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1. Introduction

Efficient pricing of financial derivatives, in particular options, is one of the major topics in financial mathematics. To
be able to explain important effects which are present in real financial markets, e.g. the volatility smile (or skew) in option
prices, so-called stochastic volatility models have been introduced over the last two decades. In contrast to the seminal paper
of Black and Scholes [ 1] the underlying asset’s volatility is not assumed to be constant, but is itself modelled by a stochastic
diffusion process. These stochastic volatility models are typically based on a two-dimensional stochastic diffusion process
with two Brownian motions with correlation p, i.e. dW® (t)dW @ (t) = p dt. On a given filtered probability space for the
stock price S = S(t) and the stochastic volatility o = o (t) one considers

dS(t) = aS(t) dt + /o (t)S(t) AW (1),
do (t) = a(o (t)) dt + b(o (t)) dWP (¢),

where p is the drift of the stock, a(o) and b(o') are the drift and the diffusion coefficient of the stochastic volatility.
Application of It6’s Lemma and standard arbitrage arguments show that any option price V. = V(S, o, t) solves the
following partial differential equation,

1 2 1 2
Vi + Eas oVss + pb(0)y/oSVsy + Eb (0)WVoo + (a(o) — A(S, 0, 1))Vy +1SVs — 1V =0, (1)

where r is the (constant) riskless interest rate and A (S, o, t) denotes the market price of volatility risk. Eq. (1) has to be
solved forS,o > 0, 0 <t < T, and subject to final and boundary conditions which depend on the specific option that is
to be priced.
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There are different stochastic volatility models with different choices of the model for the evolution of the volatility for
t > 0, starting from an initial volatility o (0) > 0. The most prominent work in this direction is the Heston model [2], where

do (t) = k*(0* — o (1)) dt + vy/o (t) AW (0). (2)
Other stochastic volatility models are, e.g., the GARCH diffusion model [3],

do (t) = k*(0* — o (t)) dt + vo (t) AW P (1), 3)
or the so-called 3/2-model (see, e.g. [4]),

do (t) = k*a (0)(0* — o (1)) dt + vo (£)** dW P (t). (4)

In(2)-(4),«*,v,and 8* denote the mean reversion speed, the volatility of volatility, and the long-run mean of o, respectively.

For some models and under additional restrictions, closed form solutions to (1) can be obtained by Fourier methods
(see, e.g. [2,5]). Another approach is to derive approximate analytic expressions, see, e.g. [6] and the literature cited
therein. In general, however—even in the Heston model when the parameters are non constant—Eq. (1) has to be solved
numerically. Moreover, many (so-called American) options feature an additional early exercise right. Then one has to solve
a free boundary problem which consists of (1) and an early exercise constraint for the option price. Also for this problem
one typically has to resort to numerical approximations.

In the mathematical literature, there are a number of papers considering numerical methods for option pricing in
stochastic volatility models, i.e. for two spatial dimensions. Finite difference approaches that are used are often standard,
low order methods (second order in space). Other approaches include finite element-finite volume [7], multigrid [8], sparse
wavelet [9], or spectral methods [10].

Let us review some of the related finite difference literature. Different efficient methods for solving the American option
pricing problem for the Heston model are compared in [11]. The article focusses on the treatment of the early exercise
free boundary and uses a second order finite difference discretisation. In [12] different, low order ADI (alternating direction
implicit) schemes are adapted to the Heston model to include the mixed spatial derivative term. While most of [ 13] focusses
on high-order compact scheme for the standard (one-dimensional) case, in a short remark [ 13, Section 5] also the stochastic
volatility (two-dimensional) case is considered. However, the final scheme is of second order only due to the low order
approximation of the cross diffusion term.

High-order finite difference schemes (fourth order in space) were proposed for option pricing with deterministic (or
constant) volatility, i.e. in one spatial dimension, that use a compact stencil (three points in space), see, e.g., [ 13] for linear
and [14-16] for fully nonlinear problems.

More recently, a high-order compact finite difference scheme for (two-dimensional) option pricing models with
stochastic volatility has been presented in [17]. This scheme uses a uniform mesh and is fourth order accurate in space and
second order accurate in time. Unconditional (von Neumann) stability of the scheme is proved for vanishing correlation. A
further study of its stability, indicating unconditional stability also for non-zero correlation, is performed in [18].

In general, the accuracy of a numerical discretisation of (1) for a given number of grid points can be greatly improved by
considering a non-uniform mesh. This is particular true for option pricing problems as (1), as typical initial conditions have
a discontinuity in their first derivative at S = K, which is the centre of the area of interest (‘at-the-money’).

Our aim in the present paper is to consider extensions of the high-order compact methodology for stochastic volatility
models (1) to non-uniform grids. The basic idea of our approach is to introduce a transformation of the partial differential
equation from a non-uniform grid to a uniform grid (as, e.g. in [19]). Then, the high-order compact methodology can be
applied to this transformed partial differential equation. It turns out, however, that this process is not straight-forward as
the derivatives of the transformation appear in the truncation error and due to the presence of the cross-derivative terms,
one cannot proceed to cancel terms in the truncation error in a similar fashion as in [17] and the derivation of a high-
order compact scheme becomes much more involved. Nonetheless, we are able to derive a compact scheme which shows
high-order convergence for typical European option pricing problems. Up to the knowledge of the authors, this is the first
high-order compact scheme for option pricing in stochastic volatility models on non-uniform grids.

The rest of this paper is organised as follows. In the next section, we transform (1) into a more convenient form. We then
derive four new variants of a compact scheme in Section 3. Numerical experiments confirming the high-order convergence
for different initial conditions (we consider the case of a European Put option and a European Power Put option) are presented
in Section 5. Section 6 concludes.

2. Transformation of the partial differential equation and final condition

We focus our attention on the Heston model (1)-(2), although our methodology adapts also to other stochastic volatility
models in a natural way (see Remark 2 at the end of Section 3). As usual, we restrict ourselves to the case where the market
price of volatility risk A(S, o, t) is proportional to o and choose A(S, o, t) = Ago for some constant Aq. This allows to study
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the problem using the modified parameters
K*6*
Kk =Kk"+ Ao, = —,
0 K* + )\,0

which is both convenient and standard practice. For similar reasons, some authors set the market price of volatility risk to
zero.
The partial differential equation of the Heston-model is then given by

1 1
Ve + EUSZUVSS + pvoSVs, + EUZUVM +1SVs + k(@ —0)V, —1V =0 (5)

where S € [0, Smax ] With a chosen Spax > 0,0 € [Omin, Omax] With 0 < omin < omaxand t € [0, T[ with T > 0, imposing an
approximative artificial boundary condition at Sy,,x. The error caused by approximative boundary conditions imposed on an
artificial boundary for a class of Black-Scholes equations has been studied rigorously in [20].

The final condition as well as the boundary conditions, which we will discuss separately, depend on the chosen option.
In the case of a European Power Put Option we have the final condition

V(S, v, T) = max(K — S, 0)? (6)

with power p € N.

For high-order finite difference schemes as proposed in this article, the low regularity of the final condition (6) at the
strike S = K may reduce the numerical convergence order in practice. To retain high-order convergence, one can smooth
the initial condition carefully (cf. [21]) or shift the numerical grid to avoid the strike falling on a grid point as suggested, for
example, in [22,17]. In our numerical experiments reported in Section 5 we use the latter approach.

We apply the following transformations to (5) as in [17],

~ S o 2V
S=In{-—), T=T-—t, y=—, u=-e't—,
K v K

where § ¢ [Smm, Smax] with a chosen §mm < 0and

a Smax
Smax = In .
max < I< )

We then introduce a (sufficiently smooth) zoom function
$=9p@,

zooming around S = 0, with

xe [0 (3mn) 07 (Bar) |

and setting f = —u, we obtain from (5) the following two-dimensional elliptic problem,
—vy 0 — vy vyQ vy
onf = N [(quxx + (pjuyy] - :OUygo;?uxy —K v onuy + [ 2xx + (7 - T)%f] Uy, (7)

where (x,y) € 2 = [Xmin, Xmax] X [Vmin» Ymax): Xmin < Xmax and Ymin < Ymax-

3. Derivation of the high-order compact schemes for the elliptic problem

We start by defining a uniform grid in the x- and in the y-direction,
G = {(x,¥) € 2Ixi = Xmin + i(A%), yi = ymin +i(Ay), 0<i<N, 0 <j <M}, (8)

where AX = (Xmax — Xmin)/N and Ay = (Ymax — Ymin)/M are the step sizes in each direction. With E; we identify the inner
points of the grid G. On this grid we denote by Uj; the discrete approximation of the continuous solution u in (x;, y;) € G.
Using the standard central difference operator D, in the x-direction and D; in the y-direction, and the standard second-order

central difference operator D? in the x-direction and Df in the y-direction, for k = x, y we have

(Ak)?

u = DU — Uk + O ((Ak)*), (9)
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and
g = D2Uj — %Ukkkk +0((ak?), 10
Uy = DiDjUj — (Ag)z Uy — (Ag)z thyy + O ((40%) + 0 ((40)*(Ay)*) + 0 ((ap)*) + 0 <(AA);/)6) ’ v
at the grid points (x;, y;) fori = 0,...,Nandj = 0, ..., M. We call a scheme of high order, if its consistency error is of

order O ((Ax)*) for Ay € O (Ax). If we discretise the higher derivatives Uy, Uyyyy, Usys Uxyyy» Usxo a0 Uy, appearing in
(9) and (10) with second order accuracy, we obtain a scheme with consistency of order four, since they are all multiplied by
factors of order two. If this can be achieved using the compact nine-point computational stencil,

Ui—1jr1 Uijrr Uiprjn
Ui Uij Uit1j |,

Ui—1j—1 Uijo1 Uip1j—1
the scheme is called high-order compact (HOC).

3.1. Auxiliary relations for higher derivatives

We proceed by giving auxiliary relations for the third and fourth order derivatives appearing in (9) and (10). Expressions
for the higher derivatives can be obtained by differentiating the partial differential equation (7) in a formal manner without
introducing additional error. Differentiating Eq. (7) with respect to x and then solving for u,,, leads to

6 202 42 -nr)g 2(¥ -r)e
G = 0000y 200 o AFDew | 2500
vy vy Px vy vy
0 — vy 0—vy ,
- GKTyQDxﬁoxxuy — [ 40P + 2K 2y 05 | Uxy — 20Pxlbay — 30xPrxllyy
= Axxx- (11)

Using this equation we can calculate a discretisation of A,y using only points of the nine-point stencil with consistency error
of order two using the central difference operators.
Differentiating the partial differential equation (7) twice with respect to x and then solving for i, we have

VY Pxxxx + 4(”21 — r) [@x(pxxx + (pfx] Uy + |:(pxxx i 8 (% — I”) ¢u:| U

Uxxxx =

VY ®x Dx vy

2(9-1)ex @

+ |:(2vy)x - f Uxxx — 6(px§0xxuxyy - (pfuxxyy

61 (0 — vy) [2¢5, + 2 126 (0 — v
6k —wy) [;pxx x| by — [4p (e + 25 ) 1 22 : Do,

vy Px vy
2 (6 — vy) ¢

- |:810(;0xx + TX uxxy - zp(/)xuxxxy - [3§0x§0xxx + 6@5)(] uyy

1202 + 6049 12¢x¢ 2¢?
- = - xxxf - - Xxﬁc - Xfxx = Axxxx — 20@xUxxxy- (12)

vy vy vy

The term Ay can be discretised at the order two on the compact stencil if Eq. (11) and the central difference operator are
used. Solving Eq. (12) for uy,, we obtain

1 1
— Ay — T Uyxxx- (13)
2ppx 2ppx
In order to find an equation for uy,, we first differentiate the partial differential equation (7) once with respect to y and then
solve for uy,,, which leads to

Uxxxy =

1 1 2p 2k(0 — vy) + v?
Uyyy = —w?uxxy - W%uxx - a”xyy - T“yy
2K o 2(%—1)—2pv O + @2 2
+—u+ | =+ |y + ——Fuy— —f, = Ay 14
vy [wﬁ VY v g Tyl T (a9

The term Ay, can be discretised in a compact manner at the order two using the central difference operators.
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Differentiating Eq. (7) twice with respect to y and then solving for u,,,, leads to

1 2 202 + 2k (6 — vy) 20 4k
Uyyyy = — S Uxxyy — o

P J@“ 2y Uyyy — a”xyyy + Tyuyy
2¢x + 2%% Dxx 2 (% B I’) —4pv 2
F T (2 R Ty, —
yoi 7\ @} yvey Wy

2p
= Ayyyy — —Uxyyy- (15)
Px
The term Ay, can be discretised at the order two on the compact stencil using Eq. (14) and the central difference operator.
Eq. (15) is equivalent to

Px Dx
% yyyy — Tuyyyy~ (16)

Uxyyy =
0

Differentiating the partial differential equation (7) once with respect to x and once with respect to y and then solving for
Uy leads to

Pxxx 20xx Px 1 6K (0 — vY) PxPxx 30y Pxx
Uxxxy = + Uy + —Uxy — —Uxxx — 2 + Uyy
Yx y vy y
6k 4 42 —r)g 2ico?
i DPxPxx Uty — 30x@ulyyy + Prox AP Pxx + ( P ) xx n Dx Ly
vy Px y vy vy
2k (6 — vy)e; o
— 20 Qylxxyy — |:2x + 4o + = Uyyy — (pguxyyy
vy y
2 (vjy - r) Px 2ppx 6¢x P 2%3
+ - Uxxy — fy = Xy
vy y vy vy
= Axxxy — Qofuxyyy (17)

Using Eqgs. (11) and (14) as well as the central difference operators in the x- and the y-direction it is possible to discretise
Axxy at the order two on the compact stencil. Solving Eq. (17) for u,y,, gives

A 1 1
= — Uxxxy =t Ay — — Uxxxy- (18)

Uxyyy = ——
2
(px (px (px

Finally, the expression Ay, can be discretised at the order two on the compact stencil as well.

3.2. Derivation of the discrete schemes

In order to derive a discrete scheme we employ Egs. (9) and (10) in the partial differential equation (7), which gives

3 vy(Ax)% g, vy(Ay)*p; PUY(AX)* @}
of =Ao+e+ 24 Upxx + 24 x Uyyyy + 6 X XXXy
py(Ay)*p? k(6 — vy)(Ay)*p} [yen +2 (% — 1) 9] (A0)?
+ Uyyyy + Uyyy — Uyxx (19)
6 6v 12
where
vy 6 — vy vy vy
Ao i= == [0DUs + @:DUs ] — puy@iDiD{Us — i ——=¢DyUy + [72 =+ (7 - f) sﬂf] DUy

and the error-terme € @ ((Ax)4) if Ay € O (Ax) is used. Eq.(19)is the basis for the derivation of our different discretisation
schemes. Ay is only using the compact stencil.

We have four fourth-order derivatives, namely Uy, Uyyyy, Uxxxy and Uyy,, appearing in Eq. (19), interacting with each
other, but only three auxiliary relations to replace these higher derivatives. These relations are given by (12), (15) and (17),
which were derived in Section 3.1. This leads to four different versions of the discrete scheme.
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For the Version 1 scheme Eqs. (11), (14) and (15) are used in Eq. (19), then Eq. (18) is employed and finally Eq. (13) is
applied, which gives

3 vy [2(A%)%¢2 — (Ay)?] vy (Ay) 2} pvy(Ay)*e;
oof = Ao+ 240, Ao + = Ay o Ao
k(0 — vy)(Ay)*p; [vyou + 2 (2 — 1) ¢2] (Ax)? vy [(Ay)? — (A%)%¢?]
+ Ayyy - Apx + Uyxxx + €. (20)
6v 12 24¢,

For the Version 2 scheme Eqs. (11), (14) and (12) are used in Eq. (19), then (17) is employed and finally (16) is applied, which
gives

vy (Ax)% @y vy@R[2(Ay)? — (AX)* ¢} pUY(AX)* @2
(/)ff = Ao+ 24 Avx + X 24 X Ayyyy + TXAxxxy
LEO—w@ed  [went2(5 )] (07 wgllan’et - (ap?] 21)
6v yyy 12 XXX 24 yyyy .
For the Version 3 scheme Eqs. (11), (14), (12) and (15) are used in Eq. (19) and then (18) is applied, which gives
vy(A%)* @y vy(Ay)’e; pvy(Ay) 2
‘pff = AO + 24 Axxxx + 24 X Ayyyy + 12 X Axyyy
k(0 — vy)(Ay)2p] Ve + 2 (% — 1) 9f] (Ax)? vy[(AX)2@2 — (Ay)?
LKO—wm@re, [veu +2(3 —1) ¢7] A 4 DA = (WP
6v 12 12
For the Version 4 scheme Eqs. (11), (14), (12) and (15) are used in Eq. (19) and then (17) is applied, which gives
vy(Ax)*g vy(Ay)*p; PUY(AX)* 2
(,03 = Ao+ 24 XAxxxx + 24 2 Ayyyy + 12 X Axxxy
k(68 — vy)(Ay)2p] VYgu +2 (2 —1) 2] (Ax)? vy@2[(Ay)? — (Ax)?p?
L K0 —w)(ay) goxAm_[ w2(5 —r) o] (a0 puyel(ay)? — Pol, e @3

6v 12 12
Remark 1. Eqgs. (20)-(23) show that we can achieve a HOC scheme when either p = 0, v = 0, or (Ay)? = (Ax)zgof. The
constraint (Ay)? = (Ax)ztpf, however, implies that the function ¢ is affine linear and would not qualify as a zoom function.
In particular, the choice ¢(x) = x would yield the scheme discussed in [17] (on a uniform grid), hence we will focus on a

zoom which is not affine linear.

In Egs. (20)-(23) we observe that all these schemes have a formal general consistency error of order two. But on the
other hand each version only has one remaining second order term, which is multiplied with either Uy, Uyyyy, sy, OT Uxyyy.
All other terms are discretised with fourth order accuracy. We call this an essentially high-order compact discretisation. To
gauge the overall potential of the four discrete schemes we obtain by neglecting the remaining second-order terms, it is
pivotal to understand the behaviour of these terms better. To this end we compute a numerical solution using the (second-
order) central difference operator in the x- and the y-direction directly in Eq. (7), and obtain by numerical differentiation
(approximations of) the higher derivatives Uyy, Uyyyy, Uxey» and Uy, appearing in the remaining second order terms.

Fig. 1 shows the remainder terms of second order appearing in Egs. (20)-(23) without the 9((Ax)?) factor, where
p = —0.1,¢ = 25,p = 1, and Sy, = 49.6694. The values of these remainder terms determine if we can achieve a
fourth-order consistency, at least until a given minimal step size. Hence, low values for the remainder terms are favourable.
We observe that all plots have in common that the highest values of the remainder terms occur near the boundary x = 0.
On the upper left plot in Fig. 1 we see the remainder term for Version 1. This term has by far the highest absolute values. The
I?-norm of this remainder term is 8.8 x 10~ . This indicates that a numerical study of this scheme may not lead to a fourth-
order consistency error. On the upper right plot we have the remainder term for Version 2, again without the @ ((Ax)?)
factor. The highest absolute value for this is only about 4 x 1073, so very low when comparing it with the remainder term of
Version 1. The [>-norm for this plotis 3.1 x 10~#, which shows that Version 2 has a significantly higher chance of producing a
fourth order consistency error in the numerical study than Version 1. The plot on the lower left side is showing the remainder
term of Version 3. This plot has higher values than Version 2, but lower values than Version 1. With a I>-norm of 6.6 x 1073
it has still a chance to produce a good consistency error. The plot on the lower right shows the remainder term of Version
4, This plot has again very low absolute values which are only up to about 5 x 107>, The [>-norm for this remainder term is
3.1 x 1074, This indicates that we have a good chance that Version 4 produces a scheme with fourth-order accuracy.

In the special case that ¢(x) = xand Ax = Ay = h we have (Ay)? = (Ax)zgof, and all four versions lead to exactly the
same HOC scheme,

yh vyh2 pvyhz k(6 — vy)h? Y —r)h?
f AO + Axxxx + Ayyyy + Axxxy + ) Ayyy - ( E 6 ) Axxx + e,

as in this case Axxxy = Ayyy holds. This spec1f1c HOC scheme without zoom is discussed in [17].



B. Diiring et al. / Journal of Computational and Applied Mathematics 271 (2014) 247-266 253

1 0.5 -

Fig. 1. Remainder terms without @ ((Ax)?) factor for Version 1 (upper left), Version 2 (upper right), Version 3 (lower left), and Version 4 (lower right).

Remark 2. The derivation of the schemes in this section can be modified to accommodate other stochastic volatility models
as, e.g. the GARCH diffusion model (3) or the 3/2-model (4). Using these models the structure of the partial differential
equation (1) remains the same, only the coefficients of the derivatives have to be modified accordingly. Similarly, the
coefficients of the derivatives in (11)-(18) have to be modified. Substituting these in the modified expression for the
truncation error one obtains equivalent approximations as above.

Our conclusion from the results in Fig. 1 is that Version 2 and Version 4 seem to be the best choices to obtain small
errors. The remainder term for Version 3 still has low values, while Version 1 seems only to be able to produce a second-
order scheme. Numerical experiments which we have carried out with all four versions of the scheme indicate that actually
Version 3 is leading to the best results in terms of accuracy and stability. Hence, in the remainder of this paper we focus on
this particular scheme.

4. High-order compact schemes for the parabolic problem

We now consider the parabolic equation (7) with f = —u, and we denote by U; j(7) the semi-discrete approximation of
its solution u(x;, y;, T) at time 7.

4.1. Semi-discrete schemes

In this section we define the semi-discrete scheme of the form
> [M:(2)8:Uij(r) + K:(2)U(x)] = 0, (24)
zeG
at time 7 for each pointz € & where 8 denotes the inner points of the grid G. We use Ax = Ay = h for some h > 0 in the
definition of G, which is given in (8). We have that K, (Z) and M, (2) are operators with nine values defined on the compact
stencil around z € G.
Using the central difference operator in (22) at the point z € G leads to

Ry = & (5-1) _weien  (5-1)er  wen  weo  wer e 0 —w)
L 24h 16h 24h 48h  24h2  24h? 24vh

KgP O —vy) kO —w (¥ —r)¢? L KO- gn - (2 -1)¢? L
24vh 24v2y 48v 24y 48
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12h 8 6h?

o {iwf%x(“zy —0) ek (B0 ew, wem  ee($ o), (3 -7)
12 12 24 48¢y 12h 12h

Qi @ —vy) (B =1) kO —v))@20n (WP |, VPu VY
: SIS |
2402y 16v

L Wm | Bk - WP Pek (0 —vy) - VY@ - vyex
8hgy ~ 24 ' 24h 6hv 1602 " 4

(25)

vp? - Wit
24y 24

1212 12 120 T 120k P 3p
v 3 (v

+p :l:‘/)x (73/ - I’) + VY Pxx + (2% (73/ - I’) VY PxPxx ’ (26)
6h 4he, 6h 12h

; s vyg,  vypr gk (0 —vy) @ik (0 —vy) oy
Ki—1jx1 = —Kiy1jz1 — -

o wer _hep (3 -r) i (F o) 5(F ) ek | yhugee  hpoo
Kit1j = F + + ¥
; 12h? 6 12h 12h 48 24y
2
_ew O —wy) S 5w v @ihy g (5 =) wem
12vy 12h? 24h 12y 24y 6vy 24
i @xh (%y - r) Pxxx n vygvfwxx n (%y - r) PxPxx T VYhQ P + hic (0 — vy) oxx
24 8h 12 16y 24vy
v 2
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and
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where IA<,-J is the coefficient of U; j(t). For the sake of readability we drop the subindex i on the derivatives of ¢ and the
subindex j on y, respectively. Analogously we have
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as coefficients of 9, U; j(t). With the usage of z € &We have

K;(2) = Ko, n, aswellas M,(2) = M, (31)

1,12

for
z= (an ’yﬂz)

withny € {i — 1,i,i4+ 1} and ny, € {j — 1,j,j 4+ 1}. Thus (24) corresponds to a linear system on (O:
4.2. Treatment of the boundary conditions

The first boundary is the boundary x = Xmin, Which corresponds to the boundary at S = 0 of the original problem. For this
boundary we have to discount the option price at time T to the appropriate time. Taking into account the transformations
Tt =T —tandu = e""V/K this leads to the Dirichlet boundary condition

U(Xmin, ¥, T) = U(Xmin, ¥, 0)  forall T € [0, Tnax] and ally € [Ymins Ymax]-

The next boundary we discuss is the boundary X = xmax, Which corresponds to the boundary at S = Sp,,x of the original
problem. For a Power Put with power p we have

lim V(S,0,t) =0,
S—o0

which we approximate at the artificial boundary Spax by Vs(Smax, 0, t) = 0, Vss(Smax, 0, t) = 0, Vs (Smax, 0, t) = 0,
Vo (Smax, 0, t) = 0 as well as V,, (Smax, 0, t) = 0. Using these approximations in (5) gives

Vi—rV =0.
Usingt =T — t and u = e""V /K yields u, = 0 and thus the Dirichlet boundary condition

U(Xmax, ¥> T) = U(Xmax, ¥, 0)  forall T € [0, Tnax] and ally € [Ymin, Yimax]- (32)

The third boundary to discuss is the boundary y = Ymin With X & {Xmin, Xmax}, Which corresponds to the boundary
0 = Omin With S & {Smin, Smax}- We will treat this boundary just like the inner of the computational domain, using
Egs. (25)-(29). This requires the usage of ghost-points U;_1,_1, U; _1 and Ui+1,_; when discretising at the points (x;, yo) € G
fori =1,..., N — 1. So we need a fourth order accurate expression for the ghost-points U; _; fori =0, ..., N. We use the
following extrapolation formula

U1 = 4Ujo — 6U;1 + 4U;» — Uiz + 0 ((Ap)*)
fori =0, ..., N.The same procedure is used for the ghost-points for the matrix M, when using the equations in (30).
The last boundary we discuss is the boundary at boundary y = ymax With X & {Xmin, Xmax}, Which is corresponding to the
boundary ¢ = Omax With S & {Smin, Smax} Of the untransformed problem. We treat this boundary similar as the boundary
at ¥min and use Egs. (25)—(29). The scheme then uses, when discretising at the points (x;, yy) € Gfori = 1,...,N — 1,

the ghost-points U;_1 p+1, Ui m+1 and Uiy 41 fori = 1, ..., N — 1. This means that we have to find an expression for the
ghost-points U; y+1,1 = 0, ..., N. We approximate the values at these ghost-points again using extrapolation,

Uim+1 = 4Uiy — 6Uim—1 + 4Uin—2 — Uim—3 + O ((4y)*)

fori =0, ..., N.Again, the same procedure is used for the ghost-points for the matrix M, while using the equations in (30).

4.3. Time discretisation

With the results from the previous sections we obtain a semi-discrete system of the form

> [M:3)d:Uij(7) + K:@)Uij(1)] = g(2) (33)
zeG
for each point z of the grid G, which is defined in (8) and Ax = Ay = h for some h > 0 is used. The function g(z) has only
non-zero values at the boundaries X, and Xpmax.
We use a time grid of the form
At At 3At
—, —, —, A1,2A7,3A7, ...},
4’ 2 4

)

where the first time steps have step size % and the following have At. For these first four time steps, we use the implicit
Euler scheme, and obtain

o AT . A
> [MZ(Z) + ‘:KZ(Z)] Ut =Y "M.@Uj + Trg(Z)

zeG zeG
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withn = 0, 1, 2, 3 for each grid-point z € G. This approach is suggested in [23] when dealing with non-smooth initial
conditions. For the following time steps we use a Crank-Nicolson-type time discretisation, leading to

A At . At
E [Mz(z) + KZ(Z)] Ul.";” = E [Mz(z) - Kz(z):| UMt + (A1)g(2)
£ 2 : £ 2 J
zeG zeG

withn > 4 oneach point z of the grid G. We observe that we have only non-zero values on the compact computational stencil

as M, (%) and K, (%) have this property. For the Crank-Nicolson time discretisation this compact scheme has consistency order
two in time and four in space for ¢(x) = x and p = 0 or is essentially high-order compact in space otherwise.

5. Numerical experiments

In this section we present the results of our numerical experiments for the compact scheme using (25)-(30), whose
boundary conditions were derived in Section 4.2. If not stated otherwise, we will use the following default model parameters

Kk = 1.1, 6 = 0.15, v=0.1, r = In(1.05), K =100, T =0.25.
The initial condition for the European (Power) Put after transformation as in Section 2 is given by
u(x,y, 0) = KP~"max (1 — e*®, O)p , (34)

where the non-differentiable point of the initial condition is at xx = ¢~ 1(0).

5.1. Choice of the zoom function

In our numerical experiments we use the zoom function
sinh(cax + ¢1(1 — x))
¢

proposed in [13], with ¢; = asinh((flmin), C = asinh(§§max) and ¢ > 0. The non-differentiable point of the initial condition
hence is at

S=opk = (35)

. asinh(0) — ¢; —asinh(ZSmin)
xk =¢ (0)= = — = ) PN
C—C asinh(¢ Smax) — asinh(¢ Smin)

Using the definitions of ¢; and ¢, this can be rearranged to

sinh <x,?'i1 aSinh(fsmax))
c .

Hence, §mm can be set by choosing xy in reasonable bounds as well as choosing S,.x, which gives §max, for a given ¢. The fact
that xx can be chosen is very helpful, since if the non-differentiable point is on the grid the numerical convergence order
may be reduced to two in practice. Hence, we choose the grid such that the point xx in the middle of two consecutive grid
points on the finest grid. This procedure of shifting the grid has been suggested, for example, in [22].

In the numerical experiments reported below we choose

(36)

Smin =

Smin = Keg"“", Smax = 2K, Omin = 0.05,  omax = 0.25.

Fig. 2 shows the influence of the parameter ¢ on the zoom in Eq. (35), taking into account both transformations,
S=1In (§/K) and x = ng](§). The different values for xx, which depends on ¢, are chosen in such a way that the focus
on the values around S = 0 is not too pronounced, compare Eq. (36). We observe that for smaller values of ¢ > 0 there is
less zoom. So with { — 0 the zoom function is approaching the linear transformation ¢(x) = (§max — §mm)x + §mm with
x € [0, 1]. With a larger value of ¢ there is a stronger focus on our area of interest around the exercise price K.

The aim is to find an ‘optimal’ value for ¢ to be used in practical computations. The larger ¢, the smaller the error around
K, but on the other hand the error in other parts of the domain increases when having a stronger zoom, because an increasing
number of grid points in the area around K automatically results into a decreasing amount of grid points in other areas and
vice versa. There has to be a balance between the error in the area around K and the error in other parts of the domain. The
overall order of convergence should be looked at to achieve this balance and thus to get a good value for ¢. We expect the
numerical convergence order to increase at first with rising ¢ and then decrease again after a certain ‘optimal’ strength of
zoom is reached.



B. Diiring et al. / Journal of Computational and Applied Mathematics 271 (2014) 247-266 257

200 : ‘

(=25 (x, = 231.5/320)
=5 (x, =223.5/320)

=7.5 (x, = 215.5/320

150 : O ) 1
_§=10 (x, = 211.5/320)

» 100} 1

501 ]

= ‘ ‘ ‘
0 02 04 06 0.8 1

X

Fig. 2. Different zoom examples with K = 100.
5.2. Numerical convergence

We now study the numerical errors of the discretisation as h — 0 for fixed parabolic mesh ratio Az /h?, using different
values for ¢ and p. We compute an approximation of the solution of the transformed problem, which is given by Eq. (7), and
then transform it back into the original variables. For the relative I*- and I°°-error plots a reference solution is computed on
a fine grid with h.f = 0.003125. For the relative [>-errors we use

”Uref - U||12
||Uref||12
and for the [°°-error we use

”Uref - U||l°°7

where Uy denotes the reference solution and U is the approximation. We expect the error to behave like © (h") for some k.
If we plot the logarithm of the error against the logarithm of the number of grid points, the slope of this log-log plot gives
the numerical convergence order of the scheme. Due to the initial condition of the transformed problem not being smooth
everywhere, we observe that the log-log plots do not always produce a straight line, e.g. for a plain vanilla Put option. For
a smooth initial condition the log-log plots of the errors give an almost straight line, e.g. for the Power Put option. The
numerical convergence order indicated in the figures below is always computed as the slope of the linear least square fit
of the error points. For comparison we additionally plot the results for a standard discretisation (SD), which means that the
standard central difference operator is used in (7) as well as

QD(X) = (§max - §max) X+ §min'

In this way all discretisations considered here operate on the same spatial grid and a meaningful comparison can occur. We
use At = 0.4h? for all convergence plots, although we note that the dependence of the numerical convergence order on
the choice of the parabolic mesh ratio is marginal. This is in line with the results of our numerical stability study reported
below in Section 5.3.

Figs. 3 and 4 show log-log plots of the relative [>- and [*-error of the approximations with respect to the reference
solution in the Heston-Hull-White model (p = 0) for a European Put option for different values for the number of grid
points and with different zooms. In this way the influence of the zoom can be observed. The theoretical consistency order in
this case is four. Looking at the relative [>-error we observe that the numerical convergence orders vary from 3.75 to 4.29,
which agrees very well with the theoretical order for all zooms. We can also see that the convergence order rises until ¢ = 5
and then declines again, so { & 5 seems to be the best choice. The lowest relative I>-error is always obtained when using
¢ =10.

The more useful error in practice is probably the [°°-error, as it shows the highest difference between the reference
solution and the approximation. When looking at Fig. 4 we see that the [*-error and the [*-error have a very similar
behaviour. The convergence orders vary from 3.00 to 4.20, again having the best order for ¢ * 5. When using the finest
grid the errors for { = 5 and ¢ = 10 are almost identical, but with rougher grids the error with ¢ = 10 is again clearly
the lowest. For both error plots we observe that the zoom has its biggest impact when looking at a rough grid, because the
error then decreases significantly with an increasing zoom. The HOC discretisations have significantly lower error values
and higher convergence orders when comparing them to the standard discretisation. Overall, choosing ¢ =~ 5 for the
Heston-Hull-White model (p = 0) seems to be the best choice with respect to the convergence order.

In Figs. 5 and 6 we plot the relative I>- and I*°-error for a European Put option in the Heston model with p = —0.1. This
means that the theoretical consistency order is only two, see Eq. (22). We observe in Fig. 5 that the relative [>-error varies
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Fig. 5. Relative I>-error Heston model p = —0.1.
from 3.40 to 4.14. These values are far above the theoretical consistency order. In fact, using the Version 3 discretisation

scheme we obtain a convergence order close to the order using the Heston-Hull-White model. The order of the relative
I2-error is again rising until ¢ = 5 and declining afterwards, but has its lowest values when using £ = 10. The [*®-error in
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Fig. 7. Relative [>-error Heston model p = —0.4.

Fig. 6 behaves similar to the [*°-error in the Heston-Hull-White model. Here the convergence order values vary from 3.00
to 4.09, having its highest value for { = 5. With the finest grid the difference of the error when using ¢ = 10 and using
¢ = 5 is again very slim. The biggest impact of increasing the zoom in either error plot can be again seen when having a
rough grid, because then increasing the zooming leads to significantly lower errors. Similar as in the Heston-Hull-White
model the convergence order results are the best when choosing ¢ = 5. For both errors we can again see that the essentially
high-order compact discretisations have significantly lower error values and higher convergence orders than the standard
discretisation.

Figs. 7 and 8 show the relative [>- and [*-error for an European Put option in the Heston model with p = —0.4. The
theoretical consistency orders of the errors are again two. In Fig. 7 we can see that the convergence order for the relative
I2-error varies from 2.92 to 3.84, which is again significantly higher than the theoretical order. The convergence order
deteriorates slightly for smaller values of p but is still an order better than for the standard discretisation. As expected
the best convergence order, which is still very close to four, will be achieved when using { = 5. From Fig. 8 we find that
for the [°°-error the convergence order gets lower with lowering the value of p. The convergence orders vary from 2.98 to
3.86, where ¢ = 5 leads again to the highest value, which is still close to four and thus highly above the theoretical value
of the consistency error order. As in the two previous cases the zoom has his highest strengths for the relative >-error as
well as for the [*°-error when using a very rough grid. For both the relative I?>-error and the I°°-error we can again see that
the essentially high-order compact schemes have significantly lower error values and higher convergence orders than the
standard discretisation.

With Figs. 3-8 we recover the numerical observation given in Section 3.2 and can confirm that Version 3 leads to a high-
order compact scheme.

For all the discussed European Put options the best results for the convergence order is obtained when using ¢ = 5. This
value seems to give a good balance between the error around K and the other regions for the zoom. Even though the scheme
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Fig. 9. Relative I>-error Power Option Heston model p = 0,p = 2.

has a theoretical consistency order equal to four only for the Heston-Hull-White model (o = 0), the application showed,
that we achieve a numerical convergence order close to four for the Heston model with p # 0 as well.

We now consider the case of European Power Put options in the Heston model. The only difference to a plain vanilla
European Put is, that the final condition is taken to the power p, see (6), which yields to (34) after transformation. The grid
was shifted in a similar manner as above, avoiding x; as a grid point.

It can be clearly seen that in Figs. 9 and 10, denoted to the relative I>-error in the cases p = 0and p = —0.4 when
p = 2, the lines in the log-log plots are much closer to straight lines than in the cases of the vanilla Put options withp = 1,
which can be explained with the initial condition of the transformed problem being smoother. The convergence orders of
the relative [>-errors range from 3.85 to 4.08 for the Heston-Hull-White (o = 0) Power Put with power p = 2 and from
3.22 to 3.40 for the Power Put in the Heston model with p = —0.4, where the orders are increasing with increasing zoom
strength. The differences of about 0.6 between the orders in the Heston model with p = 0 and p = —0.4 is not very
large considering the difference of the theoretical orders. So we can again see that the convergence order for p = —0.4 is
far beyond its theoretical order of two. We can see that the HOC schemes for p = 0 as well as the essentially high-order
compact discretisations for p = —0.4 outperform the standard discretisation in terms of error values and convergence
orders significantly.

In Figs. 11 and 12 we can see the convergence orders in the Heston-Hull-White model (o = 0) and the Heston model
with p = —0.4 when p = 3. The differences between the plots are not as big as the theoretical consistency error order
may indicate. Even though in the Heston model with p = —0.4 the scheme has a theoretical consistency error of order
two, it produces a convergence order from 3.50 to 3.69 depending on the zoom strength ¢, whereas the orders in the
Heston-Hull-White model with o = 0, where we have a theoretical consistency order of four, vary from 4.04 to 4.10.
In both situations the standard discretisation is outperformed on behalf of convergence order and error values.
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5.3. Numerical stability study

In the particular case of a uniform grid, i.e. ¢(x) = x, the scheme developed here reduces to the high-order compact
scheme presented in [17], where unconditional (von Neumann) stability is proved for p = 0. An additional stability analysis
performed in [ 18] suggests that the scheme is also unconditionally stable for general choice of parameters. For the present
scheme on a non-uniform grid, a similar von Neumann analysis, analytical or numerical, appears to be out of reach as
the expression for the amplification factor is formidable and consists of high-order polynomials in a two-digit number of
variables. To validate the stability of the scheme for general parameters, we therefore perform additional numerical stability
tests. We remark that in our numerical experiments we observe a stable behaviour throughout.

We compute numerical solutions for varying values of the parabolic mesh ratio c = Az /h? and the mesh width h.
Plotting the associated relative I*>-norm errors in the plane should allow us to detect stability restrictions depending on ¢ or
oscillations that occur for high cell Reynolds number (large h). This approach for a numerical stability study was also used
in[17,14].

We show results for the European Put option in the Heston Model only, since the Power Puts only differ in the initial
conditions and give similar results. For our stability plots we use ¢ = k/10 withk = 1, ..., 10, and a descending sequence
of grid points in the x-direction, starting with six grid points (since x € [0, 1] it follows h < 0.2), and doubling the number
of points (halving h) in each step. The zoom parameter ¢ = 5 is used.

Figs. 13 and 14 show the stability plots for the Heston-Hull-White model (o = 0) and for the Heston model with
p = —0.4. We observe that the influence of the parabolic mesh ratio ¢ on the relative [>-error is only marginal and the
relative error does not exceed 8 x 10~ as a value for both stability plots. We can infer that there does not seem to be a
stability condition on c for either situation. For increasing values of h, which also result in a higher cell Reynolds number,
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Fig. 14. Stability plot of the relative [>-error for p = —0.4.

the error grows gradually, and no oscillations in the numerical solutions occur. The stability plot for the Heston model with
p = —0.1looks similar (not shown here) and does not indicate any conditions on c or h either.
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6. Conclusion

We have presented new high-order compact finite difference schemes for option pricing under stochastic volatility
on non-uniform grids. The resulting schemes are fourth-order accurate in space and second-order accurate in time for
vanishing correlation. In our numerical convergence study we obtain high-order numerical convergence also for non-zero
correlation and non-smooth payoffs which are typical in option pricing. In all numerical experiments a comparative standard
second-order discretisation is significantly outperformed. We have conducted a numerical stability study which seems to
indicate unconditional stability of the scheme. In our numerical experiments we observe a stable behaviour for all choices
of parameters.

It would be interesting to consider extensions of this scheme to the American option pricing problem, where early exer-
cise of the option is possible. In this case, one has to solve a free boundary problem. It can be written as a linear complemen-
tarity problem which could be discretised using the schemes given here. To retain the high-order convergence one would
need to combine the high-order discretisation with a high-order resolution of the free boundary. This extension is beyond
the scope of the present paper, and we leave it for future research.

Appendix. Coefficients for Version 2 and Version 4

In this section we give the coefficients of the semi-discrete schemes for Version 2 and Version 4. We do not include the
coefficients for Version 1 as this version always resulted into a second-order numerical convergence error in the numerical
study.

A.1. Coefficients for Version 2

When discretising Eq. (21) with the central difference operator in the x- and in the y-direction, we get the following
coefficients for the Version 2 scheme
R = WP | YOk | Gk OT VYO WWm | YUK BT | pui g0 uygy
12h 12h 1202y 12h? 24h 24 12h 24v 24h
Oir O yowk @F k@0 @ik 0  olcr
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where I%,;j is the coefficient of U; j(t). Defining I\A/I,;j as the coefficient of 9. U; j(t) we get
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Using these coefficients instead of the ones given in (25) to (30) in the derivation in Section 4 for the interior of the grid G
as well as the boundaries Y, and ymax yields the Version 2 scheme.

A.2. Coefficients for Version 4

In this part of the Appendix we give the coefficients of the Version 4 scheme. When discretising Eq. (21) with the central
difference operator in the x- and in the y-direction, we get
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where 12,3 j is the coefficient of U; j(7). Defining I\A/Ii,j as the coefficient of 9, U; j(t) we get
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Using these coefficients instead of the ones given in (25) to (30) in the derivation in Section 4 for the interior of the grid G
as well as the boundaries Y, and ymax yields the Version 4 scheme.
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