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The paper extends a stabilized fictitious domain finite element method initially developed
for the Stokes problem to the incompressible Navier–Stokes equations coupled with a
moving solid. This method presents the advantage to predict an optimal approximation of
the normal stress tensor at the interface. The dynamics of the solid is governed by
Newton's laws and the interface between the fluid and the structure is materialized by a
level-set which cuts the elements of the mesh. An algorithm is proposed in order to treat
the time evolution of the geometry and numerical results are presented on a classical
benchmark of the motion of a disk falling in a channel.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Fluid–structure interaction problems remain a challenge both for a comprehensive study of such problems and for the
development of robust numerical methods (see a review in Hou et al., 2012). One class of numerical methods is based on
meshes that are conformed to the interface where the physical boundary conditions are imposed (Legendre and Takahashi,
2008; San Martín et al., 2005, 2009). As the geometry of the fluid domain changes through the time, re-meshing is needed,
which is excessively time-consuming, in particular for complex systems. An other class of numerical methods is based on
non-conforming mesh with a fictitious domain approach where the mesh is cut by the boundary. Most of the non-
conforming mesh methods are based on the immersed boundary methods where force-equivalent terms are added to the
fluid equations in order to represent the fluid structure interaction (Peskin, 2002; Mittal et al., 2005). Many related
numerical methods have been developed, in particular the popular distributed Lagrange multiplier method, introduced for
rigid bodies moving in an incompressible flow (Glowinski et al., 1999). In this method, the fluid domain is extended in order
to cover the rigid domain where the fluid velocity is required to be equal to the rigid body velocity.

More recently, eXtended Finite Element Method introduced by Moës et al. (1999) (see a review of such methods in Fries
and Belytschko, 2010) has been adapted to fluid structure interactions problems in Moës et al. (2006), Sukumar et al. (2001),
Gerstenberger and Wall (2008), and Choi et al. (2010). The idea is similar to the fictitious domain/Lagrange multiplier
method aforementioned, but the fluid velocity is no longer extended inside the structure domain, and its value given by the
use.fr (M. Fournié).
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structure velocity is enforced by a Lagrange multiplier only on the fluid–structure interface. One thus gets rid of unnecessary
fluid unknowns. Besides, one easily recovers the normal trace of the Cauchy stress tensor on the interface. We note that this
method has been originally developed for problems in structural mechanics mostly in the context of cracked domains, see
for example Haslinger and Renard (2009), Moës et al. (2002), Stazi et al. (2003), Sukumar et al. (2000), and Stolarska et al.
(2001). The specificity of the method is that it combines a level-set representation of the geometry of the crack with an
enrichment of a finite element space by singular and discontinuous functions.

In the context of fluid–structure interactions, the difficulty related to the applications of such techniques lies in the
choice of the Lagrange multiplier space used in order to take into account the interface, which is not trivial because of the
fact that the interface cuts the mesh (see Béchet et al., 2009 for instance). In particular, the natural mesh given by the points
of intersection of the interface with the global mesh cannot be used directly. An algorithm to construct a multiplier space
satisfying the inf–sup condition is developed in Béchet et al. (2009), but its implementation can be difficult in practice. The
method proposed in the present paper tackles this difficulty by using a stabilization technique proposed in Haslinger and
Renard (2009). This method was adapted to contact problems in elastostatics in Hild and Renard (2010) and more recently
to the Stokes problem in Court et al. (2014). An important feature of this method (based on the eXtended Finite Element
Method approach, similar to Gerstenberger and Wall, 2008; Choi et al., 2010) is that the Lagrange multiplier is identified
with the normal trace of the Cauchy stress tensor σðu; pÞn at the interface. Moreover, it is possible to obtain a good
numerical approximation of σðu; pÞn (the proof is given in Court et al., 2014 for the Stokes problem). This property is crucial
in fluid–structure interactions since this quantity gives the force exerted by the viscous fluid on the structure. In the present
paper, we propose to extend this method to the Navier–Stokes equations coupled with a moving solid. Note that alternative
methods based on Nitsche's work (Nitsche, 1971) (such as Becker et al., 2011; Burman and Hansbo, 2012 in the context of the
Poisson problem and Massing et al., 2014 in the context of the Stokes problems) do not introduce the Lagrange multiplier
and thus do not necessarily provide a good numerical approximation of this force. Our method based on boundary forces is
particular interesting for control flow around a structure. The control function can be localized on the boundary of the
structure where we impose its local deformation. In order to perform direct numerical simulations of such a control,
efficient tools based on accurate computations on the interface must be developed. The present approach is one brick in this
research topic where recent development towards stabilized Navier–Stokes equations is proposed (see Airiau et al., 2015).

The outline of the paper is as follows. The continuous fluid–structure interactions problem is given in Section 2 and the
weak formulation with the introduction of a Lagrange multiplier for imposing the boundary condition at the interface is
given in Section 2.2. Next, in Section 3 the fictitious domain method is recalled with the introduction of the finite element
method (Section 3.1) with a time discretization (Section 3.2). Section 4 is devoted to numerical tests and validation on a
benchmark corresponding to the fall of a disk in a channel. The efficiency of the method is presented before conclusion.
2. The model

2.1. Fluid–structure interactions

We consider a moving solid which occupies a time-depending domain denoted by SðtÞ. The remaining domain
F ðtÞ ¼O⧹SðtÞ corresponds to the fluid flow.

The displacement of a rigid solid can be given by the knowledge of hðtÞ, namely the position of its gravity center, and RðtÞ
its rotation given by

c �s

s c

� �

for c¼ cos ðθðtÞÞ, s¼ sin ðθðtÞÞ, where θðtÞ is the rotation angle of the solid (see Fig. 1). Then at time t the domain occupied by
the structure is given by

SðtÞ ¼ hðtÞþRðtÞSð0Þ:
Fig. 1. Decomposition of the solid movement.
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Remark. This formulation can be extended in order to consider general deformations of the structure. Then we would have
to define a mapping Xnð�; tÞ which corresponds to the deformation of the solid in its own frame of reference. Then,
SðtÞ ¼ XSðSð0Þ; tÞ where XSðy; tÞ ¼ hðtÞþRðtÞXnðy; tÞ, for yASð0Þ.

The velocity of the incompressible viscous fluid of density ρf is denoted by u, the pressure by p and ν is the dynamic
viscosity. We denote by n the outward unit normal vector to ∂F (the boundary of F ), and the normal trace on the interface
Γ ¼ ∂SðtÞ of the Cauchy stress tensor is given by

σ u;pð Þn¼ 2νD uð Þn�pn with D uð Þ ¼ 1
2 ∇uþ∇uT� �

:

When gravity forces are considered (we denote by g the gravity field), the fluid flow is modeled by the incompressible
Navier–Stokes equations

ρf
∂u
∂t

þ u �∇ð Þu
� �

�νΔuþ∇p¼ ρf g; xAF ðtÞ; tAð0; TÞ;

divðuÞ ¼ 0; xAF ðtÞ; tAð0; TÞ;
u¼ 0; xA∂O; tAð0; TÞ;

8>>><
>>>:

ð1Þ

and Newton's laws are considered for the dynamics of the solid

msh
″ðtÞ ¼ �R

∂SðtÞσðu; pÞn dΓ�msg;

Iθ″ðtÞ ¼ �R
∂SðtÞðx�hðtÞÞ? � σðu; pÞn dΓ;

8<
: ð2Þ

where ms is the mass of the solid, and I is its moment of inertia.
At the interface ∂SðtÞ, for the coupling between fluid and structure, we impose the continuity of the velocity

uðx; tÞ ¼ h0ðtÞþθ0ðtÞðx�hðtÞÞ? ¼ uΓ ; xA∂SðtÞ; tA ð0; TÞ: ð3Þ
The coupled system (1)–(3) has for unknowns u, p, hðtÞ and the angular velocity ωðtÞ ¼ θ0ðtÞ (a scalar function in 2D).
2.2. Weak formulation of the problem with stabilization terms

We consider the coupled system (1)–(3) and we assume that the boundary condition imposed at the interface Γ ¼ ∂SðtÞ
is sufficiently regular to make sense, and we introduce the following functional spaces (based on the classical Sobolev spaces
L2ðF Þ, H1ðF Þ, H1=2ðΓÞ and H�1=2ðΓÞ, see Evans, 2010 for instance)

V¼ fvAH1ðF Þ∣v¼ 0 on ∂Og;

Q ¼ L20ðF Þ ¼ pAL2ðF Þ∣
Z
F
p dF ¼ 0

� �
;

W¼H�1=2ðΓÞ ¼ ðH1=2ðΓÞÞ0:

Due to the fact that we only consider boundary conditions of Dirichlet type, we impose to the pressure p to have null
average (this condition is taken into account in Q). This variational formulation can be done in three steps:
Step 1 –
 Classical formulation of the Navier–Stokes and structure equations (in the formulation γ and λ are equal to 0).

Step 2 –
 Introduction of Lagrange multiplier λ in order to take into account the Dirichlet condition at the interface Γ (in the

formulation only γ is equal to 0).

Step 3 –
 Introduction of stabilization terms with a parameter γ.
This new unknown λ plays a critical role due to the fact that it is equal to the normal trace of the Cauchy stress tensor
σðu; pÞn (this equality is described in Gunzburger and Hou, 1992). The stabilization terms are associated with the constant
parameter γ (chosen sufficiently small). The variational problem that we consider is the following:

Find u; p;λ;h0;h;θ0
;θ

� �
AV � Q �W � R2 � R2 � R� R such that

R
Fρf

∂u
∂t

� v dFþA u; p;λ
� �

; v
� �þR

Fρf u �∇ð Þu½ � � v dF ¼ R
Fρf g � v dF ; 8vAV;

Bððu; p;λÞ; qÞ ¼ 0; 8qAQ ;

Cððu;p;λÞ;μÞ ¼ GðμÞ; 8μAW;

msh
″ðtÞ ¼ �R

∂SðtÞλ dΓ�msg;

Iθ″ðtÞ ¼ �R
∂SðtÞðx�hðtÞÞ? � λ dΓ;

8>>>>>>>>><
>>>>>>>>>:
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where

Aððu; p;λÞ; vÞ ¼ 2ν
Z
F
DðuÞ:DðvÞ dF�

Z
F
p div v dF�

Z
Γ
λ � v dΓ

�4ν2γ
Z
Γ
ðDðuÞnÞ � ðDðvÞnÞ dΓþ2νγ

Z
Γ
pðDðvÞn � nÞ dΓþ2νγ

Z
Γ
λ � ðDðvÞnÞ dΓ;

Bððu; p;λÞ; qÞ ¼ �
Z
F
q div u dFþ2νγ

Z
Γ
qðDðuÞn � nÞ dΓ�γ

Z
Γ
pq dΓ�γ

Z
Γ
qλ � n dΓ;

Cððu; p;λÞ;μÞ ¼ �
Z
Γ
μ � u dΓþ2νγ

Z
Γ
μ � ðDðuÞnÞ dΓ�γ

Z
Γ
pðμ � nÞ dΓ�γ

Z
Γ
λ � μ dΓ;

GðμÞ ¼ �
Z
Γ
μ � uΓ dΓ ¼ �

Z
Γ
μ � ðh0ðtÞþθ0ðtÞðx�hðtÞÞ? Þ dΓ:

Remark. The formulation can be justified by the introduction of an extended Lagrangian – à la Barbosa and Hughes (1991) –
whose a stationary point is a weak solution of the problem. The first-order derivatives of this Lagrangian lead to forcing λ to
reach the desired value corresponding to σðu; pÞn.

3. Fictitious domain approach

We refer to the article (Court et al., 2014) for the details of the fictitious domain approach we consider here. In the
following, we recall the method used for the present work.

3.1. Finite element discretization

The fictitious domain for the fluid is considered on the whole domain O. Let us introduce three discrete finite element
spaces, ~V

h �H1ðOÞ, ~Q
h � L20ðOÞ and ~W

h � L2ðOÞ. Notice that the spaces V; Q ; W introduced to define the weak formulation
are included into those spaces defined all over the domain O¼F [ S. In practice, O is a simple domain, so that the
construction of a unique mesh for all spaces is straightforward (the interface between the fluid and the structure is not
considered). Let us consider for instance a rectangular domain where a structured uniform mesh T h can be constructed (see
Fig. 2). Classical finite element discretizations can be defined on the spaces ~V

h
, ~Q

h
and ~W

h
. For ~V

h
, let us consider for

instance a subspace of the continuous functions CðOÞ defined by

~V
h ¼ fvhACðOÞ∣vhj∂O ¼ 0; vhjT APðTÞ; 8TAT hg;

where P(T) is a finite dimensional space of regular functions, containing Pk(T) the polynom space of degree less or equal to
an integer k (kZ1). For more details, see Ern and Guermond (2004) for instance. The mesh step stands for h¼maxTAT hhT ,
where hT is the diameter of T. In order to split the fluid domain and the structure domain, we define spaces on the fluid part
F and on the interface Γ only, as

Vh≔ ~V
h
jF ; Qh≔ ~Q

h
jF ; Wh≔ ~W

h
jΓ :

Notice that Vh, Qh,Wh are respective natural discretizations of V, Q andW. It corresponds to cutting the basis functions of
spaces ~V

h
, Qh and ~W

h
. This approach is equivalent to the eXtended Finite Element Method, as proposed in Choi et al. (2010)

or Gerstenberger and Wall (2008), where the standard finite element method basis functions are multiplied by Heaviside
functions (HðxÞ ¼ 1 for xAF and HðxÞ ¼ 0 for xAO⧹F ), and the products are substituted in the variational formulation of the
problem. Thus the degrees of freedom inside the fluid domain F are used in the same way as in the standard finite element
method, whereas the degrees of freedom in the solid domain S at the vertexes of the elements cut by the interface (the so-
called virtual degrees of freedom) do not define the field variable at these nodes, but they are necessary to define the fields
on F and to compute the integrals over F . The remaining degrees of freedom, corresponding to the basis functions with
support completely outside of the fluid, are eliminated (see Fig. 2). We refer to the papers aforementioned for more details.

The discrete problem consists in finding ðuh; ph;λh;h0;h;θ0
;θÞAVh � Qh �Wh � R2 � R2 � R� R such that

R
Fρf

∂uh

∂t
� vh dFþA uh; ph;λh

� 	
;vh

� 	
þR

Fρf uh �∇� �
uh


 � � vh dF ¼ R
Fρf g � vh dF ; 8vhAVh;

Bððuh; ph;λhÞ; qhÞ ¼ 0; 8qhAQh;

Cððuh; ph;λhÞ;μhÞ ¼ GðμhÞ; 8μhAWh;

msh
″ðtÞ ¼ �R

∂SðtÞλ
h dΓ�msg;

Iθ″ðtÞ ¼ �R
∂SðtÞðx�hðtÞÞ? � λh dΓ:

8>>>>>>>>>>><
>>>>>>>>>>>:

This is a system of nonlinear differential algebraic equations which can be formulated into a compact form. We denote by U ,
P and Λ the respective degrees of freedom of uh, ph and λh. After standard finite element discretization of the following



Fig. 2. Mesh on a fictitious domain. (a) Standard degrees of freedom (black, outside the disk), virtual ones (red, inside the disk), remaining ones are
removed. (b) Bases nodes used for the multiplier space (yellow, on the disk). (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)

Fig. 3. Evolution in time tA ½0;0:5� of the vertical velocity for mesh50�150 with stabilization in blue color and without stabilization in red color. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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bilinear forms:

Muu: ðu; vÞ⟼
Z
F
ρfu � v dF ; Mλ:λ⟼�

Z
∂SðtÞ

λ dΓ;

Auu: ðu; vÞ⟼2ν
Z
F
DðuÞ:DðvÞ dF�4ν2γ

Z
Γ
ðDðuÞnÞ � ðDðvÞnÞ dΓ;

Aup: ðv; pÞ⟼�
Z
F
p div v dFþ2νγ

Z
Γ
pðDðvÞn � nÞ dΓ;

Auλ: ðu;λÞ⟼�
Z
Γ
λ � v dΓþ2νγ

Z
Γ
λ � ðDðvÞnÞ dΓ;

App: ðp; qÞ⟼�γ
Z
Γ
pq dΓ; Apλ: ðq;λÞ⟼�γ

Z
Γ
qλ � n dΓ;

Aλλ: ðλ;μÞ⟼�γ
Z
Γ
λ � μ dΓ;



S. Court, M. Fournié / Journal of Fluids and Structures 55 (2015) 398–408 403
we define matrices like Muu from Muu, etc., the vector G from G, F from the gravity forces ρf g, Mλ the matrix computed by
integration over Γ of the Wh basis functions and NðUðtÞÞUðtÞ the matrix depending on the velocity and corresponding to the
nonlinear convective term

R
Fρf ½ðu �∇Þu� � v dF . Then the matrix formulation is given by

Muu
dUðtÞ
dt

þAuuU tð ÞþN U tð Þð ÞU tð ÞþAupP tð ÞþAuλΛ tð Þ ¼ F; ð4Þ

AT
upUðtÞþAppPðtÞþApλΛðtÞ ¼ 0; ð5Þ

AT
uλUðtÞþAT

pλPðtÞþAλλΛðtÞ ¼ G; ð6Þ

msh
″ðtÞ ¼MλΛðtÞ�msg; ð7Þ

Iθ″ðtÞ ¼Mλft½ðx�hðtÞÞ? �ΛðtÞ�: ð8Þ
At the interface Γ ¼ ∂SðtÞ represented by a level-set function which cuts the global mesh, the coupling between the fluid and the
structure is imposed by a Dirichlet condition whose elements are determined through the computation of σðu; pÞn. The main
advantage of our numerical method –mathematically justified in Court et al. (2014) – is to return an optimal approximationΛðtÞ
of σðu; pÞn at the interface. Getting a good approximation of this quantity is crucial for the dynamics of the system.

3.2. Time discretization and treatment of the nonlinearity

Classical methods like θ-methods can be used for the time discretization. For a matter of unconditional stability of the scheme,
we consider an implicit discretization based on the backward Euler method. We denote by Unþ1 the solution at the time level tnþ1

and dt ¼ tnþ1�tn is the time step. Particular attention must be done for a moving particle problem. Indeed, at the time level tnþ1

the solid occupies Sðtnþ1Þwhich is different from the previous time level tn. So, the field variable at the time level tnþ1 can become
undefined near the interface since there was no fluid flow at the time level tn (Sðtnþ1ÞaSðtnÞ for the solid and F ðtnþ1ÞaF ðtnÞ for
the fluid). In other words, some degrees of freedom for the fluid part which are not considered at the time level tn must be taken
into account at the time level tnþ1. In particular, the velocity field must be known in such nodes. In the present work, we impose
the velocity to be equal to the motion of the solid. The validity of this approximation is justified as soon as time step is sufficiently
small to ensure that the structure moves progressively across the mesh without jump of cells (when the level-set does not cuts this
cell). This constraint is not too strong and corresponds to the classical CFL condition for velocity of the structure.

In the following we present the algorithm we perform to compute at the time level tnþ1 the solution
(Unþ1;Pnþ1;Λnþ1

;h0nþ1;hnþ1;θ0nþ1
;θnþ1) on F ðtnþ1Þ. To simplify, we assume that dt is constant. At the time level tn we

have access to (Un;Pn;Λn
;h0n;hn;θ0n

;θn) on F ðtnÞ.
(1)
 Velocity of the structure – From Λn, we compute ðh0nþ1;θ0nþ1Þ using (7) and (8) with

ms
h0nþ1�h0n

dt
¼MλΛn�msg;

I
θ0nþ1�θ0n

dt
¼Mλ ðx�hnÞ? �Λn
 �

:

(2)
 Position of the structure – From Λn, we compute ðhnþ1;θnþ1Þ using (7) and (8)

ms
hnþ1�2hnþhn�1

dt2
¼MλΛn�msg;

I
θnþ1�2θnþθn�1

dt2
¼Mλ ðx�hnÞ? �Λn
 �

:

(3)
 We update the geometry to determine F ðtnþ1Þ. It corresponds to update the position of the level-set which is defined
from hnþ1 and θnþ1.
(4)
 We complete the velocity Un defined on F ðtnÞ to the full domain O by imposing the velocity on each node of Sðtnþ1Þ to
be equal to h0nþ1þθ0nþ1ðx�hnþ1Þ? .
After this step, we know the Dirichlet condition for the velocity to impose at the interface Γðtnþ1Þ ¼ ∂Sðtnþ1Þ. So we
determine Gnþ1 in (6) from unþ1

Γ ¼ h0nþ1þθ0nþ1ðx�hnþ1Þ? .

(5)
 Finally, we compute ðUnþ1;Pnþ1;Λnþ1Þ such that

Muu
Unþ1�Un

dt
þAuuUnþ1þN Unþ1

� 	
Unþ1þAupPnþ1þAuλΛnþ1 ¼ Fnþ1;

AT
upU

nþ1þAppPnþ1þApλΛnþ1 ¼ 0;
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AT
uλU

nþ1þAT
pλP

nþ1þAλλΛnþ1 ¼ Gnþ1:

At this stage, the solution of the resulting nonlinear algebraic system is achieved by a Newton method. The initialization
of the Newton algorithm is done with the solution at the previous time step (this solution is defined in item (4)).
(6)
 We complete the velocity Unþ1 defined on F ðtnþ1Þ to the full domain O by imposing the velocity on each node of
Sðtnþ1Þ to be equal to h0nþ1þθ0nþ1ðx�hnþ1Þ? .
Remark 1. In practice the mid-point method is used to update the geometry of the structure for the computation of
h0nþ1;hnþ1;θ0nþ1

;θnþ1.

Remark 2. Step (6) plays an important role to update the geometry. Indeed, after extension, we have access to the values of
the solution at each node of the full domain. Thus new nodes that appear after update have some values and no
interpolation is required.

4. Numerical tests: free fall of a disk in a channel

For validation of our method, we consider the numerical simulation of the motion of a disk falling inside an
incompressible Newtonian viscous fluid. The parameters used in the computation, for a disk of radius R¼0.125 cm in a
channel of size ½0;2� � ½0;6�, are given in Table 1.

This simulation is well documented in the literature and considered as a challenging benchmark. We refer to the paper
(Glowinski et al., 1999) where fictitious domain method is used and Hachem et al. (2013) for simulations with mesh adaptation.

For the finite element discretization, we consider classical Lagrange family with P2�P1�P0 for respectively u, p, and λ,
which is a choice that satisfies the inf–sup condition required for such kind of problems (see Court et al., 2014 for more
details). Uniform triangular meshes are used and defined by imposing a uniform repartition of points on the boundary of the
domain. Two meshes are used, mesh50�150 with 50 points in x-direction and 150 points in y-direction, and mesh100�300 with
100 points in x-direction and 300 points in y-direction.

Numerical tests are performed with and without stabilization to underline the advantage of the method. When stabilization is
considered, we choose γ ¼ h� γ0 where γ0 ¼ 0:05 (see Court et al., 2014 for the justification of this choice). The parameter γ has to
obey to a compromise between the coerciveness of the system and theweight of the stabilization term. The time discretization step
dt is initialized to 0.0005 and adapted at each time iteration to satisfy a CFL condition. More precisely, we evaluate the norm of the
velocity at each point of the structure and we deduce the maximum value vm ¼maxxASðtnÞðJuðxÞJ Þ. Then we impose
dt ¼minð0:9h=vm;2h2=νÞ. This condition is not restrictive and we observe that dtA ½0:0005;0:006� in all the tests.

In the literature, in order to study the fall of the disk (the simulation is illustrated in Fig. 7), curves are given to show the
evolution of the vertical velocity and the position of the center of the disk according to the time. We present the same analysis for
different adaptation of our method. As expected, the disk reaches quickly a uniform fall velocity with slight moving on the right side
of the vertical symmetry axis. This observation was already reported in the literature and is not specific to our method. One
challenge is to propose robust methods that limit this breaking. In this section, we show that our method gives an answer to this
question. Indeed, numerical simulations can be done with coarse meshes, even if it is not recommended with a fictitious domain
approach (points on the interface can be far from the degrees of freedom introduced by the finite element method).

Contribution of the stabilization technique: Numerical tests are performed with the mesh mesh50�150, with and without
performing the stabilization (γ0 ¼ 0). We compute the position of the disk according to the time and represent separately
the vertical and horizontal positions. In Fig. 3 we represent the vertical velocity through the time. The results are similar,
whether we perform stabilization or not. However, with the stabilization technique the method is more robust. If we zoom
in (see Fig. 3), without stabilization (red curve) some perturbations appear. When we compare the positions of the disk
through the time, we do not observe difference on the vertical position in Fig. 4(a). However the difference is more
important for the horizontal position and the rotation of the disk. The curves are plotted in red in Fig. 5, with the mesh
mesh50�150. With the stabilization technique the results are clearly improved. Without stabilization, the symmetry is broken
even if it seems that the disk comes back around the symmetry axis of the cavity at the end of the simulation. This behavior
related to the computation of the angular velocity which is represented in Fig. 5(b).

Influence of the mesh size: With stabilization, we compare the simulations obtained with mesh50�150 and mesh100�300. The
results are given in Fig. 4 (red curves formesh50�150 and blue curves formesh100�300). As expected, the smoothness of the solution is
better when a sharper mesh is used. Besides, the result seems to be as good as results obtained in Glowinski et al. (1999), Hachem
Table 1
Parameters used for the simulation.

Parameter ρf ρs ν g

Unit g/cm2 g/cm2 g/cm2 s cm/s2

Value 1 1.25 0.1 981
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et al. (2013) for instance. When a coarse mesh is used, the velocity is over-estimated. This observation can be justified by the
capability of themethod for preserving the conservation of themass. Indeed, with a coarsemesh, a numerical addedmass appears in
the system. This artificial mass is proportional to the stabilization terms (see Apλ and Aλλ in the discrete problem) which are
themselves proportional to the mesh size, and thus it can be neglected when the mesh size decreases.

The computation of the horizontal position of the disk is given in Fig. 5(a). We observe that the disk tends to come back
towards the symmetry axis of the cavity at the end of the simulation with mesh100�300, unlike in the simulations with
mesh50�150, where the symmetry breaking seems to growth. This phenomenon can be observed in Fig. 5(b) which represents
the evolution of the rotation angle of the disk. With mesh50�150 this angle always growths, unlike for the sharper mesh
mesh100�300. This behavior can be justified by perturbation associated with our numerical method, in particular for the
treatment of the nonlinear term. Moreover, a perturbation in horizontal velocity component is difficult to compensate
during the simulation and contributes to the amplifying the phenomena. However, with stabilization, relevant values of the
rotation are obtained and show that their influence is reduced and compared with the translation.
Fig. 4. Simulations for tA ½0;0:5�, for mesh50�150 in red color, and for mesh100�300 in blue color. (a) Vertical position of the disk, (b) Vertical velocity. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 5. Simulations depending on time tA ½0;0:5� with stabilization for mesh50�150 red lines and for mesh100�300 blue lines. Red curves (upper) with points
have no stabilization with mesh50�150 points. (a) Horizontal position, (b) Rotation angle. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)
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Fig. 6. Illustration of the elements cut with respect to the level-set.

Fig. 7. Imagery illustration of the intensity of the fluid's velocity during the fall of the ball.
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5. Practical remarks on the numerical implementation
�
 All the numerical simulations were performed with the free generic library Getfemþþdeveloped by Renard and
Pommier (same source code for 2D and 3D) and implemented on High Performing Computers (parallel computations).
�
 In order to compute properly the integrals over elements at the interface (during assembling procedure), external call to
QHULL Library (Barber et al., 1996) is realized. Local triangulation is introduced and illustrated in Fig 6.
�
 In the algorithm, steps (1) and (2) require computing of MλΛn and Mλ½ðx�hnÞ? �Λn�, corresponding to integrations over
the level-set. Such integrations require particular attention, in the sake of preserving a good accuracy. Indeed, the
integrations must use nodes on level-set and accurate values on that nodes are required (no interpolation).
�
 The method is very efficient in time computation, since it requires an update of the assembling matrices only locally near
the interface.
�
 As mentioned in Haslinger and Renard (2009), it is possible to define a reinforced stabilization technique in order to
prevent difficulties that can occur when the intersection of the solid and the mesh over the whole domain introduce
“very small” elements. The technique consists in selecting elements which are better to deduce the normal derivative on
Γ. A similar approach is given in Pitkäranta (1980). We think that this kind of reinforced stabilization technique can
prevent the perturbations that appear during simulation (see zoom in Fig. 3).

6. Conclusion

In this paper, we have considered a new fictitious domain method based on the extended finite element with stabilized
terms applied to the Navier–Stokes equations coupled with a moving solid. This method is quite simple to implement since
all the variables (multipliers and primal variables) are defined on a single mesh independent of the computational domain.
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The algorithm leads to a robust method (good computation of the normal Cauchy stress tensor) whatever is the intersection
of the domain with the – not necessarily sharp – mesh. The simulation of a falling disk with respect to the time confirms
that our approach is able to predict well the interaction between the fluid and the structure. The stabilization must be
considered to obtain more physical results preserving symmetry. Applications in 3D are in progress, in particular for control
flow by acting on the boundary of the solid.
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