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Abstract.

The paper extends a fictitious domain finite element method analyzed for Stokes problem in [30] to
the Navier-Stokes equations coupled with a moving solid. The dynamics of the solid is governed by
the Newton’s laws. The mixed finite element method used cuts element at the interface localized
by level-set while preserving an optimal accuracy of the approximation of the normal stress tensor.
An algorithm is proposed in order to treat the time evolution of the geometry and numerical tests
are given.
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1 Introduction

Fluid structure interactions problems remains a challenge as well on a comprehensive
study of such problems as on a development of robust numerical methods (see a re-
view in [12]). One class of numerical methods is based on meshes that are conformed
to the interface where the physical boundary conditions are imposed [13, 23, 24]. As
the geometry of the fluid domain changes through the time, re-meshing is needed,
what is excessively time-consuming, in particular for complex systems. An other
class of numerical methods is based on non-conforming mesh with a fictitious do-
main approach where the mesh is cut by the boundary. Most of the non-conforming
mesh methods are based upon the framework of the immersed methods where force-
equivalent terms are added to the fluid equations in order to represent the fluid
structure interaction [20, 15]. Many related numerical methods have been devel-
oped, in particular the popular distributed Lagrange multiplier method, introduced
for rigid bodies moving in an incompressible flow [8]. In this method, the fluid do-
main is extended to cover the rigid domain where the fluid velocity is required to
be equal to the rigid body velocity.
More recently eXtended Finite Element Method introduced by Moës, Dolbow and
Belytschko in [17] (see a review of such methods in [6]) has been adapted to fluid
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structure interactions problems in [16, 27, 7, 4]. The idea is similar to the fictitious
domain / Lagrange multiplier method mentioned above, but the fluid velocity is
no longer extended inside the structure domain and its equality with the structure
velocity is enforced by a Lagrange multiplier only on the fluid structure interface.
One thus gets rid of unnecessary fluid unknowns and moreover one easily recovers
the normal trace of the Cauchy stress tensor on the interface. We note that this
method has been originally developed for problems in structural mechanics mostly
in the context of cracked domains, see for example [10, 18, 25, 28, 26]. The speci-
ficity of the method is that it combines a level-set representation of the geometry of
the crack with an enrichment of a finite element space by singular and discontinuous
functions.
In the context of fluid structure interactions, the difficulty that present the appli-
cations of such techniques lies in the choice of the Lagrange multiplier space used
in order to take into account the interface, which is not trivial due to the fact that
the interface cuts the mesh [1]. In particular, the natural mesh given by the points
of intersection of the interface with the global mesh cannot be used directly. An al-
gorithm to construct a multiplier space satisfying the inf-sup condition is developed
in [1], but its implementation can be difficult in practice. The method proposed
in the present paper, gives an issue to this difficulty using a stabilization technique
proposed in [10]. This method method was adapted to the contact problems in
elastostatics in [11] and more recently to the Stokes problem in [30]. An important
feature of this method (based on the eXtended Finite Element Method approach,
similarly to [7, 4]) is that the Lagrange multiplier is identified with the normal trace
of the Cauchy stress tensor σ(u, p)n at the interface. Moreover, it is possible to
obtain a good numerical approximation of σ(u, p)n (the proof is given in [30] for
Stokes problem). This property is crucial in fluid structure interactions since this
quantity gives the force exerted by the viscous fluid on the structure. In the present
paper, we propose to extend this method to the Navier-Stokes equations coupled
with a moving solid. Note that alternative methods based on the Nitsche’s work
[19] (such as [2, 3] in the context of the Poisson problem and [14] in the context
of the Stokes problems) do not introduce the Lagrange multiplier and thus do not
necessarily provide a good numerical approximation of this force.
The outline of the paper is as follows. The continuous fluid structure interactions
problem is set in section 2 and weak formulation with the introduction of a La-
grange multiplier to impose the boundary condition in the interface is given in sub-
section 2.1.1. Next, in section 3 the fictitious domain method is recalled with the
introduction of the finite element method (subsection 3.1) with time discretization
(subsection 3.2). Section 4 is devoted to numerical tests before conclusion.

2 The model

2.1 Fluid structure interactions

We consider a moving solid which occupies a time-depending domain denoted
by S(t). The remaining domain F(t) = O \ S(t) corresponds to the fluid flow.
The displacement of the deformable solid can be given by a Lagrangian mapping
XS defined by
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S(t) = XS(S(0), t),

XS(y, t) = h(t) + R(t)X∗(y, t), y ∈ S(0),

where h(t) is the gravity center of the solid, R(t) is the rotation given by
(
c −s
s c

)
for c = cos(θ(t)), s = sin(θ(t)) and X∗(·, t) a mapping that corresponds to the
deformation of the solid in its own frame of reference (see Figure 1).

Fig. 1 - Decomposition of the solid movement.

Several deformations of the structure can be considered for the deformation X∗
that governs the shape of the solid. However we restrict our study to a rigid structure
(X∗(y, t) = y − h(0)) to illustrate the capabilities of the method, so

S(t) = h(t) + R(t)S(0).

The velocity of the fluid is represented by u, the pressure by p and ν is the viscosity.
We denote by n the outward unit normal vector to ∂F , and the normal trace on
Γ = ∂S(t) of the Cauchy stress tensor is given by

σ(u, p)n = 2νD(u)n− pn, where D(u) =
1

2

(
∇u +∇uT

)
.

The system which is studied consists in finding u, p, h(t) and the angular velocity
ω(t) = θ′(t) (a scalar function in 2D) that satisfy the Navier-Stokes problem for the
fluid

∂u

∂t
− ν∆u + (u.∇)u +∇p = 0, x ∈ F(t), t ∈ (0, T ),

div(u) = 0, x ∈ F(t), t ∈ (0, T ),
u = 0, x ∈ ∂O, t ∈ (0, T ),
u(x, t) = h′(t) + θ′(t)(x− h(t))⊥ = uΓ, x ∈ ∂S(t), t ∈ (0, T ),

coupled with the Newton’s laws for the solid

mh′′(t) = −
∫
∂S(t)

σ(u, p)ndΓ−mg +mag,

Iθ′′(t) = −
∫
∂S(t)

(x− h(t))⊥ · σ(u, p)ndΓ,
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where m, I are solid’s mass and the inertia moment of the solid, g the gravity field
and ma comes from Archimdes’ principle corresponding to the fluid mass displaced
by the solid’s volume.

At the interface ∂S(t) the Dirichlet condition is based on the computation of
σ(u, p)n. The main advantage of our numerical method – mathematically justified in
[30] – is to return an optimal approximation of σ(u, p)n at the interface represented
by a level set which cuts the global mesh (see Figure 2). A good approximation of
this quantity is crucial for the dynamics governed by the two differential equations
written above.

2.1.1 Weak formulation of the problem

We assume that the boundary condition imposed at the interface Γ = ∂S(t) is
sufficiently regular to make sense and we introduce the functional spaces

V = {v ∈ H1(F) | v = 0 on ∂O} ,

Q = L2
0(F) =

{
p ∈ L2(F) |

∫
F
p dF = 0

}
,

W = H−1/2(Γ) =
(
H1/2(Γ)

)′
.

Due to the fact that we only consider boundary conditions of Dirichlet type, we
impose to the pressure to have null average (this condition is included in Q). The
variational problem we consider is the following:

Find (u, p, λ,h′,h, θ′, θ) ∈ V ×Q×W × R2 × R2 × R× R such that

∫
F

∂u

∂t
.vdF +A((u, p,λ); v) +

∫
F

[(u · ∇)u].vdF = 0 ∀v ∈ V,

B((u, p,λ); q) = 0 ∀q ∈ Q,

C((u, p,λ);µ) = G(µ) ∀µ ∈W,

mh′′(t) = −
∫
∂S(t)

λdΓ−mg +mag,

Iθ′′(t) = −
∫
∂S(t)

(x− h(t))⊥ · λdΓ.
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where

A((u, p,λ); v) = 2ν

∫
F
D(u) : D(v)dF −

∫
F
pdiv vdF −

∫
Γ

λ · vdΓ

−4ν2γ

∫
Γ

(D(u)n) · (D(v)n) dΓ + 2νγ

∫
Γ

p (D(v)n · n) dΓ + 2νγ

∫
Γ

λ · (D(v)n) dΓ,

B((u, p,λ); q) = −
∫
F
qdiv udF + 2νγ

∫
Γ

q (D(u)n · n) dΓ− γ
∫

Γ

pqdΓ− γ
∫

Γ

qλ · ndΓ,

C((u, p,λ);µ) = −
∫

Γ

µ · udΓ + 2νγ

∫
Γ

µ · (D(u)n)dΓ− γ
∫

Γ

p(µ · n)dΓ− γ
∫

Γ

λ · µdΓ,

G(µ) = −
∫

Γ

µ · uΓdΓ = −
∫

Γ

µ · (h′(t) + θ′(t)(x− h(t))⊥)dΓ.

For this problem, the multiplier λ is introduced. This unknown is associated to the
Dirichlet condition at the interface Γ and presents the advantage to be equal to the
normal trace of the Cauchy stress tensor σ(u, p)n (see [9]), what is crucial for the
considered model.
The stabilization terms are associated to the constant parameter γ (chosen suffi-
ciently small).

3 Fictitious domain approach

We refer to the article [30] for the details on the fictitious domain approach consid-
ered. In the following, we recall the method used for the present work.

3.1 Finite element discretization

The fictitious domain for the fluid is considered on the whole domain O. Let us
introduce three discrete finite element spaces, Ṽh ⊂ H1(O), Q̃h ⊂ L2

0(O) and W̃h ⊂
L2(O). Since O can be a rectangular domain, this spaces can be defined on the
same structured mesh, that can be chosen uniform (see Figure 2). The construction
of the mesh is highly simplified (no particular mesh is required). We set

Ṽh =
{
vh ∈ C(O) | vh|∂O = 0, vh|T ∈ P (T ), ∀T ∈ T h

}
, (1)

where P (T ) is a finite dimensional space of regular functions such that P (T ) ⊇ Pk(T )
for some integer k ≥ 1. For more details, see [5] for instance. The mesh parameter
stands for h = max

T∈T h
hT , where hT is the diameter of T . We define

Vh := Ṽh
|F , Qh := Q̃h

|F , Wh := W̃h
|Γ ,

which are natural discretizations of V, L2(F) and H−1/2(Γ) respectively. This ap-
proach is equivalent to eXtended Finite Element Method as proposed in [4] or [7]
where the standard Finite Element Method basis functions are multiplied by the
Heaviside function (H(x) = 1 for x ∈ F and H(x) = 0 for x ∈ O\F) and the prod-
ucts are substituted in the variational formulation of the problem. Thus the degrees
of freedom inside the fluid domain F are used in the same way as in the standard
Finite Element Method, whereas the degrees of freedom in the solid domain S at



FICTITIOUS DOMAIN FOR FLUID STRUCTURE INTERACTION

the vertices of the elements cut by the interface (the so called virtual degrees of
freedom) do not define the field variable at these nodes, but they are necessary to
define the fields on F and to compute the integrals over F . The remaining degrees
of freedom, corresponding to the basis functions with support completely outside of
the fluid, are eliminated (see Figure 2). We refer to the papers mentioned above for
more details.

Fig. 2 - Mesh on a fictitious domain.

In the first figure: Standard degrees of freedom (black), virtual ones (red), remaining
ones are removed. In the second figure: Bases nodes used for the multiplier space
(yellow).

The discrete problem corresponds to finding (uh, ph,λh,h′,h, θ′, θ) ∈ Vh × Qh ×
Wh × R2 × R2 × R× R
such that

∫
F

∂uh

∂t
.vhdF +A((uh, ph,λh); vh) +

∫
F

[(uh · ∇)uh].vhdF = 0 ∀vh ∈ Vh,

B((uh, ph,λh); qh) = 0 ∀qh ∈ Qh,

C((uh, ph,λh);µh) = G(µh) ∀µh ∈Wh,

mh′′(t) = −
∫
∂S(t)

λhdΓ−mg +mag, Iθ′′(t) = −
∫
∂S(t)

(x− h(t))⊥ · λhdΓ.

The problem is a system of nonlinear differential algebraic equations that can be
formulated into a compact form where U , P and Λ are the degrees of freedom of
uh, ph and λh respectively. It is given by

Muu
dU(t)

dt
+ AuuU (t) +N(U(t))U(t) + AupP (t) + AuλΛ(t) = 0,

ATupU(t) + AppP (t) + ApλΛ(t) = 0,

ATuλU(t) + ATpλP (t) + AλλΛ(t) = G,

mh′′(t) = MλΛ(t)−mg +mag,

Iθ′′(t) = Mλ

[
(x− h(t))⊥ ·Λ(t)

]
,
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where these matrices are discretizations (from the standard finite element approach)
of the following functions

Muu : (u,v) 7−→
∫
F

u.vdF , Mλ : λ 7−→ −
∫
∂S(t)

λdΓ,

Auu : (u,v) 7−→ 2ν

∫
F
D(u) : D(v)dF − 4ν2γ

∫
Γ

(D(u)n) · (D(v)n) dΓ,

Aup : (v, p) 7−→ −
∫
F
pdiv vdF + 2νγ

∫
Γ

p (D(v)n · n) dΓ,

Auλ : (u,λ) 7−→ −
∫

Γ

λ · vdΓ + 2νγ

∫
Γ

λ · (D(v)n) dΓ,

App : (p, q) 7−→ −γ
∫

Γ

pqdΓ, Apλ : (q,λ) 7−→ −γ
∫

Γ

qλ · ndΓ,

Aλλ : (λ,µ) 7−→ −γ
∫

Γ

λ · µdΓ,

and the vector G is the discretization of G (for example matrix Muu comes from
Muu, · · · ). The term N(U(t))U(t) is a matrix depending on the velocity corre-

sponding of the nonlinear convective term
∫
F

[(u · ∇)u] · vdF .

3.2 Time discretization and treatment of the nonlinearity

Classical methods like θ−methods can be used to carry out the time discretization.
To assume unconditional stability of the scheme, we consider an implicit discretiza-
tion in time based on the backward Euler method. We denote by Un+1 the solution
at the time level tn+1 and dt = tn+1− tn is the time step. Particular attention must
be done for a moving particle problem. Indeed, at the time level tn+1 the solid occu-
pies S(tn+1) which is different from the previous time level tn. So, the field variable
at the time level tn+1 can become undefined near the interface since there was no
fluid flow at the time level tn (S(tn+1) 6= S(tn) for the solid and F(tn+1) 6= F(tn) for
the fluid). In other words, some degrees of freedom (inside the solid) which are not
considered at the time level tn must be taken into account at the time level tn+1. In
particular the velocity field must be known in such nodes. Different strategies ex-
ist, in the present work, we impose the velocity to be equal to the motion of the solid.

In the following we present the algorithm to compute at the time level tn+1 the
solution (Un+1,P n+1,Λn+1,h′n+1,hn+1, θ′n+1, θn+1) on F(tn+1).
At the time level tn we have access to (Un,P n,Λn,h′n,hn, θ′n, θn) on F(tn).

1– We compute (h′n+1, θ′n+1) such that

m
h′n+1 − h′n

dt
= MλΛ

n −mg +mag,

I
θ′n+1 − θ′n

dt
= Mλ

[
(x− hn)⊥ ·Λn

]
.

2– We complete the velocity Un defined on F(tn) to the full domain by imposing
the velocity on each node of S(tn) equal to h′n+1 + θ′n+1(x− hn)⊥.
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3– We update the geometry to determine F(tn+1) by computing (hn+1, θn+1) such
that

m
hn+1 − 2hn + hn−1

dt2
= MλΛ

n −mg +mag,

I
θn+1 − 2θn + θn−1

dt2
= Mλ

[
(x− hn)⊥ ·Λn

]
.

4– We compute the Dirichlet condition for the velocity at the new interface Γ =
∂S(tn+1). So we determine Gn+1 from un+1

Γ = h′n+1 + θ′n+1(x− hn+1)⊥.
5– Finally, we find (Un+1,P n+1,Λn+1) such that

Muu
Un+1 −Un

dt
+ AuuU

n+1 +N(Un+1)Un+1 + AupP
n+1 + AuλΛ

n+1 = 0,

ATupU
n+1 + AppP

n+1 + ApλΛ
n+1 = 0,

ATuλU
n+1 + ATpλP

n+1 + AλλΛ
n+1 = Gn+1.

At this stage, the solution of the resulting nonlinear algebraic system is achieved
by a Newton technique.

Notice that in steps 2 and 4, the expressions of the rigid velocities are not the same.

4 Numerical tests: Free fall of an ellipse

In order to illustrate our approach, we propose the simulation of the free fall of
an homogeneous rigid ellipse, in 2D. It is dropped without initial velocity in a
boxed [0, 1] × [0, 3]. The dimension of its semi-major axis and semi-minor axis are
respectively:

a = 0.24, b = 0.18.

The viscosity of the fluid and the mass of the solid are respectively chosen as

ν = 1.00, m = 0.13.

The triangular mesh on the full domain is based on 40 subdivisions in horizontal
direction and 120 subdivisions in vertical direction (so the characteristic size of the
mesh h ≈ 0.01). For (u, p,λ), we choice the classical finite element P2/P1/P0 and
the stabilization parameter γ = h× γ0 for γ0 = 0.05.
The ellipse is dropped while being inclined of an angle θ0 equal to 0.50 rad (see
Figure 3 at t = 0).

t = 0 t = 123 t = 223 t = 323

8
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t = 423 t = 523 t = 623 t = 723 t = 823
Fig. 3 - Fall of the solid.

The evolution of the ellipse is represented in Figure 4 with the position of its center
and its orientation. Observe in Figure 3 that the ellipse starts with straightening
up and recentering in the channel, before turning over.
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Fig. 4: Trajectory of the ellipse (left) and its orientation θ (right).

4.0.1 Practical remarks on the numerical implementation.

• All numerical simulations were performed with the free generic library Get-
fem++ [22] (same source code for 2D and 3D) and implemented on High
Performing Computers (parallel aspect).

• To compute properly the integrals over elements at the interface (during as-
sembling) external call to Qhull Library [29] is realized.

• The method is very efficient in time computation requiring an update of the
assembling matrices only locally near the interface.

• As mentioned in the paper [10], it is possible to define a reinforced stability to
prevent difficulties that can occur when the intersection of the solid and the
mesh over the whole domain introduce "very small" elements. The technique
is based on a strategy to select elements which are better to deduce the normal
derivative on Γ. A similar approach is given in [21].

• The parameter γ has to respond to a compromise between the coercivity of
the system and the weight of the stabilization term. From numerical tests, a
good choice for γ is closed to h× γ0 where γ0 = 0.05 (see paper [30]).
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5 Conclusions

In this paper, we considered a new fictitious domain method based on extended
finite element with stabilized term applied to the Navier-Stokes equations coupled
with a moving solid. This method is quite simple to implement since all the variables
(multipliers and primal variables) are defined on a single mesh independent of the
computational domain. The algorithm presented leads to a robust method (good
computation of the normal Cauchy stress tensor) whatever is the intersection of the
domain with the mesh. Applications in 3D are actually in progress in particular for
control flow by acting on the boundary of the solid.
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