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A fictitious domain approach for the Stokes problem based
on the extended finite element method

Sébastien Court™ ", Michel Fournié and Alexei Lozinski

Institut de Mathématiques de Toulouse, Université de Toulouse, France

SUMMARY

In the present work, we propose to extend to the Stokes problem a fictitious domain approach inspired by
extended finite element method and studied for the Poisson problem in a paper of Renard and Haslinger
of 2009. The method allows computations in domains whose boundaries do not match. A mixed FEM is
used for the fluid flow. The interface between the fluid and the structure is localized by a level-set function.
Dirichlet boundary conditions are taken into account using Lagrange multiplier. A stabilization term is intro-
duced to improve the approximation of the normal trace of the Cauchy stress tensor at the interface and avoid
the inf-sup condition between the spaces for the velocity and the Lagrange multiplier. Convergence analysis
is given, and several numerical tests are performed to illustrate the capabilities of the method.

KEY WORDS: fictitious domain; XFEM; mixed method; stabilization technique; fluid—structure
interactions

1. INTRODUCTION

Fluid—structure interactions (FSI) are of great relevance in many fields of applied scientific and
engineering disciplines. A comprehensive study of such problems remains a challenge and justi-
fies the attention made over the last decades to propose efficient and robust numerical methods.
We refer to [3] where different numerical procedures to solve FSI problems are reviewed. One
classification of FSI solution procedures can be based upon the treatment of the meshes with con-
forming or non-conforming mesh methods. For the first ones, meshes are conformed to the interface
where the physical boundary conditions are imposed [4-6]. As the geometry of the fluid domain
changes through time, re-meshing is needed, what is excessively time-consuming, in particular for
complex systems.

In the present paper, we are interested in non-conforming mesh methods with a fictitious domain
approach, where the mesh is cut by the boundary. Most of the non-conforming mesh methods are
based upon the framework of the immersed methods where force-equivalent terms are added to the
fluid equations in order to represent the FSI [7,8]. Many related numerical methods have been devel-
oped, in particular the popular distributed Lagrange multiplier method, introduced for rigid bodies
moving in an incompressible flow [9]. In this method, the fluid domain is extended to cover the rigid
domain where the fluid velocity is required to be equal to the rigid body velocity. This constraint
is enforced by using distributed Lagrange multipliers, which should be approximated on a mesh
covering the structure and sufficiently coarse with respect to the mesh used for the fluid velocity, in
order to satisfy the inf-sup condition.
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More recently, eXtended finite element method (XFEM) introduced by Moés, Dolbow, and
Belytschko in [1] (see a review of such methods in [10]) has been adapted to FSI problems in
[11-14]. The idea is similar to the fictitious domain/Lagrange multiplier method previously men-
tioned, but the fluid velocity is no longer extended inside the structure domain, and its equality with
the structure velocity is enforced by a Lagrange multiplier only on the fluid—structure interface. One
thus gets rid of unnecessary fluid unknowns, and moreover, one easily recovers the normal trace
of the Cauchy stress tensor on the interface. We note that XFEM has been originally developed
for problems in structural mechanics mostly in the context of cracked domains, see, for example,
[2,15-18]. The specificity of the method is that it combines a level-set representation of the geome-
try of the crack with an enrichment of a finite element space by singular and discontinuous functions.
Several strategies can be considered in order to improve the original XFEM. Some of these strategies
are mathematically analyzed in [19, 20].

In the context of FSIs, the difficulty that present the applications of such techniques lies in the
choice of the Lagrange multiplier space used in order to take into account the interface, which is not
trivial because the interface cuts the mesh [21]. Indeed, the multiplier space, besides having good
approximation properties, should satisfy a uniform inf-sup condition (similarly to more traditional
fictitious domain methods [22]). In a straightforward discretization, it implies that the mesh for the
multiplier should be sufficiently coarse in comparison with the mesh for the primal variables. Thus,
the natural mesh given by the points of intersection of the interface with the global mesh cannot be
used directly. An algorithm to construct a multiplier space satisfying the inf-sup condition is devel-
oped in [21], but its implementation can be difficult in practice. It may be thus preferable to work on
the natural, easily constructible mesh, as outlined earlier. This is achieved in a stabilized version of
the method proposed in [2] (an extension to the contact problems in elastostatics is also available in
[23]). In the present paper, we are interested in extending the method of [2] to the Stokes problem.
An important feature of this method (on the basis of the XFEM approach, similar to [11, 12]) is
that the Lagrange multiplier is identified with the normal trace of the Cauchy stress tensor o (u, p)n
at the interface. With the aid of the stabilization technique presented in this present paper (never
studied in that context in our knowledge), we have a good numerical approximation of this quantity,
that is crucial in FSI because it gives the force exerted by the viscous fluid on the structure. By the
way, we note that alternative methods based on the work of Nitsche [24] (such as [25,26] in the
context of the Poisson problem and [27] in the context of the Stokes problems) do not introduce
the Lagrange multiplier and thus do not necessarily provide a good numerical approximation of
this force.

The outline of the paper is as follows. The continuous problem is set in Section 2 in the weak
sense, and the functional spaces are given. We recall the corresponding variational formulation
with the introduction of a Lagrange multiplier to impose the boundary condition in the interface.
Next in Section 3, the fictitious domain method is introduced. In particular, the discrete spaces are
defined, and the discrete variational problem is studied without the stabilization technique. This
latter—which is an augmented Lagrangian method—is introduced in Section 4, and we show that
theoretically, it enables us to recover the convergence for the multiplier associated with the Dirichlet
condition (see Lemma 4). The convergence analysis for the stabilized method is given in Section 4.2
and optimal error estimates are proved. Section 5 is devoted to numerical tests. Rates of convergence
are computed with or without stabilization, and the behavior of the method is studied for different
geometric configurations. Moreover, we compare our method with a classical one which uses a
boundary-fitted mesh. Technical aspects of the implementation are discussed in Section 6. Finally
in Section 7, we perform simulations in a simplified unsteady case, what gives a glimpse of the
future perspectives. The conclusion is given in Section 8.

2. SETTING OF THE PROBLEM

In a bounded domain of R2, denoted by O, we consider a full solid immersed in a viscous incom-
pressible fluid. The domain occupied by the solid is denoted by S, and we denote by T" its boundary.
The fluid surrounding the structure occupies the domain O \ § = F, where S denotes S U 9§
(see Figure 1).
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Figure 1. Domain for fluid and structure.

We denote by u and p the velocity field and the pressure of the fluid, respectively. In this paper,
we are interested in the following Stokes problem

—vAu+Vp=f inF, (1)
divu=0 inF, 2)

u=0 ond0O, (3)

u=g onl, @)

where f € L2(F), g € H'/?(I"). The boundary conditions on I" is nonhomogeneous. In the homo-
geneous Dirichlet condition, we consider on dO having a physical sense but can be replaced by a
nonhomogeneous one, without more difficulty.

With regard to the incompressibility condition, the boundary datum g must obey

/g-ndF = 0.
r

We consider this nonhomogeneous condition as a Dirichlet one imposed on I'. Notice that other
boundary conditions are possible on I', such as Neumann conditions, as it is performed in [2], where
mixed boundary conditions are considered. Equation (1) is the linearized form, in the stationary case,
of the underlying incompressible Navier—Stokes equations

Ju
ot
The scalar constant v denotes the dynamic viscosity of the fluid. In our presentation, for more

simplicity, we only consider the stationary case, and the solid is supposed to be fixed.
The solution of (1)—(4) can be viewed as the stationary point of the Lagrangian

Lo(u,p,k)zv/ |D(u)|2d]-"—/ pdiv udf—/ f-udF—/A-(u—g)dF. 5)
F F F r

Note that we should assume some additional smoothness in (5) to make sense, for example,
u € H2(F), p € H'(F), A € L2(I"). The exact solution normally has this smoothness provided that
f € L2(F) and g € H¥2(I).

The multiplier A, associated with the Dirichlet condition (4), represents the normal trace on I" of
the Cauchy stress tensor. Its expression is given by

4+ (u-V)u—vAu+Vp=1f inF.

A(u, p) =0(u, p)n =2vD(u)n — pn,

where
D(u) = % (Vu + VuT) .

The vector n denotes the outward unit normal vector to d.F (see Figure 1).



S. COURT, M. FOURNIE AND A. LOZINSKI

Remark 1
Notice that if we have the incompressibility condition (2), then, as a multiplier for the Dirichlet

condition on I', considering o (u, p)n is equivalent to considering va—u — pn, as it is shown in [28§]
n
or [29]. It is mainly because of the equality div (Vu + VuT) = Au, when div u = 0.
An FEM based on the weak formulation derived from (5) does not guarantee, a priori, the con-
vergence for the quantity o (u, p)n in L?(I"). As it has been performed in [30,31], our approach

consists in considering an augmented Lagrangian in adding a quadratic term to the one given in (5),
as follows

L(u, p,A) = Lo(u, p,A) — g/;" A —o(u, p)n|2 dr. (6)

The goal is to recover the optimal rate of convergence for the multiplier A. The constant y rep-
resents a stabilization parameter (see numerical investigations in Section 5.2). It has to be chosen
judiciously.

Let us give the functional spaces we use for the continuous problem (1)—(4). For the velocity u,
we consider the following spaces

V={veH'(F)|v=00n0d0}, Vo=H{(F),
V¥ ={veV|divv=0inF}, Vi ={veHy(F)|divv=0inF}.

The pressure p is viewed as a multiplier for the incompressibility condition div u = 0 and belongs
to L2(F). It is determined up to a constant that we fix such that p belongs to

QZLS(]:):{peLz(]-')l/de]-'zo}.

The functional space for the multiplier is chosen as
/

W=H"2T) = (HI/Z(I‘))

Remark 2
If we want to impose other boundary conditions, as in [2] for instance, the functional spaces V¢ and
H'/2(T") must be adapted, but there is no particular difficulty.

The weak formulation of problems (1)—(4) is given by

Find (u, p,A) € V x Q x W such that
a(u,v)+b(v,p)+c(v,A)=L(V) Vvev,

b(u,q) =0 Vq € Q, 7
c(u,p) =G(p) Vi eW,
where
a(u,v) = Zv/ D(u): D(v)dF, ()
F
b(u,q) = —/ gdiv ud.F, )
f
c(u,u):—/ M -udl, (10)
r
L(V) =/ f-vdF, (11)
f

Q(/L)=—/F/L~ng- (12)
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The expression D(u) : D(v) = trace (D(u)D(v)T) denotes the classical inner product for matri-
ces. Let us note that problem (7) is well-posed (see [28] for instance). The solution of problem
(1)—(4) can be viewed as the stationary point of the Lagrangian on V x 0 x W

Lo(u,p,)L):v/ |D(u)|2d]:—/ pdivud]:—/ f-ud]:—/l-(u—g)dr. (13)
F F F r

3. THE FICTITIOUS DOMAIN METHOD WITHOUT STABILIZATION

3.1. Presentation of the method

The fictitious domain for the fluid is considered on the whole domain O. Let us introduce three
discrete finite element spaces, A\ H'(0), and 0" C L%(O) on the fictitious domain and
W L2(0O). Because O can be a rectangular domain, these spaces can be defined on the same
structured mesh that can be chosen uniform (see Figure 2). The construction of the mesh is highly
simplified (no particular mesh is required). We set

Vh = {vh € C(0) | vl =0, vl € P(T), VT € Th}, (14)

where P(T) is a finite dimensional space of regular functions such that P(T) 2 Py (T) for some

integer k = 1. For more details, see [32] for instance. The mesh parameter stands for 2 = max hr,
TeTh
where h7 is the diameter of 7.

Then, we define
h ._ ~xh h._ Ah h . wh
A% '_Vlf’ Q"= Qlf’ W .—W|F,

which are natural discretizations of V, L2(F), and H™'/2(T"), respectively. This approach is equiv-
alent to XFEM as proposed in [11] or [12], where the standard FEM basis functions are multiplied
by the Heaviside function (H (x) = 1 for x € F and H(x) = 0 for x € O \ F), and the products are
substituted in the variational formulation of the problem. Thus, the DOFs inside the fluid domain
F are used in the same way as in the standard FEM, whereas the DOFs in the solid domain S at
the vertices of the elements cut by the interface (the so called virtual DOFs) do not define the field
variable at these nodes, but they are necessary to define the fields on F and to compute the integrals
over F. The remaining DOFs, corresponding to the basis functions with support completely outside
of the fluid, are eliminated (see Figure 2). We refer to the papers mentioned earlier for more details.

%

Figure 2. An example of a mesh on a fictitious domain. The standard DOFs are in black, the virtual ones
are in red, and the remaining ones are removed.
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Figure 3. Base nodes used for the multiplier space W”.

An approximation of problem (7) is defined as follows (see Figure 3):

Find (uh, ph,)Lh) eV x Qh x W" such that
a(@", v + b(v", ph) + c(vh A" = L(vh) v eV,
b(u,q") =0 Vg" e o,
c(ut, uh) = G(uh) Vuh e Wh

(15)

In matrix notation, the previous formulation corresponds to

0 0 0
Awu Aup Aua

" U F°
A%, 0 o |[P]=]0].
oF A G°
A% 00

where U, P, and A are the DOFs of u” p and A", respectively. As it is performed in [33] or [32]

for instance, these matrices Auu, A?l P> A° ua and vectors F°, 0. GO are the discretization of (8)—(12),

respectively. Denoting {@, }, {xi }, and {¥; }, the selected basis functions of spaces A4 0", and wh,
respectively, we have

(42, =2 [ Do : DwpaF, (43,), = [ xav e
0 —_ — L. . 0 — . . 0 [ — . .
(42) == [0, (1) = [ £-007, (6°), == [ &-wiar,

3.2. Convergence analysis
Let us define
Vg = {vh eVije", uhy=0vu" eWh}
{vh eVvh | c(vh,uh) = c(vh,g) ‘v’p,h € Wh} ,
V#h {vh eV | b(vh,g") =0 Vg" € Qh},
#h = {vh eV bt ¢y =0Vg" € Q" c(v", u)y =0 vt eWh}

The spaces Vh, V#’h, and Vﬁ’h can be viewed as the respective discretizations of the spaces V), A%
and V.
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Let us assume that the following inf-sup condition is satisfied, for some constant 8 > 0
independent of &

b )
H1 inf b
0#q"eQh 0#vhevh v llvnllg™ | gn

Note that this inf-sup condition concerns only the couple (u, p), and it implies the following
property

7" e o b g =0 eV =7g" =0. (16)

We shall further assume that the spaces Vh, Qh, and W" are chosen in such a way that the following
condition is satisfied, for all 4 > 0

H2 weWh: c(vhph) =0vv e VI = 1" =o.

Note that this hypothesis is not as strong as an inf-sup condition for the couple velocity/multiplier.
It only demands that the space V” is rich enough with respect to the space W”.

Remark 3

We assume only the inf-sup condition for the couple velocity/pressure, not the one for the couple
velocity/multiplier. Indeed, the purpose of our work is to stabilize the multiplier associated with the
Dirichlet condition on I', not the multiplier associated with the incompressibility condition. The
stabilization of the pressure—on the domain F - would be another issue (see page 424 of [34]
for instance).

Lemma 1
The bilinear form a introduced in (8) as

a:(u,v)— 211/ D(u): D(v)dF
f

is uniformly V" -elliptic, that is to say there exists > 0 independent of / such that for all v/* € V%,

2
av" v =« th H .

Proof
Notice that V# C V. Then, it is sufficient to prove that the bilinear form a is coercive on the space
V, that is to say there exists & > 0 such that forall v e 'V,

a(v,v) = a|v|3.
By absurd, suppose that for all n € N, there exists (v,), such that
n|Dva)llizme < Ivalv.
Without loss of generality, we can assume that ||v,||lv = 1. In particular, D(v,) converges to 0 in
[L2(F)]*. Then, from the Rellich’s theorem, we can extract a subsequence v,,, which converges in

L2(F). Using the fact that div v, = 0, the Korn inequality (see [32] for instance) enables us to
write

2
[V _VP”ill(]:) <C (”Vm - Vp”iz(]:) + HD(Vm) - D(Vp)” [Lz(f)]zt) >
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where C denotes a positive constant* This implies that (vp,), is a Cauchy sequence in H!(F).
Thus, it converges to some Vo, Which satisfies || D(veo) |12 = 0. The trace theorem implies that
we have also voo = 0 on dO. Let us notice that v = || D(v)||[p.2(s)+ is a norm on V. Indeed, if
[ D(Veo) l[L2(7)¢ = O, then v is reduced to a rigid displacement, that is to say Voo =/ +® A x in
F. Then, the condition v, = 0 on dO leads us to v, = 0. It belies the fact that ||v,, [y =1. O

Proposition 1
Assume that the properties H1 and H2 are satisfied. Then, there exists a unique solution (u”, p*, Al )
to Problem (15).

Proof

Because Problem (15) is of finite dimension, existence of the solution will follow from its unique-
ness. To prove uniqueness, it is sufficient to consider the case f = 0 and g = 0 and to prove
that it leads to (uh, ph, Al ) = (0,0,0). The last two equations in (15) show then immediately that
u’ e Vg’h, so that taking v = u” in the first equation leads to u” = 0 by Lemma 1. Taking any test
function from Vg in the first equation of (15) shows now that ph = 0 by condition (16) (hypothesis
H1). And finally, the same equation yields Ah=0 by Hypothesis H2. |

We recall the following basic result from the theory of saddle point problems [22, 32].

Lemma 2
Let X and M be Hilbert spaces and A(-,-) : X x X — R and B(-,*) : X x M — R be bounded
bilinear forms such that A is coercive

A, u) = allul%, YueX
and B has the following inf-sup property

, B(u,q)

inf —_—=

0#£geM goyex |ullxllqlim

bl

with some «, > 0. Then, for all ¢ € X’ and ¢ € M’, the problem

Find ¥ € X and p € M such that
{A(u,v)+B(v,p)= (p.v), VveX
B(u.q) = (¥.q), VgeM

has a unique solution, which satisfies

lullx + llgllae < CAlollx + ¥ llar)

with a constant C > 0 that depends only on «, § and on the norms of 4 and B.
We can now prove the abstract error estimate for velocity and pressure.

Proposition 2
Assume Hypothesis H1. Let (u, p,A) and (u”, ph,)uh) be solutions to Problems (7) and (15),
respectively. There exists a constant C > 0 independent of / such that

h h . h . h
[lu—u®llv+1lp—pllizz <C| inf [[u=v'[v+ inf [[p—q"[i2x
vievi qheQh

T+ oinf A —uhuHuzm) . am

inf
ILh ceWwh

In the following, the symbol C will denote a generic positive constant that does not depend on the mesh size A. It
can depend, however, on the geometry of F and I, on the physical parameters, on the mesh regularity, and on other
quantities clear from the context. It can take different values at different places.
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Proof
Take any v € V%, g" € Q" and pu* € W". Comparing the first lines in systems (7) and (15), we
can write

a@ —v" why+bwh, ph—¢") =au—v", W +bw", p—g") +c(A—p",wh vwhe Vg.

(18)
We have used here the fact that C(Ah, wh) = c(p”, w") =0 for all w" € Vg. Similarly, the second
lines in systems (7) and (15) imply

b —v" s") =bu—v" ") vs'e o (19)
Now, consider the problem

Find x" € Vg and " € Q" such that
a(x", wh) + b(wh, ") = a(u— v, wh) + bW, p—qg") +c(A —pl,wh)  vwheVh
b(x", s") = bu—v", st vsh e ",

Using Lemma 2 with A = a, B =5, X = V’g, and M = Qh, the solution (xh,th) exists and is
unique. Moreover, it satisfies

1" v + 1" 2y < € (= llv + 1 = 4"l + 12 = " -2y

Comparing the system of equations for (x”, ") with (18)—(19) and noting that u —v" € V! we can
identify

=l vt = ph gt
In combination with the triangle inequality, this gives
lu=u*lly +11p = p"l2gr) < € (T =v"lv + 1P = " llacr + 12 = 18 lg-12ry) -

Because v/ € Vg, q" e 0" and ph e W" are arbitrary, this is equivalent to the desired result. [J

In summary, the results of this section tell us that, under Hypotheses H1 and H2, Problem (15)
has a unique solution, which satisfies the a priori estimate (17). However, we have no estimate for
the multiplier A*.

3.3. The theoretical order of convergence

The estimation of the convergence rate proposed for the Poisson problem in [2] can be straightfor-
wardly transposed to the Stokes problem. Proposition 3 of [2] ensures an order of convergence at
least equal to Vh. 1t can be adapted to our case as follows.

Proposition 3
Assume Hypotheses H1, H2. Let (u, p,A) be the solution of Problem (7) for g = 0, such that
u € H>*¢(F) N H)(F) for some & > 0. Assume that
inf ||p—q"o<ChS,
L, 1P =dllo
inf A —p"|w<ChH,
[LhGWh

for some § = 1/2. Then,

[u—v"| +1p =Pl < C V.
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Proof
As is shown in [2], Section 3, for any u € H?*1¢(F) N H}(F), there exists a finite element

interpolating function v" € Vg such that

lu—v"|y < CVh. (20)
In fact, v” is constructed as a standard interpolating vector of (1 — 1 )u where 7y, is a cut-off func-
tion equal to 1 in a vicinity of the boundary I', more precisely in a band of width % so that v/
vanishes on all the triangles cut by I'. This ensures that v/ vanishes on T" so that v/ € Vg. Now, the

estimate of the present proposition follows from (17) combined with (20) (note that Vg = Vg under
our assumptions) and the hypotheses on the interpolating functions ¢” and " O

Let us quote other references that treat this kind of phenomena, as [22,35-37]. We note, however,
that the estimate of the order of convergence in V'h seems too pessimistic in view of the numerical
tests presented in [2] for the Poisson problem (with the possible exception of the lowest order finite
elements). In our numerical experiments for the Stokes problem, we do not observe the order of
convergence as slow as /.

4. THE FICTITIOUS DOMAIN METHOD WITH STABILIZATION

4.1. Presentation of the method

The main purpose of the stabilization method we introduce consists of recovering the convergence
on the multiplier A. For that, the idea is to insert in our formulation a term that takes into account
this requirement. Following the idea used in [30,31], we extend the classical Lagrangian L given
in (13) as

L(u,p,l):v/ |D(u)|2d./7—/ pdivud]—"—/ f-ud}"—/k-(u—g)dl"
F F F r

—Z/ 1A —o(u, p)nf2dr.
2 Jr

Note that this extended Lagrangian coincides with the previous one on an exact solution. The
quadratic term added enables us to take into account an additional cost. Minimizing L leads to
forcing A to reach the desired value corresponding to o (u, p)n. The constant y > 0 represents the
importance we give to this demand. However, notice that this additional term affects the positivity
of L. This is the reason why we cannot choose y too large, and so this approach is not a penalization
method. We discuss on this choice of y in Section 5.2.

The computations of the first variations lead us to

SL
E(V) = 21)/}_D(u) : D(V)d]-"—/}_pdiv vd]—"—/}_f-vd]—‘—/r)» -vdI’
+ 2vy / (A —o(u, p)n)-(D(v)n)dl,
r
SL .
E(Q) =— /fqdlv udF —y /F q (A —o(u,p)n)-ndl,

== [n-@-gar-y [ @-apn ur.
Thus, the stabilized formulation is
Find (u, p,A) € V x Q x W such that
A((u, p,A);v) = L(v) Vvev,

B((u, p,A);q) =0 Vq € 0, 1)
C((w,p,A);p)=G(n) Ypew,
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where

A((u,p,k);v)zZv/;TD(u):D(v)d}'—/fpdiv vd]—'—[FA-vdF
—4v2y/F(D(u)n)-(D(v)n) dr+2vy/rp(D(v)n.n)dr
+2vy/rx.(D(v)n)dr,

B, p.2)ig) = = [ qaivudF +20y [ gD@n-mar—y [ pgar—y [ ga-nar,

e pariw) == [ weudr +20p [ e @@mar—y [ puemar—y [ a-par.

In matrix notation, the previous formulation corresponds to

Auu Aup Au/\

U F
AlTlp App App Pl =1]0],
A G

AL, AIT)l Azl

where U, P, and A are already introduced in Section 3.1. As it is performed in [33] or [32] for
instance, these matrices are discretizations of the following bilinear forms

Agu - (0, v) — 2v/ D(u): D(v)dF — 4v2y[ (D(u)n) - (D(v)n)dT,
F r

Aup i (v, p) —> —/ pdiv vdF + 21))// p (D(v)n-n)dT,
F r

Aur : (V,4) — —/ A-vdl + 21))// A-(D(v)n)dT,
r r

App : (p,q)H—V[qudF,

Apar i (g, A) — —y /F gA -ndl,

Aaa (A, p) — —y / A - pdl,
r
and the vectors F and G are the discretization of the following linear forms

L’:VI—>/ f-vdl,
f

Q:;L»—>—/;L~gdf‘.
r
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Denoting {¢; }, {xi}, and {¢; }, the selected basis functions of spaces V", 0", and W"  respectively,
we have

(Aua)ij = 20 / D({g;)): D({p, )AF — 42y / (D({g:)n) - (D({g, m))dT.
F I

(ur)y == [ 2 o3 + 207 [ (Dt -war

(Aui)y = — [F {9} ,dT + 2vy /F (D(ig:))m) - ¥ T,

(APP),'J' Z_V/;Xi)(fdr’

(Apa),; =7 /F xi(¥ ; -mydr,
(Aaa)i; = —V/r'ﬁﬂﬁjdl“,

(P = [ £-10047, (@), == [ gopar.

4.2. A theoretical analysis of the stabilized method

Let us take y = yoh with some constant yo > 0. We first observe that the discrete problem can be
rewritten in the following compact form

Find (u”, p*,A") € V" x 0" x W" such that
M((uh,ph,lh); (Vh,qh,[l,h)) — %(Vh,qh,ﬂh), V(Vh,qh,[l,h) c Vh x Qh x Wh,

where
M((u, p,A); (v,q, ) =2v /f D(u): D(v)dF — /f(pdivv + gdivu)dF — /F(A v+ p-uw)dl
—yoh /1:(21)D(u)n —pn—21)-vD(v)n—gn—pu)dl,
and
H(V,(],[L)Z[ f-VdF—/[L~ng.
F r

In the following, we will need some assumptions for our theoretical analysis
A1 Forall v € Vh, one has
R D)l 2y < CIV" IR
A2 For all qh € Qh, one has
Wa" 220y < Clla" .
A3 One has the following inf-sup condition for the velocity—pressure pair of finite element spaces

i sup 204D
qheQh vhevh ||qh||L2(]-')||Vh”V

)

with 8 > 0 independent of /.
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Assumptions A1 and A2 will be discussed in Section 5.2 by performing some numerical tests.
Note that Assumption A1l is the same as those introduced in [2] (cf. equations (5.1) and (5.5),
respectively) in the study of the fictitious domain approach for the Laplace equation stabilized a la
Barbosa—Hughes. Assumption A2 is also similar in nature to those two, and all these three assump-
tions can be in fact established if one assumes that the intersections of F with the triangles of the
mesh are not ‘too small’ (see Appendix B of [2] and Section 6). Although all these assumptions can
be violated in practice, if a mesh triangle is cut by the boundary T, only its tiny portion happens to
be inside of F. The numerical experiments for the Laplace equation in [2] show that such accidents
occur rather rarely, and their impact on the overall behavior of the method is practically negligible.
This conclusion can be safely transposed to the case of Stokes problem. However, we have now the
additional difficulty in the form of the inf-sup condition A3. Of course, this condition is verified if
one chooses the classical stable pair of finite element spaces, for instance, the Taylor—Hood elements
P2/P1 pair for velocity/pressure and if the boundary I" does not cut the edges of the triangles of the
mesh. However, in the general case of an arbitrary geometry, we have by now no evidence of the
fulfillment of the inf-sup condition A3.

We also need the following result for the L2-orthogonal projector from HY/ 2(I') to Wh.

Lemma 3
For all v € H'/2(I"), one has

1PV = vlli2ry < ChY[[VIgi/2r),
where P” denotes the L?-orthogonal projector from H'/?(T") to W”.

Proof
This result is well-known, but we provide for completeness a sketch of the proof in the case when
discontinuous finite elements are chosen for the space Wy, so that Wy, contains piecewise constant
functions on the mesh 7}}‘ on I induced by the mesh 7% on O (the elements of 7}}‘ are the arcs of
I obtained by intersecting I" with the triangles from 7). The proof in the case of continuous finite
elements is similar but slightly more technical.

Let I” be the interpolation operator to the space of piecewise constant functions on 7}}‘ For all
sufficiently smooth function v on I" and for all element 7 of the curve I' obtained by intersection
with a triangle T € 7", we set

1"v|tr = v(xr),
where x7 is the middle point of 7. We have then I"v € W), and
1PV =Vl2qy < 11"V = V2@ < ChlVIgi ), YveH (D),
by the standard interpolation estimates. Moreover,
I1P*v vz < IVlkz@),  ¥veLX D).

Interpolating between the last two estimates (see the last chapter of [38]), we obtain the desired
result. O

We prove in this subsection the following inf-sup result, which is an adaptation of Lemma 3
from [2].

Lemma 4
Under Assumptions A1-A3, there exists for yy small enough a mesh-independent constant ¢ > 0
such that
: M, p" A" " g w")
inf sup A =c
(ult ph AYeVAX QR XWH (yh gh yhyevhsohswh ||[a, ph AR || |]|[vh, gk, ph]||
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where the triple norm is defined by

1
1w, p.All = (||u||%+ P12+ RID @I gy + Bl P12y + HIA R + Enunizm)l/z,
and c¢ is a mesh-independent constant.

Proof
We observe that

M(", p" A", —p" =a") = 20| I — yoh / 42| D(u")n[*dl" +yoh / |p"n—A"2dr
r r
=[5 + yohl p"n+ A" I ),
where we have used Assumption A1 and the fact that y can be taken sufficiently small. More pre-

cisely, we can choose ¥, such that 4v2yyC < v, where C is the constant of Assumption Al. The
inf-sup condition A3 implies that for all p* € Q" there exists vﬁ € Vﬁ such that

— [ ptdiv vhaF = 10" sy and VAN < C I iz @)
Now, let us observe that
M ((uh,p”,x’“); (v’},,o, 0)) — 2 /f D) : D (v’},) AF + 17" 1225,
—2vyoh [ QvD(u"n - p"n—a".D (VZ) ndl’
r
72 ry2 _ Yyoh2
2 1" 122, — vella I} = < IVH IR
vyoh
—vyoha|2vD(u")n — pn — A" ||i2(r) — T||D (vﬁ) n||i2(r).
We have used here the Young inequality which is valid for any & > 0. In particular, we can choose «
large enough so that we can conclude with the aid of Assumptions A1 and A2 (the constant C here

will be independent of « and / but dependent on y and on the constants in the inequalities A1 and
A2). We get

C
M (" p" A (v5.0.0)) = 1" 1 ry = verlld IF = —11P" 12y — Cahl D@ ml s,
C
—vyohallp"n+ A7y — — 17" 12
1
2 1" 12 gr — Callu IS = vyohe [ p"n + A" E ).

Let us now take jt;, = —%P hu”, where P is the projector from H/ () to W”. Observe that, in
using Assumption A1, we have

_ 1
M (@ 85 0.0.5) = 1P gy =0 [ @vD(h = phn— %) Phutar

1
> P22y = vo (VI Dl
1
N
h)2 h h)2
— Cllu"} = Chllp"n + A"|2, .

VAP R+ A 2y ) =1 PP gy

L oh hy2
= ﬁ”P u ||L2(l")



A FICTITIOUS DOMAIN APPROACH FOR THE STOKES PROBLEM

Combining the aforementioned inequalities and taking some small enough numbers ¥« > 0 and
n > 0, we can obtain

M ((uh,ph,kh); (uh + th,—ph,—)th + nﬁh))
2 vl 3+ yohllp" o+ A Ea ) + 5 S1P" 22z — Cae [ 13 = vyoha] pn + A2,

+ EnPhu 12y = Crlw” IS = Chllp"n + A% 35 1)

1% Yo Ui

> S + 512" Wary + S hIP 0+ 2"y + 501 PP
Vo2 ho b2 v AN

> Znu I3+ 5 1P " Iy + S5 hI DI

TIPM 12y 2P oy + DRIP4 AF 2 -

In the last line, we have used again Assumptions A1 and A2 (with the corresponding constant C).

We now rework the last two terms in order to split p” and A", Denoting ¢ = , we have

2Cyo
K Yo
2P B2y + SRl 0+ A" 2
Yo
=7 ((r+1)||ph||izm+||Ah||iz(p)+2 / phn-xhdr)
r
VO hn2
2o (0 D1y + 1 B

1
/24 DI Py - mnxhnizm)
Y, 1/2 At
- ( 1P 12y + A s )

So, we finally have
((u ,ptAmy; (u +ivh —pt =AM 4 ppt ))
1
> c(uu”n% 112" 2y HRID@M Iy + 11D 122y +RIA 2y + EnPhuhuiz(r)).

We can now eliminate the projector P” in this estimate by the following calculation, which is valid
for some f > 0 small enough

_I_%”Phuh 2

1
h h, .h h
1?1 + 2 PP sy = I .

g
= I+ (I ey = I = PP, )

h /3 h h
> [0 I} + 5 10 2y = CBIR I 2y
h ﬁ h h
> [0 I} + 20" 2y — CAI I
Loz, Byong2
= 5”“ ”V + Z”u ”Lz(l")'

We have used the result of Lemma 3 and the trace inequality.
In summary, we have obtained that taking

(vh’ qh7 ”’h) = (uh =+ Kv};ﬂ_ph?_kh + nﬂ’h)7
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one has
M (", p"2%: (v g" w")) = el pt A 2 23)
On the other hand,
V", g™, w111 < Ml p", A% )] 24)
with some M > 0 independent of /. Indeed, we have

V", g™, " [1] < [1[u®, p" A7 (1] + k|| [v5, 0,011] + nl]]0, 0, & ]|
hohoqh h h Lo h 12
< ||, p", A% + & (”Vp”%/+h”D(Vp)n”i2(r‘) + E||Vp||i2(r))

+ VR |2 -

Now, by Assumption A1 and the fact that vﬁ € Vg so that P hvg =0, we have
1 1
IV I+ BID (Vh) 0l 2y + 7 V5 2y < CIVRIR + 2 IV5 = PPVh 122 .
Furthermore, by Lemma 3 and by the definition of vg € Vg given in (22), we have

1
IVAIR + A DRIy + 2 IVh Ry < CIVEIR + CIVAIE1 2 )
h h h _h qh
< CIVAIR < Cllp" 22, < ClIIW" p" A"
We have also

L hh L h hohoqh
— [P0 2y < —= 0" L2y < Il[u”, p™, A%,

Vh Vi

hence the inequality (24). Dividing (23) by (24) yields
M ((uh,p”,kh); (vh,qh,uh))

v, g", wh]|]

which is the desired result. O

Vil ey =

c
> Il ph AN,

The aforementioned lemma, combined with the fact that the bilinear form M is bounded in the
triple norm on V x Q x W uniformly with respect to / leads us by a Céa type lemma (cf. [32] or
Theorem 5.2 in [2]) to the following abstract error estimate

llu—u", p—p" 2 —aM|<cC inf u—v" p—g" x—pu".

(vh,qh,[l,h)EVhXQhXWh
Using the extension theorem for the Sobolev spaces, the standard estimates for the nodal (or
Clément if necessary) finite element interpolation operators and the trace inequality ||w||p2) <
C (hYwlli2ery + hllwlr2(z)) for any w € H'(T) on any triangle T € 75 (which is valid pro-
vided I" is sufficiently smooth - see Appendix A of [2] for a proof), we obtain the following error
estimate

max (1= u* v, 1p = p" 2y hIA = 2 2y ) < lllu—u”, p— p" A= 2%]
u k
<C (hk lallgeu+1(z) + peptl ||P||Hk1’+‘(}') 4 pkatl ||).||Hk)h+l/2(l—~)) ,

where k,,, k,, and k, are the degrees of finite elements used for velocity, pressure, and multiplier
A, respectively. The proof of this result is rather tedious but can be easily reproduced following the
ideas of [2] (see, in particular, the proofs of Theorem 5.3 and Lemma 5.4 there).
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5. NUMERICAL EXPERIMENTS

For numerical experiments, we consider the square [0, 1] x [0, 1] and choose as I' the circle whose
level-set representation is

(x —0.5)2 + (y —0.5)%> = R?,

with R = 0.21 (see figure 2). The exact solutions are chosen equal to
_ cos(mx) sin(ry)
Uex (¥, y) = ( —sin(wx)cos(my) )’
Pex(x,y) = (y —1/2)cos(2rx) + (x — 1/2) sin(27y).

The meshes and all the computations have been obtained with the C++ finite element library
GETFEM++ [39]. In the numerical tests, we compare the discrete solutions with the exact solutions
for different meshes (six imbricated uniform meshes).

We denote U,y, P.x, and A, the discrete forms of functions Uex, pex, and Aoy =

0 (Uex, Pex ), respectively. For practical purposes, the error introduced by the approximation of
the exact vector A, by A is given by the square root of

IAex = Al = [ loUer, Peon— AP ar,

This scalar product is developed, and using the assembling matrices, we compute

[[Aex — A”iz(l") = (AuuUex,Uex) + 2(AupPex’ Uex) +2(Aua A, Uex)
+ <AppPexa Pex) _2<ApAA, Pex) + <A}.).A,A>’

where (-,-) denotes the classical Euclidean scalar product in finite dimension. Then, the relative
error is given by

[Aex — A||L2(1") _ [Aex — A ||L2(1")

[ Aexllizqry ((AuaUex, Uex) + (AppPex, Pex) + 2{AupPex, Uex>)1/2-

5.1. Numerical experiments for the method without stabilization

We present numerical computations of errors when no stabilization are imposed. We consider sev-
eral choices of the finite element spaces ‘" Qh, and W”. Four couples of spaces are studied (for
u/p/A), P1+/P1/P0 (a standard continuous P1 element for u enriched by a cubic bubble function,
standard continuous P1 for the pressure p and discontinuous PO for the multiplier A element on
a triangle), P2/P1/P0, for triangular meshes, and Q1/Q0/Q0, Q2/Q1/Q0 for quadrangular meshes.
The elements chosen between velocity and pressure are the ones that ensure the discrete mesh-
independent inf-sup condition H1 in the case of uncut functions (except for the Q1/QO pair), that is
to say the classical case where regular meshes are considered. Low degrees are selected to control
the memory (CPU time), which plays a crucial role in numerical simulations for FSIs, specially in
an unsteady framework. For the multiplier introduced for the interface, because the stabilization is
not used, a discrete mesh-independent inf-sup condition must be satisfied. For instance, the couple
of spaces Q1/Q0/QO0 does not satisfy this condition. The error curves between the discrete solution
and the exact one are given in Figure 4 for different norms. The rates of convergence are reported.

The convergence for the fluid velocity is highlighted, whereas the convergence for the multiplier
seems to not occur, in all cases. We obtain the convergence for the pressure but not for the test
Q1/Q0/Q0, which does anyway not satisfy the inf-sup condition. The rates of convergence are better
than what we can expect by the theory for u and p. The results are not so good for the multiplier.
Indeed, without stabilization, the order of magnitude for the relative errors lets us think that the
multiplier is not well-computed.
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Figure 4. Rates of convergence without stabilization for the velocity/pressure/Lagrange multiplier, for
different triplets of finite element spaces.

5.2. Numerical experiments with stabilization

In this part, we consider the method with stabilization terms. Additional terms depending on the pos-
itive constant y are considered in the variational formulation (21). In the following, we fix y = hyy
as it is suggested in the proof of Lemma 4 (y is supposed to be constant, which is natural when
uniform meshes are considered). The parameter y (or yp) has to respond to a compromise between
the coercivity of the system and the weight of the stabilization term. First, the choice of y is dis-
cussed. We choose the P2/P1/P0 couple of spaces with the space step 7 = 0.025. To characterize a
good range of values, we present the condition number (of the whole system) in Figure 5 and the
relative errors on the multiplier A for yo € [107!4; 10#] and more precisely for yo € [0.001;0.200]
in Figure 6.

The condition number given for some very small yy corresponds to the condition number of the
system when no stabilization is used. For all situations, the condition number is degraded when
stabilization terms are considered and can explode when yy is too large. With regard to the errors
on the multiplier A, there is no improvement for the relative errors on the multiplier when yq is
too small. When y, increases, the errors on the multiplier becomes interesting even if some peaks
can appear (transition zone where the coercivity property is very poor). Similar observations (same
values for yp) are observed on the relative errors for the velocity.

With regard to the previous experiments, in the following, we choose yo = 0.05 (so y = 0.05xh),
and we study the numerical convergence analysis of the method when stabilization is used.
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Figure 5. The condition number for yo € [10714:10%].
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Figure 6. The relative errors [|A — A" || 2 for yo € [10714;10%] (left), yo € [0.001;0.200] (right).

The following numerical experiments have been made in the same conditions as the one given
in Section 3. The results are reported in Figure 7.

We notice that we do not observe substantial differences on the rates of convergence for the errors
on the fluid velocity. As regards to the pressure, a better behavior (compared with the first method
without stabilization) is observed for the couple of spaces Q1/Q0/QO that do not satisfy the inf-sup
condition. In all cases, the improvements appear for the multiplier. The method enables to recover
the convergence for the multiplier.

5.3. Tests for different geometric configurations

In a framework where the solid moves in the fluid domain, we need to perform computations for dif-
ferent geometric configurations, in order to underline the interest of the stabilization method when
different types of intersection between the level-set and the regular mesh can be achieved. For that,
we compute the L?(I") relative errors on the multiplier A for different positions of the center of the
solid, with or without the stabilization technique. The perspective is to anticipate the behavior of
the method in an unsteady case, and these tests enable us to avoid the complexity of a full unsteady
problem.

For i = 0.05 and the finite elements triplet P2/P1/P0, we consider the solid as a circle, and we
make the abscissa of the center of the circle—denoted by xc—yvary between 0.5 and 0.7 (with a step
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Figure 7. Rates of convergence with stabilization for the velocity/pressure/Lagrange multiplier, for different
triplets of finite element spaces.
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Figure 8. Behavior of the L2(I") relative error on A (in semi-log scale), in red with the stabilization
technique (with yg = 0.05), in blue without.

equal to 0.0005). The variations of the relative error (in %) on A are represented in blue (without

stabilization) and in red (with stabilization).

In these tests (see Figure 8), the relevance of our approach using the stabilization technique is
highlighted when the intersection between the level-set and the mesh varies. Without stabilization,
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the errors are huge in many cases (see the curve in blue), whereas the robustness of the stabilization
technique is demonstrated with regards to the constancy of the relative errors (see the curve in red,
in Figure 8).

5.4. Comparison with a boundary-fitted mesh

For three different values of & and by using the elements P2/P1/P0, we compute the different rela-
tive errors (in %) by using our method (with and without the stabilization technique) and by using
a classical code, which uses a standard mesh that fits closely the boundaries instead of being cut by
the boundary of the solid as shown in Figure 9. The results are given in Tables I, II, and III.

The results obtained earlier show that our method enables us to get back the precision provided by
a classical boundary-fitted mesh. With regard to the errors on the multiplier A, notice that by using
our method, we need to perform the stabilization technique in order to recover a good approximation
of this variable.

5.5. Discussion of assumptions Al and A2

With regard to Assumptions Al and A2 considered for the proof of Lemma 4, let us also study
the behavior of the constant C of these assumptions with respect to the geometric configuration. In
order to verify numerically A2 for instance, we want to solve the optimization problem
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Figure 9. Different nonuniform boundary-fitted meshes, for which the triangles are not cut.

Table I. Errors for a standard uncut mesh.

h L2 error on u H! error on u L2 error on p L2 error on A
0.0358201 0.146643 1.56629 3.86771 9.61603
0.0152703 0.00371624 0.117115 0.751358 3.67841
0.0066282 0.00035697 0.0227257 0.187311 1.85277

Table II. Errors for a regular cut mesh, without stabilization.

h L2 error on u H! error on u L2 error on p L2 error on A
0.036418 0.0353448 0.649583 2.59781 6.76061
0.0150695 0.00274948 0.123396 0.662703 13.9277
0.00662145 0.00024883 0.0276422 0.119263 1.57377

Table III. Errors for a regular cut mesh, with stabilization (yo = 0.05).

h L2 error on u H! error on u L2 error on p L? error on A
0.036418 0.03485 0.644208 2.46321 6.61553
0.0150695 0.00282232 0.12423 0.556228 3.71191

0.00662145 0.000251731 0.0275953 0.104131 1.52906
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h|2
Mgy hh g
ql’neaé( || h||2 - €0 ( h h) —.
n€Qn |lq L2(F) an<ln \q47,497)12(F)

One easily shows that the maximum is achieved on the eigenvector qlh of the problem
nlak. ot =il ") Vi e
G L) oy NG L )y VX Oh

corresponding to the maximal eigenvalue A; = Ayax. In matrix terms, this is rewritten as
h h — h h
hALydi = AiAremd) <=hAD AL = Aid)s

where A2y and A2 () are the mass matrices associated with the scalar products in L*(T") and

L2(F), respectively. Hence, the optimal constant in A2 can be calculated as Ay (hA;Z1 ( _7:)AL2(I‘))-
The same thing can be performed for A1. Thus, we consider the two following quantities

Cu(h) = A (hA;I,l(f)ALz(p)> , Cp(h) = Amax (hAEzl(f)ALz(p)) ,
where Ap2(ry, At (z), Arz(ry, and Ap2(r) denote the matrices, respectively, defined by

(Ar2ay)y; = Jroxi - xjdT (Ar2m)y; = [z i xdF.

For the particular configuration corresponding to xc = 0.500, let us analyze the behavior of
max(Cy(h), Cp(h)) when the space step / varies.

This graph lets us think that the quantities C,, and C), are not constant with respect to /1 (specially
when 4 becomes small), and thus Assumptions A1 and A2 are not satisfied in practice as shown in
Figure 10. However, concerning the value of 4 for which they are not satisfied, we obtain numeri-
cally the convergence on the multiplier. At this stage, we need to consider these assumptions only
for proving the theoretical convergence of the stabilization technique (see Lemma 4).

6. SOME PRACTICAL REMARKS ON THE NUMERICAL IMPLEMENTATION

The numerical implementation of the method for Stokes problem is based on the code devel-
oped under GETFEM++ Library [39] for Poisson problem. The system is solved using the library
SuperLU [40]. The advantage of using the GETFEM++ library (besides its simplicity of developing
finite element codes) is that several specific difficulties have been already resolved. Notably,
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Figure 10. Numerical illustration of Assumptions A1 and A2: max(Cy, C,) in function of /.
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Figure 11. Local treatment at the interface using QHULL Library.

e To define basis functions of W” from traces on I" of the basis functions of W”. Indeed, their
independence is not ensured and numerical manipulations must be carried out in order to
eliminate possible redundant functions (and avoid to manipulate singular systems).

e To localize the interface between the fluid and the structure, a level-set function which is already
implemented (as it is performed in [17] for instance).

e To compute properly the integrals over elements at the interface (during assembling), external
call to QHULL Library [41] is realized (see Figure 11).

As mentioned in the paper [2], it is possible to define a reinforced stability to prevent difficulties
that can occur when the intersection of the solid and the mesh over the whole domain introduce
‘very small’ elements. The technique is based on a strategy to select elements, which are better to
deduce the normal derivative on I'. A similar approach is given in [42]. This method has been tested
for the Dirichlet problem in [2], but substantial improvements were not observed with this enriched
stabilization compared with the results obtained with the stabilization method detailed in this paper.
However, we expect to take benefits of this second stabilization method when the boundary I is led
to move through the time, in particular in unsteady framework and FSIs.

7. APPLICATION TO A FLUID-STRUCTURE INTERACTION PROBLEM

The motivation of our approach lies in the perspective of simulations and control of a fluid—solid
model for instance. Let us give a simple illustration of that.

7.1. Coupling with a moving rigid solid

In this section, we consider a moving rigid solid, which occupies a time-depending domain S(7).
The displacement of a rigid solid is given by

X(y,1) =h() + R@)y, yeS5(0),
S(t) =h() + R(#)S5(0),
where h(7) denotes the coordinates of the center of mass of the solid, and R(¢) is the rotation, which

describes the orientation of the solid with respect to its reference configuration. In dimension 2, this
orientation can be given by a single angle 6(¢), and we have

__(cos(8(t)) —sin(8(r))
R(t) = (sin(e(z)) cos(9(t))) :

In dimension 2, the angular velocity w(¢) = 6’(¢) is a scalar function. The fluid domain is given by
O\ S(t) = F(t). The state of the corresponding full system is then defined by the fluid velocity



S. COURT, M. FOURNIE AND A. LOZINSKI

and pressure, u and p, and the position of the solid given by the coordinates of its center of mass
h(z) and its angular velocity w(z). The coupling between the fluid and the structure is mainly made
at the interface I', through the Dirichlet condition

u(x,t) =h'(t) + w(t)(x—h())t, xeT()

and through two differential equations, which link the position of the solid and the forces that the
fluid exerts on its boundary, as follows

Mh'(t) = —[ o(u, p)ndl' — Mg,
NG

(25)
1o (t) = — /F ( )(x —h(7))* - o(u, p)ndT.

The vector g denotes the gravity field. Thus, obtaining a good approximation for o (u, p)n is
essential for simulating the trajectories of the solid.

7.2. Illlustration: free fall of a ball

The full model described earlier would necessitate particular attention to the time discretization.
Indeed, for instance, the value of the velocity that we would have to consider in the fluid region
released by the solid between two time steps has to be discussed. Thus, instead of considering the
full problem, let us consider a simplified approach where the time-dependence aspect is governed
only by the position of the solid and not by the time-derivative of the fluid velocity (which requires
to tackle the difficulty aforementioned).

A simple illustration consists of simulating in 2D the fall of a rigid ball submitted to the grav-
ity force at low Reynolds number. The state of the fluid is then governed by the Stokes system
we consider in this paper, and the time discretization is only about the dynamics of the solid.
The radius of the ball is still R = 0.21 and its initial position given by the center of the ball
C = [xc,yc] = [0.5,0.75]. By symmetry, if we assume that the initial velocities are null, then the
displacement of the ball is only vertical. Thus, we impose the Dirichlet condition in the fluid—solid
interface as being only

u="h'
and the function h’ = (0, h})” satisfies (25), which is then reduced to the 1D differential equation

Mhj (1) = —a[h(r)]2h5 (1) — 9.81M, (26)

where a[h(z)] = / o(, p)ndl, with T'(¢) = {h() + y | y € I'(0)} (the subindex 2 is used for
r'@)
the second component of the vector), and (1, p) is the solution of

—vAu+Vp=0 inF,
diva=0 inF,
=0 ond0O,
a=(0,1)7 onT.

Indeed, the functions u and p are linear with respect to h’. We discretize (26) with a semi-implicit
scheme as follows

M
= (h”;“ - h’;) = —a(h"),h" ! —9.81M,
1
E (hg-i-l _ hg) — h/Z-H'
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Figure 12. Simulation of the free fall of a ball in a Stokes flow.

For the simulation, we choose & = 0.0125 for the space step, still yo = 0.05 for the stabilization
parameter, the finite elements triplet P2/P1/P0, At = 10~ for the time step, v = 1, and M = 0.02.
We represent the amplitude of the velocity at different moments in Figure 12.

Note that this simulation (see Figure 12) cannot be carried out without the stabilization tech-
nique, because in that case, the force that the fluid exerts on the solid is not well-computed. Note
also that the contact between the ball and the floor would necessitate a special treatment that we do
not develop here.

8. CONCLUSION

For Stokes problem, which is the corner stone of computations in fluid dynamics, we have proposed
a fictitious domain method based on XFEM. Dirichlet boundary conditions at the interface are made
using Lagrange multiplier. Additional stabilization term is used to ensure an inf-sup condition and
obtain an optimal convergence of the normal trace of the Cauchy stress tensor o (u, p)n. The mathe-
matical analysis is presented. We have carried out numerical simulations to compare the new method
with the classical finite element approximation based on uncut mesh and with the same approach
without the introduction of the stabilization term. Computations of convergence rates have been
performed and have especially underlined the interest of the stabilization technique in order to com-
pute a good approximation of the normal trace of the Cauchy stress tensor. Besides, this stabilization
technique allows a robust behavior of this quantity when the position of the solid changes.

In a near future, we plan to perform simulations in an unsteady framework, by solving the incom-
pressible Navier—Stokes equations in a domain where the solid is moving and deforming itself. Our
method is particularly interesting in fluid—structure problems for which the role of the boundary is
central, for instance, when the shape of the boundary is the unknown of a control problem.
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