
HAL Id: hal-01978117
https://hal.science/hal-01978117

Submitted on 11 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NUMERICAL SIMULATION ON A FIXED MESH
FOR THE FEEDBACK STABILIZATION OF A
FLUID-STRUCTURE INTERACTION SYSTEM
WITH A STRUCTURE GIVEN BY A FINITE

NUMBER OF PARAMETERS
G Delay, S Ervedoza, Michel Fournié, G Haine

To cite this version:
G Delay, S Ervedoza, Michel Fournié, G Haine. NUMERICAL SIMULATION ON A FIXED MESH
FOR THE FEEDBACK STABILIZATION OF A FLUID-STRUCTURE INTERACTION SYSTEM
WITH A STRUCTURE GIVEN BY A FINITE NUMBER OF PARAMETERS. IUTAM Symposium
on Critical flow dynamics involving moving/deformable structures with design applications, 2018,
Santorini, Greece. �hal-01978117�

https://hal.science/hal-01978117
https://hal.archives-ouvertes.fr


IUTAM Symposium on Critical flow dynamics involving moving/deformable structures with
design applications, June 18-22, 2018, Santorini, Greece

NUMERICAL SIMULATION ON A FIXED MESH
FOR THE FEEDBACK STABILIZATION OF A

FLUID–STRUCTURE INTERACTION SYSTEM
WITH A STRUCTURE GIVEN BY A FINITE

NUMBER OF PARAMETERS

G. Delay∗, S. Ervedoza∗, M. Fournié∗ and G. Haine∗∗
∗ Institut de Mathématiques, UMR 5219 Université Paul Sabatier, CNRS, Toulouse

∗∗ Institut Supérieur de l’Aéronautique et de l’Espace, Toulouse, France

Email : guillaume.delay@math.univ-toulouse.fr, sylvain.ervedoza@–, michel.fournie@– and ghislain.haine@isae.fr

Abstract.

We study the numerical approximation of a 2d fluid–structure interaction problem stabilizing the fluid flow
around an unstable stationary solution in presence of boundary perturbations. The structure is governed
by a finite number of parameters and a feedback control law acts on their accelerations. The existence of
strong solutions and the stabilization of this fluid–structure system were recently studied in [3]. The present
work is dedicated to the numerical simulation of the problem using a fictitious domain method based on
extended Finite Element [4]. The originality of the present work is to propose efficient numerical tools that
can be extended in a simple manner to any fluid-structure control simulation. Numerical tests are given and
the stabilization at an exponential decay rate is observed for small enough initial perturbations.

Key words: fluid-structure interaction, DNS, fictitious domain, XFEM, control, incompressible flow.

1 Introduction

Critical flow dynamics involving moving/deformable structures with design applications
has been receiving increasing attention from the scientific community. In the context of
aeronautics, control flow by morphing remains a challenge [7] as well on a comprehensive
study of the physical problems as on a development of robust numerical methods [9].

1.1 Position of the problem

The question of how to design moving/deformable structures to control flow requires a
rigorous justification of the process corresponding to study the following concepts.

• The modeling of the 2d fluid–structure model. In the present work, we consider a
structure described by a finite number of parameters with a feedback control law
acting on the acceleration of the structure, see [3].

• The well–posedness of the system. We refer to [3] for the proof of the existence and
uniqueness of strong solution.

• The stabilizability of the continuous fluid–structure system. Under a unique contin-
uation assumption for the eigenvectors of the adjoint system, a nonlinear feedback
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control is proposed to stabilize the whole fluid–structure system around a stationary
solution at any chosen exponential decay rate for small enough initial perturbations,
see [3]. The method reposes on the analysis of the linearized system and the feed-
back operator is given by a Riccati equation of small dimension (Reduced Order
Model). This feedback control is able to stabilize the nonlinear semi-discrete con-
trolled system.

• The semi-discretization in space of the infinite dimensional system. The stabiliza-
tion of such a system must be studied even if the strategy is the same as the one used
for the continuous problem. The justification is not straightforward and requires a
specific proof for each new fluid–structure system. The numerical method retained
for the discretization is the finite element method that can be used for complex ge-
ometry.

• The time evolution and numerical simulations. Beyond the well-known difficulties
encountered to consider fluid–structure interactions to match the motion of the struc-
ture into the fluid (time evolution of the computational domain) [9], the contribution
of the control control requires a specific attention.

1.2 Previous work

The continuous problem has already been studied in [3] and a similar approach to ours
has been investigated in [8]. Other similar studies have already been led for the Navier–
Stokes equations [1] and for a fluid–structure interaction problem [10]. This latter work
is based on computations that are formulated into a fixed domain after a change of vari-
ables. However this mapping introduces nonlinear terms that are difficult to implement
(introducing numerical errors) and involves a high computational time. In opposite, in the
present work all computations are done in the time dependent fluid domain. Preparatory
work relating to this was done in a simpler situation where the control is governed by the
fluid only and the deformation of the structure is located on small parts of its boundary
[5]. This difficulty is addressed using a fictitious domain approach based on an extended
finite element method. More precisely, the focus is on the so-called geometrically unfitted
finite element methods where the solution of the PDE typically remains a standard finite
element method, but the variational formulation is modified so that the constraints on the
interface and boundaries can be integrated in the computation even if the mesh is not fit-
ted to the geometry. In such approaches, the computational mesh used is independent of
the physical domain. These methods are called CutFEM and can be viewed as particular
XFEM methods, see [4].

1.3 Outline

The outline of the paper is as follows. In Section 2, we present the setting of the problem
that can be extended to more general system and we introduce the diffeomorphism that
allows to model the deformation of the structure. In Section 3, we recall the principles
to construct a feedback control law for the linear problem and give the synopsis of these
ideas. In Section 4, the discretization of the fluid–structure system based on fictitious
domain method is introduced before the presentation of the time evolution partitioned
algorithm. Finally, in Section 5, numerical simulations with original treatment of the
control are reported. We compare the results obtained with and without applying the
control to the nonlinear fluid–structure system.

2
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2 Setting of the problem and modelling of the deformation

2.1 The fluid–structure model

The global domain represents a wind tunnel Ω ⊂ R2 = (0, L)×(0, 1). Dirichlet boundary
conditions are imposed on Γi = {0} × (0, 1) the inflow region, on Γw = (0, L) × {0, 1}
the upper and lower walls (ΓD = Γi ∪ Γw) and Neumann conditions are retained on
ΓN = {L}× (0, 1) the outflow region. We use a smooth approximation of a steering gear
structure S(θ1(t), θ2(t)) depending on two parameters and the fluid fills the time evolving
domain F (θ1(t), θ2(t)) = Ω\S(θ1(t), θ2(t)).
Note that the structure can be viewed like an assembling of one solid S1 tied to the fixed
frame by a pivoting link O and an other solid S2 tied to solid S1 by a pivoting link P . S1

can be thought of as the aerofoil of a wing and S2 as a steering gear such as an aileron.
The deformation of the structure is linked to its reference configuration Sref by a smooth
diffeomorphism X(θ1, θ2, .) and we denote Y(θ1, θ2, .) its inverse, see Fig.1.

Φ(θ1, θ2, .)

X(θ1, θ2, .)

Sref

S(θ1(t), θ2(t))

y y′
Φ(θ1, θ2,y) X(θ1, θ2,y

′)

Ψ(θ1, θ2, .)

Y(θ1, θ2, .)
Ω Ω

Fref F (θ1(t), θ2(t))

Γi

Γw

Γw

ΓN

O

P

θ1

θ2

O P

Figure 1: Real and reference structure configurations.

The fluid is modeled by the incompressible Navier-Stokes equations. The equations of
the structure are derived from a virtual work principle.

Find (θ1(t), θ2(t)) ∈ DΘ, such that ∀w ∈ Vect(∂θ1X(θ1(t), θ2(t), .), ∂θ2X(θ1(t), θ2(t), .)),∫
Sref

ρ
d2

dt2
(X(θ1(t), θ2(t),y))·w(y)dy +

∫
∂S(θ1(t),θ2(t))

σF (u, p)nθ1,θ2 ·w(Y(θ1(t), θ2(t), γx))dγx = 0,

where ρ > 0 is a constant modeling the mass per unit volume, nθ1,θ2 is the outward unitary
normal to the fluid domain and σF (u, p) = −pI +ν(∇u+∇uT ), where ν is the viscosity
of the fluid andDΘ is an admissible domain which is an open connected subset of R2. We
denote n and nθ1,θ2 the outward unitary normals to Ω and to F (θ1(t), θ2(t)), fF a source
term, ui a given inflow and (.,.)S the scalar product

(φ,ψ)S =

∫
Sref

ρφ(y) ·ψ(y) dy.

We use the notations

Q∞θ =
⋃

t∈(0,∞)

({t} ×F (θ1(t), θ2(t))), Σ∞θ =
⋃

t∈(0,∞)

({t} × ∂S(θ1(t), θ2(t))),

Σ∞i = (0,∞)× Γi, Σ∞w = (0,∞)× Γw, Σ∞N = (0,∞)× ΓN .

The resulting fluid–structure system reads for t ∈ (0, T )
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∂u

∂t
+(u · ∇)u−divσF (u, p)= fF , in Q∞θ ,

divu = 0, in Q∞θ ,
u = θ̇1∂θ1X(θ1, θ2,Y(θ1, θ2, .)) + θ̇2∂θ2X(θ1, θ2,Y(θ1, θ2, .)), onΣ∞θ ,
u = ui on Σ∞i , u = 0 on Σ∞w , σF (u, p)n(.) = 0 on Σ∞N ,
u(0, .) = u0(.), on F (θ1,0, θ2,0),

Mθ1,θ2

(
θ̈1

θ̈2

)
= MA(θ1, θ2,−σF (u, p)nθ1,θ2) + MI(θ1, θ2, θ̇1, θ̇2)− k

(
θ1

θ2

)
+ h + fs,

θ1(0) = θ1,0, θ2(0) = θ2,0, θ̇1(0) = ω1,0, θ̇2(0) = ω2,0, where
(1)

Mθ1,θ2=

(
(∂θ1X(θ1, θ2),∂θ1X(θ1, θ2, .))S (∂θ2X(θ1, θ2),∂θ1X(θ1, θ2, .))S
(∂θ1X(θ1, θ2),∂θ2X(θ1, θ2, .))S (∂θ2X(θ1, θ2),∂θ2X(θ1, θ2, .))S

)
∈R2×2,

MI(θ1, θ2, θ̇1, θ̇2)=

(
−(θ̇2

1∂θ1θ1X(θ1, θ2, .)+2θ̇1θ̇2∂θ1θ2X(θ1, θ2, .)+θ̇2
2∂θ2θ2X(θ1, θ2),∂θ1X(θ1, θ2, .))S

−(θ̇2
1∂θ1θ1X(θ1, θ2, .)+2θ̇1θ̇2∂θ1θ2X(θ1, θ2, .)+θ̇2

2∂θ2θ2X(θ1, θ2),∂θ2X(θ1, θ2, .))S

)
∈R2,

MA(θ1, θ2,−σF (u, p)nθ1,θ2)=


∫
∂S(θ1,θ2)

−σF (u, p)nθ1,θ2 · ∂θ1X(θ1, θ2,Y(θ1, θ2, γx)) dγx∫
∂S(θ1,θ2)

−σF (u, p)nθ1,θ2 · ∂θ2X(θ1, θ2,Y(θ1, θ2, γx)) dγx

 ∈ R2,

u0(.), θ1,0, θ2,0, ω1,0, ω2,0 are initial data and h ∈ L2(0, T ;R2) is a control modelling a
force acting on the structure, k > 0 is a constant used to introduce a damping and fs
is a constant force that constraints the structure to be in a given reference position. In
the sequel, we denote MI(θ1, θ2, θ̇1, θ̇2) = MI(t) and MA(θ1, θ2,−σF (u, p)nθ1,θ2) =
MA(t). For T > 0 small enough, under some compatibility conditions for the initial
data, there exists a strong solution to the problem (1), see [3].

2.2 The diffeomorphisms used to model the deformation of the structure given by
a finite number of parameters

2.2.1 The diffeomorphism X

We consider that every fibre of matter stays normal to the mid–line in every configuration.
Hence the deformation of the structure is given by the deformation of the mid–line.
The deformation of the mid–line. In the non–deformed configuration, the mid–line goes
from ` = 0 to ` = 1. Let xa < xb be in (0, 1), we want the mid–line to be at rest in (0, xa)
and be a straight line of slope θ2 (the first parameter to characterize the structure) in (xb, 1)
and we consider on (xa, xb) the parabola

f(x) =
tan(θ2/2)

xb − xa
(x− xc)2 − tan(θ2/2)

xb − xa
4

, with xc = (xa + xb)/2,

such that we have a C 1 curve on [0, 1], see Fig.2(a). The next step is to rotate this parabola
around (xa, 0) with an angle θ2/2, to prolong it on the left hand-side by y = 0 and on the
right by a straight line of slope θ2. This will give the desired deformation for the mid–line,
see Fig.2(b), the pointB′ = (xB′ , yB′)

T = (xa+(xb−xa) cos(θ2/2), (xb−xa) sin(θ2/2))T .
The mid–line is then given by the parametric representation `→ (gx(`), gy(`))

T where

gx(`)=

`xa+(`−xa) cos( θ2
2

)−f(`) sin( θ2
2

)
xB′+ (`− xb) cos θ2

gy(`)=

0 if ` ≤ xa,
(`− xa) sin( θ2

2
)+f(`) cos( θ2

2
) if ` ∈ (xa, xb),

yB′+(`−xb) sin θ2 if ` ≥ xb.

4
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•
xa

•
xb

θ2/2−θ2/2 •
O

•
A

•
B′

•
θ2

Figure 2: (a) The parabola f(x), (b) the deformation of the mid–line.

Deformation of the structure. In the sequel, y = (y1, y2) denotes the Lagrangian coor-

dinates and N(`) =

(
Nx(`)
Ny(`)

)
=

(
−g′x(`)
g′y(`)

)
is normal to the mid–line. We define the

following diffeomorphism X̃(θ2,y) =
(
gx(y1) + y2

Nx(y1)
|N(y1)| , gy(y1) + y2

Ny(y1)

|N(y1)|

)T
.

The rotation of the deformed structure. We get the final diffeomorphism X after a rota-
tion Rθ1 of angle θ1 (the second parameter to characterize the structure) around the center

O, see Fig. 3, X(θ1, θ2,y) = Rθ1X̃(θ2,y) where Rθ1 =

(
cos θ1 − sin θ1

sin θ1 cos θ1

)
.

•
O

•
xa

•
xb

•

×
y

•
O

•
A

•
B′

•

θ2

×
X̃(θ2,y)

•
O

•
•

•
θ2

×
X(θ1, θ2,y)

θ1

X̃(θ2, .)

X(θ1, θ2, .) Rθ1

Figure 3: The diffeomorphisms X and X̃.

Deformation of the profile’s boundary. We consider a reference configuration for the
structure Sref = S(0, 0). The boundary of this structure is described by two parametric
functions: γ+(`) for the extrados and γ−(`) for the intrados. The boundary of S(θ1(t), θ2(t))
is then described by the two parametric functions X(θ1, θ2,γ

+(`)) and X(θ1, θ2,γ
−(`)),

where

X(θ1, θ2,γ
+(`)) =

(
cos θ1 − sin θ1

sin θ1 cos θ1

) gx(γ
+
x (`)) + γ+

y (`)Nx(γ+x (`))

|N(γ+x (`))|

gy(γ
+
x (`)) + γ+

y (`)Ny(γ+x (`))

|N(γ+x (`))|

 , (2)

and the expression of X(θ1, θ2,γ
−(`)) is the analogy. In the sequel, for numerical tests,

we consider the case of an elliptic symmetric reference domain, see Fig.4.
Its boundary is given by the functions{

γ+(`) = (`, γ+
2 (`)),

γ−(`) = (`,−γ+
2 (`)),

where γ+
2 (`) =


b

√
1−

(
`−xa
xa

)2

if ` ∈ [0, xa],

b

√
1−

(
`−xa
1−xa

)2

if ` ∈]xa, 1].

(3)

This explicit expression allows us to construct a set of ordered points to describe the
structure’s profile.
Remark 2.1. The framework presented can be used for more general geometries.
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2.2.2 The diffeomorphism Φ

We consider a stationary configuration Ss = S(η1, η2). Let Ω̃ ⊂ Ω be a smooth domain
such that for every (θ1, θ2) ∈ DΘ, we have S(θ1, θ2) ⊂ Ω̃. Let (θ1, θ2) ∈ DΘ, see Fig.4
and we consider sθ1,θ2 the solution to ∆sθ1,θ2 = 0 in Ω̃\Ss,

sθ1,θ2 = X(η1 + θ1, η2 + θ2,Y(η1, η2, .))− Id on ∂Ss,

sθ1,θ2 = 0 on ∂Ω̃.
(4)

We define the diffeomorphism Φ by
∀(θ1, θ2) ∈ DΘ,∀y ∈ Ω,Φ(θ1, θ2,y) =


X(η1 + θ1, η2 + θ2,Y(η1, η2,y)) if y ∈ Ss,
y + sθ1,θ2(y) if y ∈ Ω̃\Ss,
y if y ∈ Ω\Ω̃.

(5)and verify that
∂θjΦ(θ1, θ2,y) =


∂θjX(η1 + θ1, η2 + θ2,Y(η1, η2,y)) if y ∈ Ss,
∂θjsθ1,θ2(y) if y ∈ Ω̃\Ss,
0 if y ∈ Ω\Ω̃,

(6)

where ∂θjsθ1,θ2 is solution to

 ∆(∂θjsθ1,θ2) = 0 in Ω̃\Ss,
∂θjsθ1,θ2 = ∂θjX(η1 + θ1, η2 + θ2,Y(η1, η2, .)) on ∂Ss,

∂θjsθ1,θ2 = 0 on ∂Ω̃.

Ss

Ω̃

Ω
S(θ1(t), θ2(t))

Ω̃

Ω

Φ(θ1−η1, θ2−η2, .)

Figure 4: The diffeomorphism Φ.

3 Stabilization of the linear problem

In order to construct a linear feedback law that is easy to compute and able to locally
stabilize the nonlinear fluid–structure problem with any exponential decay rate, we follow
a strategy summarized in six following steps, we refer to [1] for more details

Step 1: We write the equations in the fixed domain Fs = Ω\S(0, 0) using the change
of variable uref (y) = cof(∇Φ(θ1, θ2,y))Tuh ◦ Φ(θ1, θ2,y). We linearize
the resulting system around a stationary solution to the fluid–structure problem
(us, ps, η1, η2, 0, 0)T and then we define the matrix formulation of the linear dis-
cretized problem with Lagrange multipliers.

Step 2: We give a reformulation of the finite dimensional linear system after elimination
of the Lagrange multipliers from the equations by using a projector which plays a
similar role to the Leray projector (for the infinite dimensional system).

Step 3: The construction of the linear feedback law based on previous steps is numeri-
cally difficult to compute. To overcome this difficulty we study the relationships
between the eigenvalue problems (initial problem and projected problem).

Step 4: We define the projected systems associated to the unstable part of the spectral
decomposition. Stabilization of the unstable part is sufficient to stabilize the whole
system.

Step 5: We define the linear feedback law h by solving an Algebraic Riccati Equation of
small dimension (Optimal control problem on Reduced Order Model).

Step 6: We stabilize the nonlinear system using h defined on the linear system.

6
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At the end of the process, we have constructed the matrix K such that the feedback law h
is given by the relation

h = K(z− zs) (7)

where z = (uref , θ1, θ2, ω1, ω2)T and zs = (us, η1, η2, 0, 0)T . Note that the feedback is
defined in a fixed reference configuration Fs, so z must be known on Fs at each time
step.
In Step 1, writing the equations in the fixed domain, introduces some additional nonlinear
terms (geometrical terms) that must be linearized and must be taken into account in the
definition of the feedback. We refer to the paper [3] for the expression of that terms.
Contrary to previous works, the numerical simulations are based on fictitious domain
method that does not require to consider those additional terms. In our knowledge this
strategy in control theory is new and powerful.

4 The discretization and time evolution of the fluid–structure system

This section presents the approximation of the coupled problem (1). To take into account
the Dirichlet boundary conditions of the fluid on ΓD and at the interface between the fluid
and the structure, we introduce λ a Lagrange multiplier defined by λ = (λs,λi,λw)T .
We introduce finite-dimensional subspaces Vh ⊂ V = H1(F (θ1, θ2);R2) for the velocity,
Qh ⊂ Q = L2(F (θ1, θ2)) for the pressure, Wh ⊂ W = H−1/2(∂S(θ1, θ2))×H−1/2(ΓD)
for the multipliers.

Find (θ1, θ2, ω1, ω2) ∈ H2(0, T ;DΘ)×H1(0, T ;R2)
and (u, p,λ) ∈ H1

loc((0,∞);Vh)× L2
loc((0,∞);Qh)× L2

loc((0,∞);Wh) such that

∫
F (θ1,θ2)

∂u

∂t
· v + (u · ∇)u · v +

ν

2
(∇u +∇uT ) : (∇v +∇vT )− pdiv v dx +

∫
ΓD∪∂S(θ1,θ2)

λ · v dγx = 0,∫
F (θ1,θ2)

qdiv u dx = 0,∫
ΓD∪∂S(θ1,θ2)

u · µ dγx =

∫
Γi

ui · µ dγx +

∫
∂S(θ1,θ2)

∑
j

ωj∂θjX(θ1, θ2,Y(θ1, θ2, γx)) · µ dγx,

for every (v, q,µ) ∈ Vh ×Qh ×Wh and
Mθ1,θ2

(
ω̇1

ω̇2

)
=

(∫
∂S(θ1,θ2)

λ · ∂θjX(θ1, θ2,Y(θ1, θ2, γx)) dγx

)
j=1,2

+ MI(θ1, θ2, ω1, ω2)− k
(
θ1

θ2

)
+ h,

ω1 = θ̇1,

ω2 = θ̇2.
(8)

In what follows, ∆t denotes the time-step length, tn = n∆t for n ∈ N. First, we discuss
the discretization based on a fictitious domain method for the fluid equations (Navier-
Stokes) [4]. The approximation of the structure equations is realized by a backward finite
difference scheme. In this section, we describe the algorithm which is of partitioned type
to prescribe the time evolution. The location of the interface is governed by a level-
set. Finally, we present an original treatment of the feedback that must be done into
the reference configuration. Specific manipulations must be done to obtain an efficient
algorithm.
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4.1 Fluid approximation : Unfitted Extended Finite Element method with La-
grange multipliers

We define a background mesh covering Ω. The interface between the fluid and the solid
can arbitrary cut this mesh, see for instance Fig.5 where different zones are highlighted.

(a) Global domain.

(b) Near the structure.

(c) Near the interface
for integration only.

Figure 5: The fictitious domain.
We use Lagrange multipliers to enforce the Dirichlet boundary conditions. We define a
triangulation Th of Ω and a background finite element method with P2–P1–P1 Taylor–
Hood elements for the velocity, the pressure and the multipliers respectively,

Ṽh = {uh ∈ C 0(Ω) with uh|T ∈ (P2(T ))2, ∀T ∈ Th},
Q̃h = {ph ∈ C 0(Ω) with ph|T ∈ P1(T ), ∀T ∈ Th},

W̃h = {λh ∈ C 0(Ω) with λh|T ∈ (P1(T ))2, ∀T ∈ Th}.

The basis functions that are considered in the sequel are traces of the background basis
functions of Ṽh, Q̃h and W̃h. The traces are taken over the fluid domain F (θ1, θ2) for
the basis functions of the velocity and the pressure and on the interface ∂S(θ1, θ2) for the
Lagrange multipliers. More precisely, we consider the following natural discretizations
of V , Q and W spaces,

V n
h = Ṽh|F (θn1 ,θ

n
2 ), Q

n
h = Q̃h|F (θn1 ,θ

n
2 ), W

n
h = W̃h|∂S(θn1 ,θ

n
2 ).

The fluid domain F (θn1 , θ
n
2 ) and the interface ∂S(θn1 , θ

n
2 ) depend on the parameters of the

structure (θn1 , θ
n
2 ), hence this dependence occurs also on the trace spaces. That is why we

have used the superscript n on these spaces.
Similarly to XFEM, where the shape functions of the finite element space is multiplied
with an Heaviside function, this corresponds here to the multiplication of the shape func-
tions with the characteristic function of the fluid domain.
An approximation of the problem (8) can be easily given replacing the continuous func-
tions u, p,λ by the discrete ones uh, ph,λh. However it is known that it is not sufficient
to recover the correct solution. Even if the equations are integrated only over the physical
domain, to obtain stable discretizations, the approximation spaces must be carefully cho-
sen or a stabilization term must be added to ensure an inf-sup condition. In the present
work, we add the term

−γ0h

∫
∂S(θ1,θ2)

(λh + σF (uh, ph)nθ1,θ2) · (µh + σF (vh, qh)nθ1,θ2) dγx, (9)

8
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with a mesh–independent constant γ0 > 0. It results a stable and optimally convergent
approximation (in particular for the multiplier λ) provided any mesh element T is cut by
the interface in a certain way so that F (θ1, θ2) ∩ T is a big enough portion of T . If for
some elements, this is not the case, the method can be still cured by replacing the approx-
imating polynomial in such "bad elements" by the polynomial extended from adjacent
"good elements". In the stabilization term (9), the variables u and p are considered under
this "robust reconstruction" and we specify this writing û and p̂ in the approximations. In
practice, the assumptions required to ensure robustness of the method are satisfied if the
mesh is sufficiently refined near the interface, see [4]. We denote (Uk), (Pk), (Wk) the
basis functions of V n+1

h , Qn+1
h , W n+1

h respectively and U, P, Λ are the coefficients of uh,
ph, λh in those basis. We realize a finite element approximation of the problem (8) where
first order Euler finite difference in time is used. Note that the problem is formulated on
F (θn+1

1 , θn+1
2 ) and we have to solve the following linear system for the fluid

(Mn+1 + ∆tAn+1)Zn+1 = ∆tFn+1 +Mn+1Zn, (10)
where those vectors and matrices are given by

Mn+1 =

 Muu 0 0
0 0 0
0 0 0

 , An+1 =

 Auu Aup Auλ

ATup App Apλ
ATuλ ATpλ Aλλ

 , Z=

 U
P
Λ

 and F=

 0
0
Fλ

 ,with

(Muu)jk =

∫
F (θn+1

1 ,θn+1
2 )

Uj · Uk dx, (App)jk = −γ0h

∫
∂S(θn+1

1 ,θn+1
2 )

P̂jP̂k dγx,

(Auu)jk =

∫
F (θn+1

1 ,θn+1
2 )

(unh · ∇)Uk · Uj +
ν

2
(∇Uj +∇UTj ) : (∇Uk +∇UTk ) dx

−ν2γ0h

∫
∂S(θn+1

1 ,θn+1
2 )

(∇Ûj +∇Ûj
T

)nθ1,θ2 · (∇Ûk +∇Ûk
T

)nθ1,θ2 dγx,

(Aup)jk = −
∫

F (θn+1
1 ,θn+1

2 )

Pkdiv Uj dx + νγ0h

∫
∂S(θn+1

1 ,θn+1
2 )

P̂knθ1,θ2 · (∇Ûj +∇Ûj
T

)nθ1,θ2 dγx,

(Auλ)jk = −
∫

ΓD∪∂S(θn+1
1 ,θn+1

2 )

Uj · Wk dγx − νγ0h

∫
∂S(θn+1

1 ,θn+1
2 )

Wk · (∇Ûj +∇Ûj
T

)nθ1,θ2 dγx,

(Apλ)jk = γ0h

∫
∂S(θn+1

1 ,θn+1
2 )

P̂jnθ1,θ2 · Wk dγx, (Aλλ)jk = −γ0h

∫
∂S(θn+1

1 ,θn+1
2 )

Wj · Wk dγx,

(Fλ)k =

∫
Γi

ui · Wk dγx +

∫
∂S(θn+1

1 ,θn+1
2 )

∑
j

ωn+1
j ∂θjX(θn+1

1 , θn+1
2 ,Y(θn+1

1 , θn+1
2 , γx)) · Wk dγx.

4.2 Structure approximation

We use a Finite Difference scheme to approximate the velocity and the displacement of
the structure
(
θn+1

1

θn+1
2

)
= 2

(
θn1
θn2

)
−
(
θn−1

1

θn−1
2

)
+ ∆t2M−1

θ1,θ2

(
MA(tn) + MI(t

n) + h− k
(
θn1
θn2

))
,(

ωn+1
1

ωn+1
2

)
=

(
ωn1
ωn2

)
+ ∆tM−1

θ1,θ2

(
MA(tn) + MI(t

n) + h− k
(
θn1
θn2

))
.

(11)
4.3 Coupling scheme

We use a partitioned approach, see [6, 2], which means that we treat the update with two
sequential steps: a fluid step and a structure step. At each time step we do the following
procedure
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1. Compute h (if the control is applied)
2. Compute (θn+1

1 , θn+1
2 , ωn+1

1 , ωn+1
2 ) with the structure step (11).

3. Update the fluid domain F (θn+1
1 , θn+1

2 ) and finite element spaces V n+1
h , Qn+1

h ,
W n+1
h (new definition near the interface).

4. Assembling the matrices Mn+1, An+1 and F n+1 in (10).
5. Compute (un+1

h , pn+1
h ,λn+1

h ) with the fluid step (10).
6. Compute the next time step ∆t such that only one row of elements can be crossed

by the structure, i.e. ∆t = cfl× h

Vmax

, where h is the characteristic mesh-size, Vmax

is the maximum velocity of the structure and cfl ∈ (0, 1).

4.4 Fictitious points and level-set update

During the time-marching procedure, difficulties arise near the interface. Indeed, the
field variable at the time level tn+1 can become undefined near the interface since there
was no fluid flow at the time level tn (S(θn+1

1 , θn+1
2 ) 6= S(θn1 , θ

n
2 ) for the solid and

F (θn+1
1 , θn+1

2 ) 6= F (θn1 , θ
n
2 ) for the fluid). In other words, some degrees of freedom

for the fluid part which are not considered at the time level tn must be taken into account
at the time level tn+1.
Level–set function and integration method over the cut elements. The matrices in (10)
are computed via an integration over F (θ1, θ2) and ∂S(θ1, θ2). These integration methods
need a well–defined interface ∂S(θ1, θ2) and a method to integrate functions over the cut
elements. The interface is defined as the null level of a level–set function and the integra-
tion over the cut cells is done by dividing those cells into sub–cells, see Fig.5(c), (QHULL
library). Note that the level–set is defined by a set of discrete ordered points located on
the position of the interface which is known explicitly according to the parameters θ1, θ2

and the diffeomorphism X, see (2). The distance to the level–set is computed by search-
ing the two points that minimize the distance and by taking the projection on the segment
defined by those two points. In order to reduce the computational cost of this method, at
each time step, we compute the distance to the level–set only for the mesh nodes that are
needed, i.e. the nodes near the interface. This drastically reduces the computational cost.
Treatment of the fictitious points. When solving (10) we need Un, the coordinates of unh
in the basis of the space V n+1

h while it is known in V n
h . Even if the computation is realized

only on the fluid domain, we affect values for the velocity in each degree of freedom of
the background mesh. In the fluid domain, the values come from the resolution of the
Navier-Stokes equations at the time level tn while the values in the structure come from
the velocity of the structure

unstr(x) = ωn1∂θ1X(θn1 , θ
n
2 ,Y(θn1 , θ

n
2 ,x)) + ωn2∂θ2X(θn1 , θ

n
2 ,Y(θn1 , θ

n
2 ,x)).

In practice, for each nodes yi of the mesh in the reference configuration Sref , we compute
xi = X(θn1 , θ

n
2 ,yi) and ∂θjX(θn1 , θ

n
2 ,yi) to determine the velocity unstr(xi). Considering

this set of velocity values we can approximate unstr(x) in any point x (using a weighted
arithmetic mean). Indeed, we do not have any explicit expression for Y(θ1, θ2,x).

Remark 4.1. For efficiency, the node yi retained to compute unstr(x) are reduced to the
ones located near the structure’s boundary in Sref .

10
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4.5 Computation of the feedback control in the actual domain

The main originality of our work compared with other stabilization studies is that the
simulation is run in the actual domain F (θ1, θ2) instead of the reference domain Fs

corresponding to the configuration of the stationary solution. However, the feedback
matrix K has been computed in Fs (see Section 3), then to apply the feedback control (7)
given by h = K(z − zs), we need the value of the velocity uref at any time iteration in
the reference configuration Fs. In order to get the value of uref , for every node y of the
mesh on Fs, we use the relation

uref (y) = cof(∇Φ(θ1, θ2,y))Tuh ◦Φ(θ1, θ2,y).

For each node y, we compute the corresponding point x = Φ(θ1, θ2,y) in the computa-
tional domain F (θ1, θ2). Then we obtain the value of uh(x) by interpolation using the
velocity computed on F (θ1, θ2) at each time step. We can conclude by multiplying by
the transposed cofactor of the Jacobian matrix of Φ given by (6).

Ss

+
y

S(θ1(t), θ2(t))

+
x• •
•

Φ(θ1−η1, θ2−η2, .)

Figure 6: Interpolation to compute the velocity in the fixed domain.

To sum up, the feedback is simply based on Φ numerically defined as an extension of X
into the fluid domain and that can be obtained by solving a Poisson problem formulated
on a small domain defined around the structure (see the sector in Fig.4).

5 Numerical results
We consider the configuration illustrated in Fig.1 with Ω = (−1.0, 8.0) × (ymin, ymax)
where ymin = −2.4, ymax = 2.1 and the structure domain is given by (3) with the point O
located in (0, 0). The initial position of the structure is (η1, η2) = (−25◦, 0), the initial in-
flow boundary datum is given by a Poiseuille profile ui(x2) = 6Um

(ymax−ymin)2
(−x2

2 +(ymax +

ymin)x2 − ymaxymin), where Um is the mean speed of the inflow datum. The Reynolds
number Re = cUm

ν
, where c = 1 is the chord of the profile, is taken as Re = 300. In

the sequel, we use Um = 1 and ν = 1
300

. The initial state of the fluid is computed as
the stationary state associated to the datum ui. We consider on Γi an inflow boundary
perturbation u(x) = ui +βpg(x)e−30(t−0.3)2 , where βp > 0 is a coefficient that represents
the intensity of the perturbation (here we take βp = 0.5), g(x) = (σ(ψ1, p1)n.n, 0)T for
ψ1 and p1 computed as the real part of an eigenvector associated to the most unstable
eigenvalue of the adjoint problem introduced to define Kδ (the vector σ(ψ1, p1)n was
normalized). Such perturbation is one of the most destabilizing normal boundary pertur-
bations for the fluid [1]. The parameters of the structure are given by ρ = 5 and k = 12.
The numerical computations are led on a triangular mesh of 35731 cells locally refined
near the boundary, near the structure and near the wake of the structure (see Fig.5(a)).
We use the finite element spaces and the time stepping process defined above. The total
number of degrees of freedom is equal to 153880 at the initial time and varies according
to the number of elements that are discarded.
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Figure 7: (a) Spectrum of the linearized problem, (b) Inflow perturbation σ(ψ1, p1)n.n.

Figure 8: (a) Stationary solution (t=0s), (b) perturbated solution (t=12s) for Re = 300.

Figure 9: (a) Evolution of ‖u− us‖2 and (b) Evolution of θ1 and (c) θ2 with and without control.

We run two simulations, one in open loop and the other one in closed loop. In that way,
we can observe the efficiency of the feedback control. The results are shown in Fig.9 and
confirm the good behavior of the method.
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