for the Amazon fine food data.

Due to the dimensions of Y , adopting a grid search to select Q and L via the ICL

criterion (see Section 3.4) would be very long. Thus, we opted for the greedy search scheme

described in Section 3.4. Moreover, as pointed out in Section 3.3, a k-means initialization

is useless when the rows/columns of Y contain a majority of missing values and here

it is the case. Therefore, for each value of (Q,L), the C-EM algorithm was initialized

with multiple (25 times) random initializations. The highest ICL criterion (for each pair)

was finally retained. The co-clustering of Y provided by our method can be observed in

Figures 10 and 11.

Figure 10 reports the reorganised incidence matrix A. Darker regions correspond to

lower portions of missing data in the corresponding co-clusters. As in can be seen, the ICL

criterion selected Q = L row clusters and L = 6 column clusters. The way the scores are

assigned on each co-cluster can be assessed by looking at Figure 11. The score frequencies of

each co-cluster are plotted as histograms and, in grey, one can see the estimated underlying

Gaussian distributions. On the top of each histogram, the estimated parameters ρ̂, δ̂ and π̂

are reported (without hat, to keep the plot uncluttered). We present hereafter some (not

exhaustive) remarks about the results.

1. As it can be seen by looking at both Figures 10 and 11, the users in row cluster q = 4

have a peculiar behaviour, both in terms of missing values and score assignments.

They assign most of the scores to the products in column cluster l = 5 and they

27

do not review goods in clusters l = 2 and l = 3. Notice also that the co-cluster

(q = 4, l = 5) is the only one not containing missing values (π̂45 = 1). The products

in column cluster l = 5 are all herbal teas of the same brand “alvita” and the most

common rating is 5 (over 60% of scores). When taking a look to the texts associated

with the scores on the Amazon website, we noticed that most texts are similar to

each other. One might think that users in cluster q = 4 are paid to review.

2. Still on column cluster l = 5. As it can be seen in Figure 11, products in this cluster

are only rated by users in row clusters q = 2, q = 4 and q = 6. The score distributions

are very different from one row cluster to another. Users in row cluster q = 6 only rate

2 and the underlying Gaussian distribution is peaked in 2. Users in cluster q = 2 all

note 1, but in that case the mode of the underlying Gaussian distribution is slightly

shifted toward 0 with a higher variance. It reflects the fact that 1 is the worst note

that one user can assign (some users would even rate worse if they could).

3. Products in column cluster l = 1 are a mix of food and beverages, including (e.g.) cat

food, teas, coffees and chips. Together with products in cluster l = 4 they are scored

6
5

4
3

2
1

1 2 3 4 5 6

Figure 10: The incidence matrix A of the Amazon fine food notes reorganised according

to the estimates R̂ and Ĉ, provided by the C-EM algorithm. The ICL criterion selected

Q = 6 row clusters and L = 6 column clusters.

28

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ1δ1 = 3.14 % π11 = 3.59 %

selection
D

en
si

ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ1δ2 = 0.43 % π12 = 2.75 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ1δ3 = 0.61 % π13 = 0.56 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ1δ4 = 11.85 % π14 = 0.43 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ1δ5 = 0.26 % π15 = 0 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ1δ6 = 1.71 % π16 = 0.67 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ2δ1 = 1.56 % π21 = 2.57 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ2δ2 = 0.21 % π22 = 3.7 %

selection
D

en
si

ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ2δ3 = 0.3 % π23 = 1.23 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ2δ4 = 5.89 % π24 = 0.41 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ2δ5 = 0.13 % π25 = 10.88 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ2δ6 = 0.85 % π26 = 2.26 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ3δ1 = 3.12 % π31 = 0.9 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ3δ2 = 0.42 % π32 = 0.26 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ3δ3 = 0.61 % π33 = 14.48 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ3δ4 = 11.77 % π34 = 0.38 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ3δ5 = 0.26 % π35 = 0 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ3δ6 = 1.7 % π36 = 6.38 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ4δ1 = 1.53 % π41 = 0.06 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ4δ2 = 0.21 % π42 = 0 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ4δ3 = 0.3 % π43 = 0 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ4δ4 = 5.77 % π44 = 0.02 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ4δ5 = 0.13 % π45 = 100 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ4δ6 = 0.83 % π46 = 0 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ5δ1 = 4.21 % π51 = 0.04 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ5δ2 = 0.57 % π52 = 0.14 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ5δ3 = 0.82 % π53 = 20.71 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ5δ4 = 15.9 % π54 = 0.17 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ5δ5 = 0.35 % π55 = 0 %

selection

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ5δ6 = 2.3 % π56 = 5.94 %

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ6δ1 = 3.88 % π61 = 0.42 %

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ6δ2 = 0.53 % π62 = 0 %

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ6δ3 = 0.76 % π63 = 0.46 %

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ6δ4 = 14.66 % π64 = 0.58 %

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ6δ5 = 0.32 % π65 = 2.46 %

D
en

si
ty

1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ6δ6 = 2.12 % π66 = 0.19 %

Figure 11: Histograms of the Amazon fine foods ratings. One histogram corresponds to a

co-cluster. In grey, one can see the estimated underlying Gaussian distributions. On the

top of each histogram, the corresponding estimated ρq, δl and πql are reported.

by users of all row clusters. However, users seem to be more satisfied by the products

l = 4 than by those l = 1. It can clearly be seen in Figure 11 for row clusters q = 2,

q = 5 and q = 6. Indeed, the products l = 4 are the best rated in the dataset: the

mode is 5 in all row clusters.

4. In Figure 11 we see that the note distributions in column cluster l = 2 have very

29

different shapes from one row cluster to another: very positive ratings for q = 1,

negative ratings for q = 2, neutral ratings for q = 3 and positive but (on average)

not excellent ratings for q = 5. The column cluster q = 2 is certainly the one

exhibiting the highest variety of preferences. Notice also that, the amount of missing

data is higher in cluster pairs (q = 3, l = 2) and (q = 5, l = 2) than in cluster pairs

(q = 1, l = 2) and (q = 2, l = 2).

5. In Figure 10, row clusters q = 3 and q = 5 look very similar (except for column

cluster l = 1, where users q = 3 note more frequently than those q = 5). However,

when looking at Figure 11, we see that the way they note is quite different. Users

q = 5 are more demanding than users q = 3 on goods l = 1 and less demanding on

goods l = 3. More important, on column cluster l = 3, the one where they both are

more active (π̂33 = 14.48% and π̂53 = 20.71%), users q = 3 are more enthusiastic than

users q = 5.

6. Users in row cluster q = 2 are definitely the more demanding ones: the means of their

underlying Gaussian distributions are constantly the leftmost ones. For instance,

products in column cluster l = 6 are globally well rated except for users in q = 2.

Similar analyses can be done for the remaining blocks. This experiment demonstrated

that OLBM-CC can be fitted to large and very sparse datasets to provide a synthetic and

comprehensive view.

6 Conclusion and perspectives

A new method for the co-clustering of ordinal data has been introduced in this paper. This

method relies on the binary LBM to manage data sparsity and adopts latent Gaussian

random variables to generate ordinal entries in a data matrix. In our view, the reduced

computational burden of the estimation procedure, the modeling of missing data and the

easy interpretation of the latent distributions are the main advantages of the outlined

approach.

30

Hereafter, we suggest two topics that could be taken into account for future researches.

First, it could be useful to assess the advantages/disadvantages of using not Gaussian latent

random variables to model ordinal data. Indeed, other distributions could be employed

to capture some features in the data, e.g. asymmetric frequencies. Second, Section 3.4

describes a greedy search algorithm to select the number of row/column clusters when an

exhaustive grid search is computationally prohibitive. Alternative greedy schemes could

certainly be implemented, for instance based on the genetic algorithms described in Scrucca

(2016).

31

A Appendix

A.1 Greedy model selection

Algorithm 2 Pseudocode

1: function Modsel(Y)

2: Initialization: Q∗ = 1, L∗ = 1 and GoOn = TRUE

3: while GoOn do

4: Calculate T1 = ICL(Q∗ + 1, L∗) . Call to function ESTIM(·)

5: Calculate T2 = ICL(Q∗, L∗ + 1)

6: if T1 < T2 then

7: Q∗ = Q∗ + 1

8: else if T2 ≤ T1 then

9: L∗ = L∗ + 1

10: else

11: GoOn = FALSE

12: end if

13: end while

14: return (Q∗, L∗)

15: end function

References

Agresti, A. (2010). Analysis of ordinal categorical data, volume 656. John Wiley & Sons.

Bhatia, P. S., Iovleff, S., Govaert, G., et al. (2017). blockcluster: An r package for model-based co-clustering.

Journal of Statistical Software, 76(i09).

Biernacki, C., Celeux, G., and Govaert, G. (2003). Choosing starting values for the em algorithm for

getting the highest likelihood in multivariate gaussian mixture models. Computational Statistics & Data

Analysis, 41(3):561–575.

Biernacki, C. and Jacques, J. (2016). Model-based clustering of multivariate ordinal data relying on a

stochastic binary search algorithm. Statistics and Computing, 26(5):929–943.

32

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics).

Springer-Verlag, Berlin, Heidelberg.

Bouveyron, C., Bozzi, L., Jacques, J., and Jollois, F.-X. (2018). The functional latent block model for

the co-clustering of electricity consumption curves. Journal of the Royal Statistical Society: Series C

(Applied Statistics), 67(4):897–915.

Celeux, G. and Govaert, G. (1991). A classification em algorithm for clustering and two stochastic versions.

Computational Statistics Quaterly, 2(1):73–82.

Côme, E. and Latouche, P. (2015). Model selection and clustering in stochastic block models based on the

exact integrated complete data likelihood. Statistical Modelling, 15(6):564–589.

D’Elia, A. and Piccolo, D. (2005). A mixture model for preferences data analysis. Computational Statistics

& Data Analysis, 49(3):917–934.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via

the em algorithm. Journal of the royal statistical society. Series B (methodological), pages 1–38.

Dillon, W., Firtle, N. C., and Madden, T. C. (1990). Marketing research in a marketing environment.

Technical report, IRWIN,.

Fernández, D., Arnold, R., and Pledger, S. (2016). Mixture-based clustering for the ordered stereotype

model. Computational Statistics & Data Analysis, 93:46–75.

Gilula, Z., McCulloch, R., Ritov, Y., and Urminsky, O. (2018). A study into mechanisms of attitudinal

scale conversion: A stochastic ordering approach.

Giordan, M. and Diana, G. (2011). A clustering method for categorical ordinal data. Communications in

Statistics?Theory and Methods, 40(7):1315–1334.

Gormley, I. C. and Murphy, T. B. (2010). A mixture of experts latent position cluster model for social

network data. Statistical methodology, 7(3):385–405.

Gouget, C. (2006). Utilisation des modèles de mélange pour la classification automatique de données

ordinales. PhD thesis, Compiègne.

Govaert, G. and Nadif, M. (2008). Block clustering with bernoulli mixture models: Comparison of different

approaches. Computational Statistics & Data Analysis, 52(6):3233–3245.

Govaert, G. and Nadif, M. (2010). Latent block model for contingency table. Communications in Statis-

tics?Theory and Methods, 39(3):416–425.

33

Jacques, J. and Biernacki, C. (2018). Model-based co-clustering for ordinal data. Computational Statistics

& Data Analysis, 123:101–115.

Jollois, F.-X. and Nadif, M. (2009). Classification de données ordinales: modèles et algorithmes. In 41èmes

Journées de Statistique, SFdS, Bordeaux.

Keribin, C., Brault, V., Celeux, G., and Govaert, G. (2015). Estimation and selection for the latent block

model on categorical data. Statistics and Computing, 25(6):1201–1216.

Keribin, C., Brault, V., Celeux, G., Govaert, G., et al. (2012). Model selection for the binary latent block

model. In Proceedings of COMPSTAT, volume 2012.

Keribin, C., Celeux, G., and Valérie, R. (2017). The latent block model: a useful model for high dimensional

data. In ISI 2017-61st world statistics congress, pages 1–6.

Little, R. J. and Rubin, D. B. (2014). Statistical analysis with missing data, volume 333. John Wiley &

Sons.

Lomet, A. (2012). Sélection de modèle pour la classification croisée de données continues. PhD thesis,

Compiègne.

McParland, D. and Gormley, I. C. (2016). Model based clustering for mixed data: clustmd. Advances in

Data Analysis and Classification, 10(2):155–169.

Podani, J. (2006). Braun-blanquet’s legacy and data analysis in vegetation science. Journal of Vegetation

Science, 17(1):113–117.

Ranalli, M. and Rocci, R. (2016). Mixture models for ordinal data: a pairwise likelihood approach. Statistics

and Computing, 26(1-2):529–547.

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American

Statistical association, 66(336):846–850.

Schwarz, G. et al. (1978). Estimating the dimension of a model. The annals of statistics, 6(2):461–464.

Scrucca, L. (2016). Genetic algorithms for subset selection in model-based clustering. In Unsupervised

Learning Algorithms, pages 55–70. Springer.

Wyse, J., Friel, N., and Latouche, P. (2017). Inferring structure in bipartite networks using the latent

blockmodel and exact icl. Network Science, 5(1):45–69.

34

