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 to the Navier-Stokes equations coupled with a moving solid. The dynamics of the solid is governed by the Newton's laws. The mixed finite element method used cuts element at the interface localized by level-set while preserving an optimal accuracy of the approximation of the normal stress tensor. An algorithm is proposed in order to treat the time evolution of the geometry and numerical tests are given.

Introduction

Fluid structure interactions problems remains a challenge as well on a comprehensive study of such problems as on a development of robust numerical methods (see a review in [START_REF] Hou | Numerical Methods for Fluid-Structure Interaction -A review[END_REF]). One class of numerical methods is based on meshes that are conformed to the interface where the physical boundary conditions are imposed [START_REF] Legendre | Convergence of a Lagrange-Galerkin method for a fluid-rigid body system in ALE formulation[END_REF][START_REF] San Martín | Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a fluid-rigid system[END_REF][START_REF] San Martín | Convergence of a finite element/ALE method for the Stokes equations in a domain depending on time[END_REF]. As the geometry of the fluid domain changes through the time, re-meshing is needed, what is excessively time-consuming, in particular for complex systems. An other class of numerical methods is based on non-conforming mesh with a fictitious domain approach where the mesh is cut by the boundary. Most of the non-conforming mesh methods are based upon the framework of the immersed methods where forceequivalent terms are added to the fluid equations in order to represent the fluid structure interaction [START_REF] Peskin | The immersed boundary method[END_REF][START_REF] Mittal | Immersed boundary methods[END_REF]. Many related numerical methods have been developed, in particular the popular distributed Lagrange multiplier method, introduced for rigid bodies moving in an incompressible flow [START_REF] Glowinski | A distributed Lagrange multiplier / fictitious domain method for particular flows[END_REF]. In this method, the fluid domain is extended to cover the rigid domain where the fluid velocity is required to be equal to the rigid body velocity. More recently eXtended Finite Element Method introduced by Moës, Dolbow and Belytschko in [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF] (see a review of such methods in [START_REF] Fries | The extended/genarlized finite element method: An overview of the method and its applications[END_REF]) has been adapted to fluid structure interactions problems in [START_REF] Moës | Imposing Dirichlet boundary conditions in the eXtended Finite Element Method[END_REF][START_REF] Sukumar | Modeling holes and inclusions by level sets in the extended finite element method[END_REF][START_REF] Gerstenberger | An extended Finite Method/Lagrange multiplier based approach for fluid-structure interaction[END_REF][START_REF] Choi | An extended finite element method for the simulation of particulate viscoelastic flows[END_REF]. The idea is similar to the fictitious domain / Lagrange multiplier method mentioned above, but the fluid velocity is no longer extended inside the structure domain and its equality with the structure velocity is enforced by a Lagrange multiplier only on the fluid structure interface. One thus gets rid of unnecessary fluid unknowns and moreover one easily recovers the normal trace of the Cauchy stress tensor on the interface. We note that this method has been originally developed for problems in structural mechanics mostly in the context of cracked domains, see for example [START_REF] Haslinger | A new fictitious domain approach inspired by the extended finite element method[END_REF][START_REF] Moës | Non-planar 3D crack growth by the extended finite element and level sets, Part I: Mechanical model[END_REF][START_REF] Stazi | An extended finite element method with high-order elements for curved cracks[END_REF][START_REF] Sukumar | Extended finite element method for three dimensional crack modelling[END_REF][START_REF] Stolarska | Modelling crack growth by level sets[END_REF]. The specificity of the method is that it combines a level-set representation of the geometry of the crack with an enrichment of a finite element space by singular and discontinuous functions.

In the context of fluid structure interactions, the difficulty that present the applications of such techniques lies in the choice of the Lagrange multiplier space used in order to take into account the interface, which is not trivial due to the fact that the interface cuts the mesh [START_REF] Béchet | A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method[END_REF]. In particular, the natural mesh given by the points of intersection of the interface with the global mesh cannot be used directly. An algorithm to construct a multiplier space satisfying the inf-sup condition is developed in [START_REF] Béchet | A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method[END_REF], but its implementation can be difficult in practice. The method proposed in the present paper, gives an issue to this difficulty using a stabilization technique proposed in [START_REF] Haslinger | A new fictitious domain approach inspired by the extended finite element method[END_REF]. This method method was adapted to the contact problems in elastostatics in [START_REF] Hild | A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics[END_REF] and more recently to the Stokes problem in [START_REF] Court | A fictitious domain approach for the Stokes problem based on the extended finite element method[END_REF]. An important feature of this method (based on the eXtended Finite Element Method approach, similarly to [START_REF] Gerstenberger | An extended Finite Method/Lagrange multiplier based approach for fluid-structure interaction[END_REF][START_REF] Choi | An extended finite element method for the simulation of particulate viscoelastic flows[END_REF]) is that the Lagrange multiplier is identified with the normal trace of the Cauchy stress tensor σ(u, p)n at the interface. Moreover, it is possible to obtain a good numerical approximation of σ(u, p)n (the proof is given in [START_REF] Court | A fictitious domain approach for the Stokes problem based on the extended finite element method[END_REF] for Stokes problem). This property is crucial in fluid structure interactions since this quantity gives the force exerted by the viscous fluid on the structure. In the present paper, we propose to extend this method to the Navier-Stokes equations coupled with a moving solid. Note that alternative methods based on the Nitsche's work [START_REF] Nitsche | Über ein Variationsprinzip zur Lösung Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind[END_REF] (such as [START_REF] Becker | A hierarchical NXFEM for fictitious domain simulations[END_REF][START_REF] Burman | Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method[END_REF] in the context of the Poisson problem and [START_REF] Massing | A stabilized nitsche fictitious domain method for the Stokes problem[END_REF] in the context of the Stokes problems) do not introduce the Lagrange multiplier and thus do not necessarily provide a good numerical approximation of this force. The outline of the paper is as follows. The continuous fluid structure interactions problem is set in section 2 and weak formulation with the introduction of a Lagrange multiplier to impose the boundary condition in the interface is given in subsection 2.1.1. Next, in section 3 the fictitious domain method is recalled with the introduction of the finite element method (subsection 3.1) with time discretization (subsection 3.2). Section 4 is devoted to numerical tests before conclusion.

The model

Fluid structure interactions

We consider a moving solid which occupies a time-depending domain denoted by S(t). The remaining domain F(t) = O \ S(t) corresponds to the fluid flow. The displacement of the deformable solid can be given by a Lagrangian mapping X S defined by S(t) = X S (S(0), t), X S (y, t) = h(t) + R(t)X * (y, t), y ∈ S(0), where h(t) is the gravity center of the solid, R(t) is the rotation given by c -s s c for c = cos(θ(t)), s = sin(θ(t)) and X * (•, t) a mapping that corresponds to the deformation of the solid in its own frame of reference (see Figure 1). Several deformations of the structure can be considered for the deformation X * that governs the shape of the solid. However we restrict our study to a rigid structure (X * (y, t) = y -h(0)) to illustrate the capabilities of the method, so

S(t) = h(t) + R(t)S(0).
The velocity of the fluid is represented by u, the pressure by p and ν is the viscosity. We denote by n the outward unit normal vector to ∂F, and the normal trace on Γ = ∂S(t) of the Cauchy stress tensor is given by

σ(u, p)n = 2νD(u)n -pn, where D(u) = 1 2 ∇u + ∇u T .
The system which is studied consists in finding u, p, h(t) and the angular velocity ω(t) = θ (t) (a scalar function in 2D) that satisfy the Navier-Stokes problem for the fluid

∂u ∂t -ν∆u + (u.∇)u + ∇p = 0, x ∈ F(t), t ∈ (0, T ), div(u) = 0, x ∈ F(t), t ∈ (0, T ), u = 0, x ∈ ∂O, t ∈ (0, T ), u(x, t) = h (t) + θ (t)(x -h(t)) ⊥ = u Γ , x ∈ ∂S(t), t ∈ (0, T ),
coupled with the Newton's laws for the solid

mh (t) = - ∂S(t) σ(u, p)ndΓ -mg + m a g,
Iθ (t) = - ∂S(t) (x -h(t)) ⊥ • σ(u, p)ndΓ,
where m, I are solid's mass and the inertia moment of the solid, g the gravity field and m a comes from Archimdes' principle corresponding to the fluid mass displaced by the solid's volume.

At the interface ∂S(t) the Dirichlet condition is based on the computation of σ(u, p)n. The main advantage of our numerical method -mathematically justified in [START_REF] Court | A fictitious domain approach for the Stokes problem based on the extended finite element method[END_REF] -is to return an optimal approximation of σ(u, p)n at the interface represented by a level set which cuts the global mesh (see Figure 2). A good approximation of this quantity is crucial for the dynamics governed by the two differential equations written above.

Weak formulation of the problem

We assume that the boundary condition imposed at the interface Γ = ∂S(t) is sufficiently regular to make sense and we introduce the functional spaces

V = {v ∈ H 1 (F) | v = 0 on ∂O} , Q = L 2 0 (F) = p ∈ L 2 (F) | F p dF = 0 , W = H -1/2 (Γ) = H 1/2 (Γ) .
Due to the fact that we only consider boundary conditions of Dirichlet type, we impose to the pressure to have null average (this condition is included in Q). The variational problem we consider is the following:

Find (u, p, λ, h , h, θ , θ) ∈ V × Q × W × R 2 × R 2 × R × R such that                                      F ∂u ∂t .vdF + A((u, p, λ); v) + F [(u • ∇)u].vdF = 0 ∀v ∈ V, B((u, p, λ); q) = 0 ∀q ∈ Q, C((u, p, λ); µ) = G(µ) ∀µ ∈ W, mh (t) = - ∂S(t)
λdΓ -mg + m a g,

Iθ (t) = - ∂S(t) (x -h(t)) ⊥ • λdΓ.
where

A((u, p, λ); v) = 2ν F D(u) : D(v)dF - F pdiv vdF - Γ λ • vdΓ -4ν 2 γ Γ (D(u)n) • (D(v)n) dΓ + 2νγ Γ p (D(v)n • n) dΓ + 2νγ λ • µdΓ, G(µ) = - Γ µ • u Γ dΓ = - Γ µ • (h (t) + θ (t)(x -h(t)) ⊥ )dΓ.
For this problem, the multiplier λ is introduced. This unknown is associated to the Dirichlet condition at the interface Γ and presents the advantage to be equal to the normal trace of the Cauchy stress tensor σ(u, p)n (see [START_REF] Gunzburger | Treating inhomogeneous essential boundary conditions in finite element methods and the calculation of boundary stresses[END_REF]), what is crucial for the considered model. The stabilization terms are associated to the constant parameter γ (chosen sufficiently small).

Fictitious domain approach

We refer to the article [START_REF] Court | A fictitious domain approach for the Stokes problem based on the extended finite element method[END_REF] for the details on the fictitious domain approach considered. In the following, we recall the method used for the present work.

Finite element discretization

The fictitious domain for the fluid is considered on the whole domain O. Let us introduce three discrete finite element spaces, Ṽh ⊂ H 1 (O), Qh ⊂ L 2 0 (O) and Wh ⊂ L 2 (O). Since O can be a rectangular domain, this spaces can be defined on the same structured mesh, that can be chosen uniform (see Figure 2). The construction of the mesh is highly simplified (no particular mesh is required). We set

Ṽh = v h ∈ C(O) | v h |∂O = 0, v h |T ∈ P (T ), ∀T ∈ T h , (1) 
where P (T ) is a finite dimensional space of regular functions such that P (T ) ⊇ P k (T ) for some integer k ≥ 1. For more details, see [START_REF] Ern | Theory and Practice of Finite Elements[END_REF] for instance. The mesh parameter stands for h = max

T ∈T h h T
, where h T is the diameter of T . We define

V h := Ṽh |F , Q h := Qh |F , W h := Wh |Γ ,
which are natural discretizations of V, L 2 (F) and H -1/2 (Γ) respectively. This approach is equivalent to eXtended Finite Element Method as proposed in [START_REF] Choi | An extended finite element method for the simulation of particulate viscoelastic flows[END_REF] or [START_REF] Gerstenberger | An extended Finite Method/Lagrange multiplier based approach for fluid-structure interaction[END_REF] where the standard Finite Element Method basis functions are multiplied by the Heaviside function (H(x) = 1 for x ∈ F and H(x) = 0 for x ∈ O \ F) and the products are substituted in the variational formulation of the problem. Thus the degrees of freedom inside the fluid domain F are used in the same way as in the standard Finite Element Method, whereas the degrees of freedom in the solid domain S at the vertices of the elements cut by the interface (the so called virtual degrees of freedom) do not define the field variable at these nodes, but they are necessary to define the fields on F and to compute the integrals over F. The remaining degrees of freedom, corresponding to the basis functions with support completely outside of the fluid, are eliminated (see Figure 2). We refer to the papers mentioned above for more details.

Fig. 2 -Mesh on a fictitious domain.

In the first figure: Standard degrees of freedom (black), virtual ones (red), remaining ones are removed. In the second figure: Bases nodes used for the multiplier space (yellow).

The discrete problem corresponds to finding

(u h , p h , λ h , h , h, θ , θ) ∈ V h × Q h × W h × R 2 × R 2 × R × R such that                            F ∂u h ∂t .v h dF + A((u h , p h , λ h ); v h ) + F [(u h • ∇)u h ].v h dF = 0 ∀v h ∈ V h , B((u h , p h , λ h ); q h ) = 0 ∀q h ∈ Q h , C((u h , p h , λ h ); µ h ) = G(µ h ) ∀µ h ∈ W h , mh (t) = - ∂S(t) λ h dΓ -mg + m a g, Iθ (t) = - ∂S(t) (x -h(t)) ⊥ • λ h dΓ.
The problem is a system of nonlinear differential algebraic equations that can be formulated into a compact form where U , P and Λ are the degrees of freedom of u h , p h and λ h respectively. It is given by

M uu dU (t) dt + A uu U (t) + N (U (t))U (t) + A up P (t) + A uλ Λ(t) = 0, A T up U (t) + A pp P (t) + A pλ Λ(t) = 0, A T uλ U (t) + A T pλ P (t) + A λλ Λ(t) = G, mh (t) = M λ Λ(t) -mg + m a g, Iθ (t) = M λ (x -h(t)) ⊥ • Λ(t) ,
where these matrices are discretizations (from the standard finite element approach) of the following functions

M uu : (u, v) -→ F u.vdF, M λ : λ -→ - ∂S(t)
λdΓ,

A uu : (u, v) -→ 2ν F D(u) : D(v)dF -4ν 2 γ Γ (D(u)n) • (D(v)n) dΓ, A up : (v, p) -→ - F pdiv vdF + 2νγ Γ p (D(v)n • n) dΓ, A uλ : (u, λ) -→ - Γ λ • vdΓ + 2νγ Γ λ • (D(v)n) dΓ, A pp : (p, q) -→ -γ Γ pqdΓ, A pλ : (q, λ) -→ -γ Γ qλ • ndΓ, A λλ : (λ, µ) -→ -γ Γ λ • µdΓ,
and the vector G is the discretization of G (for example matrix M uu comes from M uu , • • • ). The term N (U (t))U (t) is a matrix depending on the velocity corresponding of the nonlinear convective term

F [(u • ∇)u] • vdF.

Time discretization and treatment of the nonlinearity

Classical methods like θ-methods can be used to carry out the time discretization.

To assume unconditional stability of the scheme, we consider an implicit discretization in time based on the backward Euler method. We denote by U n+1 the solution at the time level t n+1 and dt = t n+1 -t n is the time step. Particular attention must be done for a moving particle problem. Indeed, at the time level t n+1 the solid occupies S(t n+1 ) which is different from the previous time level t n . So, the field variable at the time level t n+1 can become undefined near the interface since there was no fluid flow at the time level t n (S(t n+1 ) = S(t n ) for the solid and F(t n+1 ) = F(t n ) for the fluid). In other words, some degrees of freedom (inside the solid) which are not considered at the time level t n must be taken into account at the time level t n+1 . In particular the velocity field must be known in such nodes. Different strategies exist, in the present work, we impose the velocity to be equal to the motion of the solid.

In the following we present the algorithm to compute at the time level t n+1 the solution (U n+1 , P n+1 , Λ n+1 , h n+1 , h n+1 , θ n+1 , θ n+1 ) on F(t n+1 ).

At the time level t n we have access to (U n , P n , Λ n , h n , h n , θ n , θ n ) on F(t n ).

1-We compute

(h n+1 , θ n+1 ) such that m h n+1 -h n dt = M λ Λ n -mg + m a g, I θ n+1 -θ n dt = M λ (x -h n ) ⊥ • Λ n .
2-We complete the velocity U n defined on F(t n ) to the full domain by imposing the velocity on each node of S(t n ) equal to h n+1 + θ n+1 (x -h n ) ⊥ .
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3-We update the geometry to determine F(t n+1 ) by computing (h n+1 , θ n+1 ) such that

m h n+1 -2h n + h n-1 dt 2 = M λ Λ n -mg + m a g, I θ n+1 -2θ n + θ n-1 dt 2 = M λ (x -h n ) ⊥ • Λ n .
4-We compute the Dirichlet condition for the velocity at the new interface Γ = ∂S(t n+1 ). So we determine G n+1 from u n+1 Γ = h n+1 + θ n+1 (x -h n+1 ) ⊥ . 5-Finally, we find (U n+1 , P n+1 , Λ n+1 ) such that

M uu U n+1 -U n dt + A uu U n+1 + N (U n+1 )U n+1 + A up P n+1 + A uλ Λ n+1 = 0, A T up U n+1 + A pp P n+1 + A pλ Λ n+1 = 0, A T uλ U n+1 + A T pλ P n+1 + A λλ Λ n+1 = G n+1
. At this stage, the solution of the resulting nonlinear algebraic system is achieved by a Newton technique.

Notice that in steps 2 and 4, the expressions of the rigid velocities are not the same.

Numerical tests: Free fall of an ellipse

In order to illustrate our approach, we propose the simulation of the free fall of an homogeneous rigid ellipse, in 2D. It is dropped without initial velocity in a boxed [0, 1] × [0, 3]. The dimension of its semi-major axis and semi-minor axis are respectively: a = 0.24, b = 0.18.

The viscosity of the fluid and the mass of the solid are respectively chosen as ν = 1.00, m = 0.13.

The triangular mesh on the full domain is based on 40 subdivisions in horizontal direction and 120 subdivisions in vertical direction (so the characteristic size of the mesh h ≈ 0.01). For (u, p, λ), we choice the classical finite element P2/P1/P0 and the stabilization parameter γ = h × γ 0 for γ 0 = 0.05. The ellipse is dropped while being inclined of an angle θ 0 equal to 0.50 rad (see Figure 3 The evolution of the ellipse is represented in Figure 4 with the position of its center and its orientation. Observe in Figure 3 that the ellipse starts with straightening up and recentering in the channel, before turning over. • All numerical simulations were performed with the free generic library Get-fem++ [START_REF] Renard | Getfem++. An open source generic C++ library for finite element methods[END_REF] (same source code for 2D and 3D) and implemented on High Performing Computers (parallel aspect).

• To compute properly the integrals over elements at the interface (during assembling) external call to Qhull Library [START_REF] Barber | The Quickhull algorithm for convex hulls[END_REF] is realized.

• The method is very efficient in time computation requiring an update of the assembling matrices only locally near the interface.

• As mentioned in the paper [START_REF] Haslinger | A new fictitious domain approach inspired by the extended finite element method[END_REF], it is possible to define a reinforced stability to prevent difficulties that can occur when the intersection of the solid and the mesh over the whole domain introduce "very small" elements. The technique is based on a strategy to select elements which are better to deduce the normal derivative on Γ. A similar approach is given in [START_REF] Pitkäranta | Local stability conditions for the Babuska method of Lagrange multipliers[END_REF].

• The parameter γ has to respond to a compromise between the coercivity of the system and the weight of the stabilization term. From numerical tests, a good choice for γ is closed to h × γ 0 where γ 0 = 0.05 (see paper [START_REF] Court | A fictitious domain approach for the Stokes problem based on the extended finite element method[END_REF]).

In this paper, we considered a new fictitious domain method based on extended finite element with stabilized term applied to the Navier-Stokes equations coupled with a moving solid. This method is quite simple to implement since all the variables (multipliers and primal variables) are defined on a single mesh independent of the computational domain. The algorithm presented leads to a robust method (good computation of the normal Cauchy stress tensor) whatever is the intersection of the domain with the mesh. Applications in 3D are actually in progress in particular for control flow by acting on the boundary of the solid.
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 1 Fig. 1 -Decomposition of the solid movement.

Fig. 3 -

 3 at t = 0). Fall of the solid.
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 4 Fig. 4: Trajectory of the ellipse (left) and its orientation θ (right).
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 1 Practical remarks on the numerical implementation.

Γ λ • (D(v)n) dΓ, B((u, p, λ); q) = -F qdiv udF + 2νγ Γ q (D(u)n • n) dΓ -γ Γ pqdΓ -γ Γ qλ • ndΓ, C((u, p, λ); µ) = -Γ µ • udΓ + 2νγ Γ µ • (D(u)n)dΓ -γ Γ p(µ • n)dΓ -γ Γ
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