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binatorial and can be implemented to run in low polynomial time.

Key words : approximation algorithms, combinatorial algorithm, multi-echelon inventory problem,
lot-sizing

Area of review : Discrete optimization
MSC2000 subject classification : Primary: 90B05, secondary: 68W25,90C59
OR/MS subject classification : Primary: Multi-item/echelon/stage < Inventory/production; Secondary:

Lot-sizing < Production smoothing < Inventory/production
History : Received June 19, 2015; revised December 22, 2015, and September 23, 2016; Accepted

September 18, 2016

1. Introduction We study a two-level distribution system in which a central warehouse sup-
plies several retailers facing final customer demands. The problem is known in the inventory lit-
erature as the (deterministic) One-Warehouse Multi-Retailer (OWMR) problem. We assume that
the demands are deterministic and known over a discrete and finite planning horizon, and we want
to minimize the distribution costs to flow the products from an external supplier to the final cus-
tomers through the network. Two types of costs are incurred while the goods move through the
system. Namely each location incurs procurement costs when it orders, and holding costs when it
stores physical units in its stock. The objective is to find a planning for the orders at each location
such that all the demands are fulfilled on time while minimizing the sum of the procurement and
holding costs. The Joint Replenishment Problem (JRP) is a special case of the OWMR problem
where the warehouse operates as a cross-docking station (i.e. holds no inventory). This can be
captured in the model via a prohibitive holding cost at the warehouse.
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This paper aims at designing efficient approximation algorithms for these problems. Recall that
a polynomial time algorithm for a minimization problem is said to be a ρ-approximation, or to
have a performance guarantee of ρ, if for any instance it delivers a solution of cost at most ρ times
the optimal cost.

Literature Review. The OWMR and JRP problems have been studied extensively in the
literature for continuous-review models. Schwarz (1973) is among the first to study the continuous-
time version of the OWMR problem under constant-rate demands. While the complexity status of
the problem under this setting is still open, Roundy (1985) introduced in its seminal work a 98%-
effective algorithm which was later revisited and extended by Muckstadt and Roundy (1993) to
other multi-echelon problems. More recently, Stauffer (2012) presented a simple 1.27-approximation
based on the recombination of the optimal single-echelon strategies, which is also one of the basic
ingredients of the approach presented in this paper. In the special case of the JRP, Nonner and
Sviridenko (2013) proposed an EPTAS in a stationary continuous-time setting. We refer the reader
to Aksoy and Erenguc (1998) and Khouja and Goyal (2008) for a detailed survey of the JRP.

In this article we focus on the discrete-time version of the problem, i.e. we consider periodic-
review policies. Both the JRP and the OWMR problem are known to be NP-hard in this setting,
see Arkin et al. (1989) or Nonner and Souza (2009). While it is not known if the standard versions
of those problems are APX-hard (see Levi et al. (2008b)), the JRP with deadlines (a variant of
the JRP problem where no holding cost is paid but the demands have to be served within certain
intervals) was proven to be APX-hard first by Nonner and Souza (2009) and later by Bienkowski
et al. (2014) in special cases. Only few papers propose algorithms or heuristics to solve the OWMR
problem in its discrete-time version. Federgruen and Tzur (1999) have applied a time-partitioning
heuristic, but considered bounded demands and parameters for the analysis of their worst-case
bound. Chan et al. (2000) and later Shen et al. (2009) studied the class of Zero-Inventory-Ordering
(ZIO) policies for the OWMR problem, i.e. in which the locations place orders only when their
current inventory level is zero. Levi et al. (2006) proposed a 2-approximation algorithm for the
JRP. Bienkowski et al. (2014) improved this result to a performance guarantee of 1.791 for the JRP,
while Levi et al. (2008b) improved to a 1.8-approximation algorithm for the OWMR problem. Their
results hold for shelf age dependent holding costs that are more general than linear holding costs
(see Federgruen and Wang (2013) for a discussion on shelf age and level dependent holding costs).
Furthermore in the special case of JRP with deadlines, Nonner and Souza (2009) and Bienkowski
et al. (2013) have improved this result to a 5/3 (respectively 1.574) approximation using a similar
LP-rounding technique.

Contributions of this work. In contrast with the approximation algorithms presented in Levi
et al. (2008b) and Nonner and Souza (2009) which exploit a linear integer formulation of the
problem via LP-rounding techniques, we develop a combinatorial algorithm, based on a simple
decomposition of the problem into single-echelon problems. This algorithm can be implemented
to run in low polynomial time and yields a performance guarantee of two. The complexity of our
algorithm can even be made linear for linear holding costs. We also introduce a new lower bound
for this problem, as a byproduct of our analysis. While we do not match the best approximation
guarantee of Levi et al. (2008b), we believe that the simplicity of the method and its computational
complexity make it both a valuable theoretical approach and a practical tool. Besides, we demon-
strate that our method can be applied to a significantly broader class of problems than the ones
considered in the literature. In particular, we present the first approximation algorithms for the
OWMR and JRP problems with non linear holding costs, general procurement costs (including Full
Truck Load and Less than Truck Load cost structures) and capacity constraints at some retailers.

The rest of the paper is organized as follows. In §2, we present the model and important notation
used throughout the rest of the paper. In §3, we introduce a natural decomposition of the OWMR
problem into single-echelon subproblems on a simple model with a basic cost structure. We then
propose a new method, called uncrossing algorithm, that recombines the solutions to these sub-
problems into a feasible solution for the original problem and prove that the overcost incurred by
this solution is bounded by a constant factor.
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The remaining sections show how the method can easily be adapted to numerous cost structures
that capture more intricate cases. §4 shows how to modify the decomposition in order to tackle
more complex holding cost structures, namely level dependent and shelf age holding costs.
Specifically, we develop a 2-approximation when the holding costs are nonlinear functions of
the inventory on hand, or when they satisfy an extension of the so-called Monge property
introduced in Levi et al. (2008b). We then show in §5 that the algorithm can be adapted to general
procurement costs that include the well-known FTL (Full Truck Load) and LTL (Less than Truck
Load) transporation cost structures, under mild assumptions. Note that the FTL procurement
cost structure is sometimes referred to as ordering with soft capacities. Finally we consider in §6
the case of a hard capacity constraint on the ordering of some specific retailers, defined as the
W−retailers in the following.

Remark : For a quick overview of the core techniques and ideas presented in this paper, the reader
can focus on sections §2 and §3. Note also that an early version of the results presented in sections
§3 and §4 was published in the proceedings of SODA (Stauffer et al. 2011).

2. Model and notation We consider a two-level distribution network composed of one cen-
tral warehouse (indexed by 0) and N retailers (indexed from 1 to N) facing customer demands.
The planning horizon is finite, discretized into T time periods. Goods enter the system from an
outside supplier of infinite capacity that replenishes the inventory of the warehouse, which in turn
supplies the retailers. Assuming deterministic lead-time, we consider without loss of generality that
the orders are delivered instantaneously from one location to another. Each retailer i = 1, . . . ,N
faces in period t= 1, . . . , T a deterministic demand dit that must be satisfied on time, i.e. neither
backlogging nor lost-sales are allowed.

We describe below the different costs incurred while products move across the network. The
precise definitions and assumptions relative to the different cost structures will be given in the
corresponding sections of the paper.

Holding costs. Each location can store goods in its inventory to serve demands – or, in the case
of the warehouse, retailers orders – in future periods. Many models in the literature consider that
a per-unit holding cost hi is incurred to keep one unit of inventory in location i from the end of a
period to the beginning of the next one. In what follows, this simple cost structure is referred to
as the linear holding costs. In particular, we shall use this setting to explain the principles of our
algorithms in §3. We also study two more general holding cost structures: Inventory level dependent
holding costs in §4.1 and shelf age dependent holding costs in §4.2. In the level dependent case,
the holding cost incurred in location i from period t to t+ 1 is a nondecreasing function hit(·) of its
inventory level x. Linear holding costs are clearly a special case of level dependent holding costs
for which hit(x) = hi ·x. In the shelf age case, the holding cost depends for each unit on the number
of periods it has been stored in each location. Specifically, hitrs represents the total holding cost
incurred to serve a unit of demand dit by ordering it in period r at the warehouse and in period
s at retailer i. Such a cost structure has been studied by Levi et al. (2008b). Linear holding costs
are again a special case of shelf age dependent holding costs, where hitrs = h0(s− r) +hi(t− s).

In the remainder of the paper, we assume that we can partition the set of retailers into two
subsets IJ (J-retailers) and IW (W -retailers) based on their holding cost. Specifically, it is cheaper
to hold inventory at a J-retailer rather than at the warehouse, while it is the opposite for W -
retailers (we will give a precise definition for each holding cost structure in the relevant sections).
This assumption is classical in the literature: In particular in the case of linear holding costs we
have hi < h0 if i ∈ IJ and hi ≥ h0 if i ∈ IW . It is well-known that there exists an optimal solution
that does not hold any stock at the warehouse for the J-retailers for the linear and shelf age holding
cost structure. This dominance also holds under the level dependent holding costs we consider
in §4.1, see Appendix A for a formal proof of this result.
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Procurement costs. We denote by pit(q) the procurement cost incurred by location i to place an
order of size q in period t. Many models in the literature focus on the special case of fixed ordering
costs, in which pit(q) =Ki

t for all q, i.e. the procurement cost does not depend on the size q of the
order. We shall use this simpler setting to present our algorithm in §3. In §5, we consider a more
general ordering cost structure in which procurement costs pit(·) model the well-known Full Truck
Load (FTL) and Less than Truck Load (LTL) settings.

Note that Chan et al. (2000) have shown that if the procurement costs at the retailers vary over
time, the OWMR problem is as hard to approximate as the set cover problem, even in the simple
case of fixed ordering costs. Thus it is unlikely that there exists an approximation algorithm with
constant guarantee unless P =NP, see Feige (1998). According to this result, we shall assume in
this paper that the procurement costs at each retailer i > 0 are stationary, i.e. pit(·) = pi(·) for all
periods t= 1, . . . , T . In contrast, the procurement costs at the warehouse may be time-varying in
our models.

Policies. We call indifferently solution or policy π a planning for the orders at each location. Any
unit of product to satisfy a demand at retailer i in period t must be ordered in a period s at retailer
i and in a period r at the warehouse such that r≤ s≤ t. In the remainder of this paper, we denote
dr, sc such a pair of orders, where the demand served with this pair will be clear from the context.
Notice that if dit > 1, the demand dit can be served by different pair of orders. We say that a pair
of orders dr, sc is valid for a unit of demand dit if and only if r ≤ s≤ t. A policy is feasible if each
unit of demand dit is ordered via valid pairs of orders, for all i= 1, . . . ,N and t= 1, . . . , T .

We denote by C (π) the total cost incurred by a policy π over the planning horizon. This cost can
be split into two parts: The total procurement cost K(π) and the total holding cost H(π). Thus
we have C (π) =K(π) +H(π). The objective is to find a feasible policy minimizing the sum of the
procurement costs and holding costs.

A policy is First Come First Served (FCFS) if units of product are consumed in the same order
they are supplied. It is easy to check that for the cost structures considered in this paper there exists
an optimal policy that is FCFS, therefore in what follows we restrict ourselves (w.l.o.g.) to such
policies. For FCFS policies, we can also represent without ambiguity a policy π by a (N + 1)-uplet
π= (π0, π1, . . . , πN) where each πi specifies the orders (time and quantity) for location i.

A policy is Zero Inventory Ordering (ZIO) if each location places orders only when its current
inventory level is zero. Under a ZIO policy, a demand dit is served by a single order. Under a non
ZIO policy, a demand dit might be served by several orders. The dominance of ZIO policies is well
established when procurement costs do not depend on the size of the order, even under the various
holding cost structures we consider. However, ZIO policies are not dominant when considering FTL
and LTL procurement costs (see §5) or when the orders are capacitated (see §6).

3. A simple approximation algorithm This section introduces the main ideas of our tech-
nique on a simple model with stationary costs, i.e. each location i incurs a fixed ordering cost Ki

and a per-unit holding cost hi. Although simple, this cost structure renders the OWMR problem
NP-hard, see Arkin et al. (1989). Recall that in this case, we have hi ≥ h0 for all i∈ IW and hi <h0

for all i∈ IJ .
Our procedure works in two main phases, where the output of the first phase is used as an input

for the second one. The first phase decomposes the OWMR problem into N + 1 single-echelon
problems:

• Retailer i is considered as a single-echelon location facing its own demand dit.
• The warehouse is regarded as a single-echelon, multi-item system facing for each period t a

demand dit for item i.
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An optimal policy is computed for each single-echelon problem. In the second phase, we develop an
uncrossing algorithm to recombine the N +1 optimal single-echelon policies into a feasible solution
for the OWMR problem. The rest of this section explains how the two phases can be adjusted to
obtain a 2-approximation algorithm.

3.1. Decomposition of the problem We introduce two decompositions of the OWMR
problem, which differ only by the way the holding costs are accounted in each problem.

A decomposition with full holding costs In this first decomposition, we consider the
following single-echelon systems (Si):

(Si) Each retailer i is considered as a single-echelon location facing demand dit, with holding
cost hi and ordering cost Ki.

(S0) The warehouse is regarded as a single-echelon, multi-item system facing for each period t a
demand dit for item i, with a fixed ordering cost K0. A different holding cost is incurred depending
on which item (retailer) a unit serves: An item i∈ IJ incurs a holding cost hi while an item i∈ IW
incurs a holding cost h0.

Observe that we consider real holding costs hi at the retailers, and not echelon holding costs
(hi−h0) as it is classically done in the literature. The single-echelon problems (Si) are commonly
referred to as the Uncapacitated Lot Sizing Problem, which has been extensively studied in the
literature since the seminal paper of Wagner and Whitin (1958), see for instance Brahimi et al.
(2006) for a recent survey on single item lot-sizing problems or Pochet and Wolsey (2006) for
polyhedral approaches. Problem (S0) at the warehouse is multi-item while problems at retailers
are single-item. There exists efficient algorithms to compute an optimal (ZIO) policy for these
problems, see §3.4 for a detailed discussion.

Throughout the remainder of the paper, C ∗ refers to the cost of an optimal policy for the OWMR
problem and π∗0 , π

∗
1 , . . . , π

∗
N to the optimal policies for systems (S0), (S1), . . . , (SN), respectively. In

addition, we denote Ci(πi) = Ki(πi) +Hi(πi) the cost incurred by policy πi in system (Si), with
Ki(πi) (resp. H(πi)) the total ordering cost (resp. holding cost) of policy πi at location i.

The decomposition presented above induces two natural lower bounds for the problem. On the
one hand, (S0) is simply a OWMR problem with no fixed ordering cost for the retailers. One can
note that the holding cost incurred to store a specific item i is equal to min{h0, hi} and therefore
is lower than or equal to both its warehouse holding cost and its retailer holding cost. This ensures
that (S0) is a relaxation of the original problem. On the other hand, if we assume that there is
no fixed ordering cost at the warehouse (which is yet another relaxation of our problem), then an
optimal solution to this latter problem is simply the union of optimal solutions to the independent
single-echelon systems (Si) for i= 1, . . . ,N . Both relaxations give a lower bound for the OWMR
problem. We summarize this result in the following lemma.

Lemma 1.

C ∗ ≥max

{
C0(π

∗
0),

N∑
i=1

Ci(π
∗
i )

}

A decomposition with split holding costs Notice that in the natural decomposition above,
the fixed ordering costs are naturally split between the different systems (Si), while the holding
costs incurred by a particular unit in systems (S0) and (Si) may overlap. This explains the use of
a maximum in the lower bound of Lemma 1. We shall aim at improving this result by considering
a second decomposition, where holding costs are split between the two levels according to a split
parameter 0<α< 1. Specifically, we define the following single-echelon systems (Ŝi):

(Ŝi) Each retailer i is considered as a single-echelon location facing demand dit, with ordering
cost Ki and holding cost ĥi = α ·hi.
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(Ŝ0) The warehouse is regarded as a single-echelon, multi-item system facing for each period t a
demand dit for item i, with a fixed ordering cost K0. A different holding cost is incurred depending
on which item (retailer) a unit serves: An item i∈ IJ incurs a holding cost ĥ0 = (1−α)hi while an
item i∈ IW incurs a holding cost ĥ0 = (1−α)h0.

In the remainder of the paper, we denote by Ĉi(πi) the cost incurred by policy πi in system (Ŝi)
and by Ĥi(πi) the total holding cost in system (Ŝi) of a feasible policy πi. Let also π̂∗i be an optimal
policy for (Ŝi). We have

Ĉi(πi) = Ĥi(πi) +Ki(πi).

The following lemma states that the sum of the optimal cost at the warehouse and at the retailers
in subproblems (Ŝi) is a lower bound of any feasible policy for the OWMR problem:

Lemma 2. For any split parameter α such that 0<α< 1, we have:

C ∗ ≥ Ĉ0(π̂
∗
0) +

N∑
i=1

Ĉi(π̂
∗
i ).

Proof. Consider an optimal policy πOPT = (πOPT
0 , πOPT

1 , . . . , πOPT
N ) of cost C ∗ for the OWMR

instance. We assume w.l.o.g. that for all i∈ IJ , every order of πOPT
i is placed in an ordering period

of πOPT
0 , hence no inventory is held at the warehouse for J-retailers.

Let xOPT
it and XOPT

i =
∑T

t=1 x
OPT
it be the inventory level in period t and the cumulative inventory

level over the entire planning horizon of πOPT in location i = 0, . . . ,N , respectively. Since policy
πOPT
i is feasible for system (Ŝi) for all i, we can evaluate the cost Ĉi(πOPT

i ). One can use the
inequality h0 ≤ hi ∀i∈ IW to bound the optimal cost as follows:

C ∗ =
N∑
i=0

Ki(πOPT
i ) +h0XOPT

0 +
N∑
i=1

hiXOPT
i

=
N∑
i=0

Ki(πOPT
i ) + (1−α)

[
h0XOPT

0 +
N∑
i=1

hiXOPT
i

]
+α

[
h0XOPT

0 +
N∑
i=1

hiXOPT
i

]

≥
N∑
i=0

Ki(πOPT
i ) +

[
(1−α)h0

(
XOPT

0 +
∑
i∈IW

XOPT
i

)
+
∑
i∈IJ

(1−α)hiXOPT
i

]
+

N∑
i=1

αhiXOPT
i

=K0(π
OPT
0 ) + Ĥ0(π

OPT
0 ) +

N∑
i=1

(
Ki(πOPT

i ) + Ĥi(πOPT
i )

)
= Ĉ0(π

OPT
0 ) +

N∑
i=1

Ĉi(π
OPT
i ).

The proof then follows from the optimality of π̂∗0 , π̂
∗
1 , . . . , π̂

∗
N .

�

3.2. The uncrossing algorithm From now on, we assume that we are given a feasible policy
πi to problem (Si) (resp. (Ŝi)) for every i= 0, . . . ,N . Since the single-echelon policies are computed
independently, they define a policy π = (π0, π1, . . . , πN) that is not necessarily feasible for the
OWMR problem. This issue arises if policy πi orders a particular unit of demand dit in period s
while π0 orders the same units in period r > s. We say that the pair of orders dr, sc to serve a unit
of demand dit is crossing (or not feasible) if r > s. By extension, we say that a retailer order in
period s is crossing if there exists some unit of demand dit served by a pair dr, sc such that r > s.
In this section, we present the uncrossing algorithm that builds a feasible policy πu for an OWMR
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instance from single-echelon solutions to problems (Si) (resp. (Ŝi)) . We also show how to bound
the cost of πu.

Before giving the algorithm, we start by introducing some additional notation. We denote by R=
{r1, . . . , rw} the set of periods where the warehouse orders according to policy π0. For convenience
we add to R two artificial periods r0 = 0 and rw+1 = T + 1 corresponding to the beginning and the
end of the planning horizon, with no ordering cost. For all s ∈ {1, . . . , T}, we define s+ and s- be
the first period of R after s and the last period of R prior to s, respectively:

s+ = min{r ∈R : r≥ s} (1)

s- = max{r ∈R : r≤ s} (2)

When a pair of orders dr, sc to serve a unit of demand dit is crossing (r > s), the algorithm simply
adds an additional order for retailer i at period s+ to synchronize with the warehouse. This step
suffices to obtain a feasible policy. In addition if i is a J-retailers and s > r, the algorithm shifts
the retailer order from period s to period s-. This transformation allows us to bound the holding
costs in our analysis.

Uncrossing Algorithm
Input: A feasible policy πi for each subproblem (Si) (resp. (Ŝi)), i= 0, . . . ,N
Output: A feasible policy πu for the OWMR problem, defined as follows. Let r and s be the
ordering periods to serve a unit of demand dit in policy π0 and πi, respectively. Then the policy πu

serves this unit of demand with the pair of orders drit, sitc, where:

drit, sitc=

 ds
+, s+c if r > s
ds-, s-c if r≤ s and i∈ IJ
dr, sc if r≤ s and i∈ IW

. (3)

The output policy πu is feasible since rit ≤ sit for each unit of demand dit. The algorithm works
with ZIO or non ZIO policies. This will be useful in some of the extensions we consider for which
the ZIO property is not dominant. When the input single echelon policies are ZIO, the uncrossing
algorithm can be performed in O(NT ), as a demand dit is served by a single pair of orders. The
output policy is then also ZIO. Figure 1 illustrates the uncrossing algorithm on an example with
two retailers by plotting the evolution of stocks over time.

π0

r1 r2 r3 r4 r5

π1

s1 s2 s3 s4

π2

u1 u2 u3 u4
t

T

t
T

t
T

(a) Input: Single-echelon policies

πu
0

r1 r2 r3 r4 r5

πu
1

s1 s2 s2+ s3 s3+ s4

πu
2

u1
- u1

+

(= u2
-)

u3
+ u4

- u4
+ t

T

t
T

t
T

(b) Output: OWMR feasible policy

Figure 1. Uncrossing algorithm for N = 2, IW = {1} and IJ = {2}

By construction, each ordering period of πi is replaced by at most two ordering periods at
retailer i in πu. More precisely, the set of ordering periods of retailer i in πu is included in



Gayon, Massonnet, Rapine, Stauffer: Fast approximations for OWMR
8 Article submitted to Mathematics of Operations Research; manuscript no.

{s-, s+ | s an ordering period of πi} if i is a J-retailer, and in {s, s+ | s an ordering period of πi} if
i is a W -retailer. Thus the number of ordering periods at each retailer is at most doubled by the
uncrossing algorithm. Moreover policy πu orders at the same periods as π0 at the warehouse. Hence,
together with the assumption of stationary ordering costs Ki, we can bound the procurement costs
of policy πu as follows:

K(πu)≤K0(π0) + 2
N∑
i=1

Ki(πi). (4)

We show now that the total holding cost incurred by policy πu is at most the sum of the holding
costs of the single-echelon policies in systems (Si). Consider a specific unit of demand dit and let
r and s be the ordering periods of this unit in the single-echelon policies π0 and πi, respectively.
The holding cost incurred by this unit, in the single echelons systems, is equal to hi(t− s) in πi
and to min{h0, hi}(t− r) in π0. The holding cost huit incurred by the same unit of demand in the
final policy πu is equal to:

huit = h0(sit− rit) +hi(t− sit) =

hi(t− s+) if r > s
hi(t− s−) if r≤ s and i∈ IJ
h0(s− r) +hi(t− s) if r≤ s and i∈ IW

.

As s+ ≥ s by definition and s− ≥ r if s ≥ r, it follows that huit ≤ hi(t − s) + min{h0, hi}(t − r).
Summing the holding costs over all retailers and periods gives:

H(πu)≤
N∑
i=0

Hi(πi). (5)

That is, the uncrossing algorithm can only decrease the total holding cost incurred by the policies.
Using inequalities (4) and (5), we can now state the following lemma.

Lemma 3. Given feasible single-echelon policies πi to problems (Si), the uncrossing algorithm
builds in time O(NT ) a feasible policy πu for the OWMR problem with linear holding costs such
that

C (πu)≤ 2
N∑
i=0

Ki(πi) +
N∑
i=0

Hi(πi)−K0(π0).

3.3. Performance guarantees We start by considering the solution πu obtained when the
uncrossing algorithm is applied to the optimal single-echelon policies of subproblems (Si). In this
case, Lemmas 1 and 3 imply that

C (πu)≤C0(π
∗
0) + 2

N∑
i=1

Ci(π
∗
i )≤ 3 ·max

{
C0(π

∗
0),

N∑
i=1

Ci(π
∗
i )

}
≤ 3 ·C ∗

and therefore the algorithm provides a 3-approximation. However, using the optimal single-echelon
policies of subproblems (Ŝi) as an input for the uncrossing algorithm leads to a better performance
guarantee when the split parameter α is set to 1/2. In fact, we prove that this procedure, referred
to as the Split & uncross algorithm in the rest of the paper, is a 2-approximation for the OWMR
with linear holding costs:

Theorem 1 (Split & uncross algorithm). For the OWMR problem with linear holding
costs, the uncrossing algorithm has a performance guarantee of 2 when the input policies are the
optimal single echelon policies of systems (Ŝ0), (Ŝ1), . . . , (ŜN) and the split parameter is set to
α= 0.5.
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Proof. Let π̂u denote the output feasible policy of the uncrossing algorithm when the input
policies are the optimal single echelon policies of systems (Ŝ1), . . . , (ŜN). For all i= 0, . . . ,N , the
cost of policy π̂∗i when applied to problem (Si) is:

Ci(π̂
∗
i ) =Hi(π̂∗i ) +Ki(π̂∗i )≤

{
1
α
Ĥi(π̂∗i ) +Ki(π̂∗i ) if i≥ 1
1

1−αĤi(π̂
∗
i ) +Ki(π̂∗i ) if i= 0

.

Then we have from Lemma 3 (for all 0<α< 1):

C (π̂u)≤C0(π̂
∗
0) +

N∑
i=1

Ci(π̂
∗
i ) +

N∑
i=1

Ki(π̂∗i )

=H0(π̂
∗
0) +K0(π̂

∗
0) +

N∑
i=1

Hi(π̂∗i ) + 2
N∑
i=1

Ki(π̂∗i )

≤ 1

1−α
Ĥ0(π̂

∗
0) +K0(π̂

∗
0) +

N∑
i=1

1

α
Ĥi(π̂∗i ) + 2

N∑
i=1

Ki(π̂∗i )

≤ 1

1−α
Ĉ0(π̂

∗
0) +

N∑
i=1

max

{
2,

1

α

}
Ĉi(π̂

∗
i ).

Hence, from Lemma 2, the split & uncross algorithm has a performance guarantee of

max
{

2, 1
α
, 1
1−α

}
. The minimum of this approximation ratio is 2 when α= 0.5. �

Notice that the ordering periods at the warehouse are not changed in π̂u. Thus cost C (π̂u) is in
fact bounded by 2

∑N

i=0 Ĉi(π̂∗i )−K0(π̂
∗
0). It follows that we can get a posteriori a better guarantee

than 2 for our algorithm: For instance if in the relaxation the total ordering costs at the warehouse
represents 1/4 of the total cost of π̂∗, we get a 1.75-approximate solution.

3.4. Complexity analysis Besides its simplicity, the strength of this technique lies in its
low computational complexity. Recall that the uncrossing algorithm can be performed in O(NT )
when the input single echelon policies are ZIO. It remains to determine the complexity of solving
to optimality each single-echelon problem (Si) (resp. (Ŝi)) for i= 0, . . . ,N . As the ZIO property
is dominant, one can classically (see e.g. Zipkin (2000)) represents the single-echelon problem
(Si) (resp. (Ŝi)) with a graph Gi = (Vi,Ei) where the vertices are the different periods (i.e. Vi =
{1, . . . , T + 1}) and an edge (s, t) ∈ Ei represents two consecutive ordering periods (or the last
ordering period and T + 1 if necessary), i.e. Ei = {(s, t) : 1≤ s < t≤ T + 1}). In addition, for i≥ 1
we add an artificial vertice labeled 0 to Vi and artificial edges (0, t) to Ei for t = 1, . . . , T + 1 to
consider the possible zero demands at the beginning of the planning horizon. For the single-echelon
problems corresponding to the retailers (i.e. i ∈ {1, . . . ,N}), the length lis,t of each edge (s, t) ∈Ei
is set to:

lis,t =

Ki +α
∑t−1

u=s(u− s)hi · diu if s≥ 1

0 if s= 0 and
∑t−1

u=1 d
i
u = 0

∞ otherwise

.

This length corresponds to the cost incurred for placing an order in period s and holding units
to satisfy the demands of period s till period t− 1. On the other hand, these lengths for the graph
G0 corresponding to the warehouse (multi-item uncapacitated lot-sizing problem) are set to:

l0s,t =K0 + (1−α)
t−1∑
u=s

(∑
i∈IW

(u− s)h0 · diu +
∑
i∈IJ

(u− s)hi · diu

)
.
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Since hi are nonnegative, these lengths are also nonnegative. One can then build a planning for
the orders in the inventory problem (Si) (resp. (Ŝi)) from a path 0 = ti1 < ti2 < . . . < tim = T + 1 by
ordering in every period corresponding to a vertex 1≤ tik ≤ T in the path (see e.g. Zipkin (2000)).
The optimal solution for the corresponding single-echelon problem is then simply the shortest path
from 0 to T + 1 in Gi. Bellman (1958) algorithm solves such a problem in O(T 2) time, leading to
an overall complexity of O(NT 2).

It is interesting to note that when the system has a linear holding cost structure, one can use
advanced dynamic programming techniques to solve the single-echelon problems more efficiently.
In the case of non-speculative motive, there even exist improved algorithms that find an optimal
solution to the single-echelon problem in O(T ) time (See Federgruen and Tzur (1991), Wagelmans
et al. (1992) and Aggarwal and Park (1993)). Using one of these techniques, it is possible to solve
the N + 1 single-echelon problems with linear holding cost structures in time O(NT ) and the
overall complexity of our algorithm then decreases to O(NT ).

To the best of our knowledge, the complexity of our algorithm outperforms any existing constant
approximation algorithm for the OWMR problem.

3.5. A bad example In this section, we exhibit an instance of the OWMR problem for which
the worst-case bound presented in Theorem 1 is tight. We consider a single warehouse that supplies
two retailers over three periods, with a stationary linear holding cost structure. The parameters
have the following values:
• K0 = 1, h0 = 1
• K1 = 0, h1 = 0, d11 = 1, d12 = 0, d13 = 0
• K2 = z, h2 = 2, d21 = 0, d22 = 1, d23 = 1 + ε, where z ≥ 2 and 0< ε< 1

The optimal ZIO policies for the single-echelon systems with holding costs halved are unique and
can be easily computed:
• The warehouse orders in periods 1 and 3.
• Retailer 1 orders in period 1.
• Retailer 2 orders in period 2.

Starting from these optimal single-echelon solutions, the uncrossing algorithm adds an order for
retailer 2 in period 3 to obtain a solution for the original problem. Only one unit is held in the
warehouse in period 1 (to serve d22) and the final cost it incurs is:

C (πu) = 2K0 +K1 + 2K2 +h0× 1 = 2z+ 3.

Another feasible policy π for this instance is such that the warehouse and retailer 1 order only
in period 1, while retailer 2 orders only in period 2. The warehouse then holds demands d22 and d23
in period 1, before it supplies retailer 2 in period 2. Thus, it incurs a total cost of

C (π) =K0 +K1 +K2 +h0× (2 + ε) +h2× (1 + ε) = z+ 5 + 3ε.

The worst case bound is then reached asymptotically as z goes to infinity:

lim
z→∞

C (πu)

C (π∗)
≥ lim

z→∞

C (πu)

C (π)
= lim

z→∞

2z+ 3

z+ 5 + 3ε
= 2.

4. Extension to more general holding cost structures We now extend the result of the
previous section to models with more general holding cost structures. Namely, we focus on two
different classes of costs: The level dependent and the shelf-age holding cost structures. Basically,
the former considers that the holding cost incurred in a period is an increasing function of the
inventory on hand, while the latter assumes that this cost depends for each unit on the number of
periods it is held in each location. Linear holding costs are a particular case of both cost structures.

In order to generalize Theorem 1, we shall show that the results of Lemmas 2 and 3 extend to
these new models. That is, the sum of the optimal costs for the single-echelon subproblems is a
lower bound for the original problem, on one hand, and the split & uncross algorithm at most
doubles the total cost of these N + 1 policies, on the other hand.
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4.1. Non-linear level dependent holding costs

Assumptions. We consider a level dependent holding cost structure: Recall that hit(x) rep-
resents the price to hold an amount x of products in stock at location i from period t to t+ 1.
Notice that the level dependent holding cost is memoryless, i.e. the price paid in period t only
depends on the current stock level, no matter how long the products have been in stock. We show
in what follows that it is possible to extend the main results of the previous section and obtain a
2-approximation for non-linear holding costs under quite weak assumptions, namely:

(LD1) Non-decreasing property. We assume that holding cost hit(·) is non-decreasing with respect
to the stock level for each location i and for each period t, that is x≤ y ⇒ hit(x)≤ hit(y) for all
t= 1, . . . , T . In addition, we assume that hit(0) is nonnegative.
(LD2) Sub-additivity property at the warehouse. We assume that holding cost h0

t (·) at the ware-
house is sub-additive with respect to the stock level in each period, that is h0

t (x+y)≤ h0
t (x)+h0

t (y)
for all t= 1, . . . , T .
(LD3) Partition of the retailers. For each retailer i, either hit(x) ≥ h0

t (x) holds for any period t
and any stock level x (i is a W -retailer), or hit(y + q)− hit(y) ≤ h0

t (x+ q)− h0
t (x) holds for any

period t and any quantities x, y and q (i is a J-retailer).

It is straightforward to see that the linear holding costs satisfy properties (LD1), (LD2) and
(LD3). In fact as long as shortages and backlogging are not allowed (i.e. inventory levels are con-
strained to be non-negative), the non-decreasing property appears to be fulfilled by any reasonable
holding cost function. Sub-additivity is a common property in economical function that captures
economies of scale. Note that the sum of two sub-additive functions is a sub-additive function, as
well as the product by a positive constant. Functions like

√
x or dx/Be are examples of sub-additive

functions. The latter function may model the practical case where racks of capacity B are used
to store the items and a cost is paid for each additional rack needed. Note also that a concave
function that is non-negative at zero is sub-additive. The reverse is not true, dx/Be is sub-additive
but not concave.

Assumptions (LD1) and (LD2) on holding costs appear to be sufficiently weak to include a
large variety of situations often met in practice. However, the more stringent condition (LD3) on
the marginal holding costs has to be satisfied in order to partition the set of retailers into two
subsets IW and IJ . As for linear holding costs, property (LD3) states that a retailer i is in IW
if, for all periods, it is more expensive to hold inventory at the retailer than at the warehouse,
i.e. hit(x) ≥ h0

t (x) for any period t and any stock level x. On the other hand, we would like to
assess that if i is a J-retailer, there exists an optimal policy that does not hold any stock at the
warehouse to supply its orders, i.e. in which every ordering period of retailer i is synchronized with
a warehouse ordering period. Notice that this property may be imposed by practical considerations
that force the warehouse to behave as a cross-dock facility for a specific subset of retailers. More
generally, property (LD3) states that a retailer i belongs to IJ if its marginal holding cost is always
less than or equal to the marginal holding cost at the warehouse. This condition on the marginal
holding costs for a J-retailer ensures precisely that it is dominant to synchronize its orders with
the warehouse (see Appendix A for the proof). For example, consider the case where the holding
cost of the warehouse is of the form αdx/Be+βx, which models a unitary holding cost plus a rack
overcost as already discussed. A retailer i belongs to IW if its holding cost is greater than h0(x)
and to IJ if its marginal holding cost is at most β. For instance if retailer i has a linear holding
cost γx, it belongs to set IW if γ ≥ α+β and to set IJ if γ ≤ β.

Decomposition into subproblems (splitting phase). Similarly to the linear holding costs
case, we decompose the OWMR problem into N + 1 independent single-echelon subsystems.

(Ŝi) Retailer i is considered as a single-echelon location facing demand dit, with fixed ordering
cost Ki and holding cost ĥit(·)≡ 1

2
hit(·) for all t= 1, . . . , T .
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(Ŝ0) The warehouse is regarded as a single-echelon, multi-item system with a fixed ordering
cost K0

r in period r. Each retailer i ∈ IJ plays the role of an item i, while item 0 represents the
aggregated demand of all the retailers in IW . We charge the units x on hand in period t at cost
ĥ0
t (·)≡ 1

2
h0
t (·) for item 0, and at cost ĥit(·) for each item i∈ IJ .

In a similar way as in §3.3 we solve independently to optimality the N single-echelon problems
at the retailers and the multi-item problem at the warehouse to obtain a vector π̂∗ = (π̂∗0 , . . . , π̂

∗
N)

of optimal ZIO policies. We then rebuild a feasible policy πu for the original problem using the
uncrossing algorithm.

Analysis. We now show that the performance guarantee of the Split and Uncross algorithm
remains the same under non-linear holding costs. The analysis follows the two steps defined by
Lemmas 3 and 2. We prove that these results remain valid under the more general case of level
dependent holding cost by combining similar arguments with properties (LD1), (LD2) and (LD3).

Lemma 4. Given independent single-echelon feasible ZIO policies πi to problems (Ŝi), the
uncrossing algorithm builds a feasible policy πu to the OWMR problem with level dependent holding
costs such that:

C (πu)≤ 2

(
Ĉ0(π0) +

N∑
i=1

Ĉi(πi)

)
.

A formal proof of this result is given in Appendix B for the slightly more general case where policies
πi at the retailers are PCO, see Definition 2 in §5, but we give the reader some insights here. First,
it is easy to see that when recomposing independent uncrossing policies into a feasible policy πu for
OWMR, the stock level at the warehouse and at the W -retailers, in policy πu, is less than or equal
to the one in the independent policies in each period. Due to the non-decreasing property (LD1),
the resulting policy pays less to hold inventory. The same holds for J-retailers except for periods
where the algorithm shifts orders to synchronize with the warehouse. However we can show that
the holding cost paid in π0 can be used to pay for the extra holding costs incurred in πui . Then,
transforming policies πi at the retailers into uncrossing policies at most doubles the total ordering
cost, while changing from holding costs ĥ(·) to h(·) simply doubles the total holding cost paid by
the policy. This leads to the inequality expressed in Lemma 4.

The next step to complete our analysis is to extend the lower bound of Lemma 2 to non-linear
level dependent holding costs. Sub-additivity of holding costs at the warehouse is required to prove
the following result:

Lemma 5. Let C ∗ be the cost of an optimal policy for the OWMR problem with level dependent
holding cost structure and let π̂∗i be an optimal policy for single-echelon problem (Ŝi), for i =
0, . . . ,N . If the holding costs satisfies properties (LD1), (LD2) and (LD3) then

C ∗ ≥ Ĉ0(π̂
∗
0) +

N∑
i=1

Ĉi(π̂
∗
i ).

The proof uses quite similar arguments as the ones of Lemma 2. We combine these ideas with
properties (LD1), (LD2) and (LD3) to obtain the lower bound. See Appendix C for a detailed
proof. The following theorem is a corollary of Lemmas 4 and 5 and extends Theorem 1 to non-linear
holding cost functions:

Theorem 2. The uncrossing algorithm applied to optimal single-echelon policies for systems
(Ŝi) is a 2-approximation for the OWMR problem assuming non-decreasing level dependent holding
costs at each location and sub-additive holding costs at the warehouse, see properties (LD1), (LD2)
and (LD3). Its time complexity is O(NT 3), provided that any cost hit(x) can be evaluated in constant
time.
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Proof. The time complexity corresponds to the resolution to optimality of the different
(single-echelon) uncapacitated lot sizing problems. With general holding costs, the computation of
the value of the arcs as described in §3.4 requires O(T 3) operations for a retailer problem (Ŝi) and
O(NT 3) operations for the warehouse problem (Ŝ0). The other steps are linear in the size of the
OWMR problem, i.e. in O(NT ). �

To the best of our knowledge this is the first approximation algorithm for the OWMR problem
for this class of holding costs.

4.2. Shelf age dependent holding costs

The metric holding cost structure. Although level dependent holding cost structure is a
classical assumption in the inventory literature, it remains restrictive and fails to modelize many
practical situations. In Levi et al. (2008b), the authors introduce a shelf age dependent holding
cost structure that captures additional phenomena such as perishable goods. In this case the cost
of holding one unit of product depends on how long this specific unit has been physically held in
the stock. Specifically, the cost incurred by a unit ordered with the pair dr, sc to serve demand dit
incurs a total holding cost of hitrs. This cost includes in particular the cost of holding this unit from
period r to s at the warehouse and from period s to t at retailer i. Notice that although we refer to
them as holding costs, these parameters can also include per-unit ordering costs at the warehouse
and at the retailer. The authors assume that these holding cost parameters obey the following
so-called Monge properties (see Levi et al. (2008b) for a detailed discussion of these properties):

(SA1) Non-negativity. Parameters hitrs are nonnegative.
(SA2) Monotonicity with respect to s. Each retailer i is in exactly one of the two following situa-
tions: Either hitrs is non-increasing in s∈ [r, t] for each demand point (i, t) and warehouse order r, or
hitrs is non-decreasing in s∈ [r, t] for each demand point (i, t) and warehouse order r. This property
defines a partition of the set of retailers into two subsets: IW and IJ , respectively. A retailer in IW
will be called for short a W -retailer, similarly a J-retailer if it belongs to IJ .
(SA3) Monotonicity with respect to r. For each demand point (i, t) and retailer order in period
s, hitrs is non-increasing in r ∈ [1, s]. Moreover for each retailer i in IJ and demand point (i, t), for
each r′ < r≤ t, the inequality hitr′r′ ≥ hitrr holds.
(SA4) Monge property. For each demand point (i, t) with i ∈ IW , and r2 < r1 ≤ s2 < s1 ≤ t, the
inequality hitr2,s1 +hitr1,s2 ≥ h

it
r2,s2

+hitr1,s1 holds.

These properties are satisfied by linear holding costs. We call this holding cost structure Monge
holding costs. Observe that as in the linear holding cost setting, IW corresponds to the set of
retailers for which it is cheaper to hold inventory at the warehouse while IJ refers to retailers for
which it is cheaper to hold inventory at the retailer. In this paper we generalize the Monge holding
costs by relaxing property (SA4) to property (SA4’):

(SA4’) Triangle inequality. For each demand point (i, t) with i∈ IW , and r≤ s≤ t, the inequality
hitrt +hitss ≥ hitrs holds.

In what follows, we denote (SA) the set of assumptions (SA1), (SA2), (SA3) and (SA4’). Holding
costs that satisfy the (SA) will be referred to as metric holding costs as property (SA4’) resembles
a triangle inequality. Indeed this inequality implies that the cost of holding a unit at the warehouse
from period r to t plus the cost of holding this unit at the retailer from period s to t encapsulates
the cost of keeping the unit at the warehouse from period r to s and then at the retailer from period
s to t. It is clearly true for linear holding costs. The metric holding costs also ensure that each
demand dit can be served from a unique pair of orders dr, sc in an optimal solution. Since demands
are nonnegative by definition, this means one can include dit into a parameter H it

rs = hitrs · dit such
that if hitrs satisfies properties (SA1), (SA2), (SA3) and (SA4’), so does H it

rs. Hence we shall assume
w.l.o.g. that dit = 1 for all i, t such that dit ≥ 0 in the remainder of this section.
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Besides being more intuitive, one can see that the metric holding costs generalize the Monge
holding costs, in the sense that Property (SA4) implies (SA4’): The triangle inequality is obtained
by instantiating the Monge property with r2 = r, r1 = s2 = s and s1 = t. In practice, they also
address additional situations compared to their Monge counterpart. For example, any decomposable
holding cost function of the form H it

rs := f0(s − r) + fi(s, t), where f0 and fi are non-negative
functions, satisfy the metric holding cost assumptions when f0 is non-decreasing. On the other
hand, f0 needs to be convex for the Monge condition to hold. This excludes cases where the items
need a periodic maintenance operation that induces a fixed charge. For instance one can think of a
plant distributor who hires a gardenener to water their goods every δ > 1 periods: If this function
takes the form f0(x) = γ · dx

δ
e, it is increasing and concave and hence is metric, but not Monge.

Note that Levi et al. (2008b) explicitly use the Monge property (SA4) in their analysis to prove
the better performance guarantee of their algorithm.

Decomposition into subproblems (splitting phase). We again introduce for all i, t and
all pairs of orders dr, sc an artificial holding cost parameter ĥitrs = 1

2
hitrs that we use to define the

subproblems of the decomposition in the case of (shelf age) metric holding costs:

(Ŝi) Retailer i is considered as a single-echelon location facing demand dit, with ordering cost
Ki and holding cost ĥitss for all t= 1, . . . , T and ordering period s≤ t.

(Ŝ0) The warehouse is regarded as a single-echelon, multi-item system facing for each period
t a demand dit for item i, with a fixed ordering cost K0

r in period r. A different holding cost is
incurred depending on which item (retailer) the units are intended to serve: if the units are ordered
in period r, the corresponding holding cost is then ĥitrt for i∈ IW and ĥitrr for i∈ IJ .

Here again, the algorithm starts by solving independently to optimality the N single-echelon
problems at the retailers and the multi-item problem at the warehouse to obtain a vector π̂∗ =
(π̂∗0 , . . . , π̂

∗
N) of optimal ZIO policies and then uncrosses these solutions to build a feasible policy

πu for the OWMR problem with metric holding costs.

Analysis. The next lemma extends the results of Lemma 3 to an OWMR problem with metric
holding cost structure. The proof is detailed in Appendix D.

Lemma 6. Given single-echelon feasible policies πi to problems (Ŝi), the uncrossing algorithm
builds in time O(NT ) a feasible and uncrossing policy πu for the OWMR problem with metric
holding costs such that

C (πu)≤C0(π0) +
N∑
i=1

Ci(πi) +
N∑
i=1

Ki(πi).

In order to obtain a performance guarantee of two, it remains to show that the sum of the costs
of the optimal single echelon solutions to subproblems (Ŝ0), (Ŝ1), . . . , (ŜN) is a lower bound on the
optimal cost.

Lemma 7. Let C ∗ be the cost of an optimal policy for the OWMR problem with metric holding
cost structure, and π̂∗i be an optimal policy for the single-echelon problem (Ŝi), i = 0, . . . ,N . We
have:

C ∗ ≥ Ĉi(π̂
∗
0) +

N∑
i=1

Ĉi(π̂
∗
i ).

One can prove this result by simply breaking apart an optimal policy to the original problem
into feasible policies for the problems (Ŝi), in a similar fashion as the proof of Lemma 5. A formal
proof is given in Appendix E.

Since Phase 2 of the procedure applies exactly the uncrossing algorithm introduced in the previ-
ous section, one can use similar arguments as the one introduced in §3, combined with Lemmas 6
and 7, to establish the following theorem:
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Theorem 3. The uncrossing algorithm based on optimal policies to the decomposition (Ŝi) has
a performance guarantee of 2 and a time complexity of O(NT 2) for the one-warehouse multi-retailer
problem with metric holding costs.

Proof. One can represent the single-echelon subproblems with a graph as in the linear case.
The length of each edge lis,t in the graph Gi representing retailer i is defined as

lis,t =

Ki +
∑t−1

u=sH
iu
ss if s≥ 1

0 if s= 0 and
∑t−1

u=1 d
i
u = 0

∞ otherwise

.

Similarly, the value of each edge in the graph G0 is defined as l0s,t = K0 +∑t−1
u=s

(∑
i∈IW

H iu
su +

∑
i∈IJ

H iu
ss

)
. Hence these problems can be solved in O(T 2) time using Bellman

algorithm, leading to an overall complexity of O(NT 2). �

5. Extension to more general procurement cost structures In the previous sections we
have assumed a fixed cost per order at each location. We now aim to generalize our approach to
more general procurement costs pit(x) charged at location i to order an amount x of units in period
t. In the literature, two procurement cost structures have been extensively studied, due to their
practical relevance: The FTL (Full Truck Load) and the LTL (Less than Truck Load) procurement
costs (Li et al. 2004). Indeed, supplies are often delivered by batch, corresponding to truck capacity,
and it is common to pay a fixed cost per truck plus a variable cost according to the actual load
of the truck. In the inventory terminology, such costs are also referred to as multiple setup costs,
stepwise costs, truckload discount or soft capacities. We define these costs as follows:

FTL. The cost to order x > 0 units in period t at location i is pit(x) =Ki
t + dx/Bieki. That is, a

fixed cost ki is charged for each batch of size Bi used to supply the order, in addition to a fixed
ordering cost Ki

t .
LTL. The cost to order x > 0 units in period t at location i is pit(x) = Ki

t + bx/Bicki + f i(x−
Bibx/Bic), where f is a non-decreasing function such that f i(0) = 0 and f i(x) ≤ ki for x ≤ Bi.
That is, in addition to a fixed ordering cost Ki

t , a fixed cost ki is charged for each full batch of size
Bi used to supply the order and the (last) partially loaded batch is charged according to f . We
call f the LTL freight cost function.

Notice that we restrict ourself to the case of a stationary batch size Bi and a stationary fixed
cost per batch ki at each location. In the remainder of this section we assume also that the fixed
ordering cost at the retailers is stationary, that is Ki

t = Ki for all i = 1, . . . ,N . Observe that a
fixed ordering cost is a special case of FTL/LTL procurement costs with fixed cost per batch
equal to zero. In the following, we will consider 2-linearly sandwich procurement costs. We define
a λ-linearly sandwiched function as follows.
Definition 1. Given a positive λ, functions pt(·), t= 1, . . . , T are said to be λ-linearly sand-

wiched if there exists some constants (At)t=1,T and a constant b such that for every period t we
have:

At + bx≤ pt(x)≤ λ(At + bx) ∀x> 0 (6)

The following proposition provides conditions for FTL/LTL procurement costs to be 2-linearly
sandwiched. The proof is given in Appendix F.

Lemma 8.
• Any FTL procurement costs pit() are 2-linearly sandwiched.
• LTL procurement costs pit() are 2-linearly sandwiched if ki ≤Ki

t for all periods t.
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Assumptions on the procurement costs. Although we are mainly interested by FTL/LTL
cost structures, our results hold for the following more general procurement cost structure:

(P1) Non-decreasing. For each location i, pit(·) is non decreasing.
(P2) Stationarity at retailers. For each retailer i, pit(·) = pi(·).
(P3) Sub-additivity for retailers. For each retailer i, pi(·) is sub-additive.
(P4) 2-linearly sandwiched at the warehouse. p0t (·) is 2-linearly sandwiched.

This set of assumptions will be referred to as (P). The FTL/LTL procurement costs clearly satisfy
(P1) (P2) and (P3), assuming that Ki

t =Ki for each retailer i. Our motivation for requiring (P4),
i.e. that the procurement costs at the warehouse to be 2-linearly sandwiched, is algorithmic. Indeed,
to the best of our knowledge, no polynomial time algorithm has been proposed for the multi-
item uncapacitated lot sizing problem with multiple setup, while an efficient solution to this latter
problem is central for our decomposition approach. Using this assumption, we are able to derive
easily a 2-approximation for this latter problem, by relaxing the problem at the warehouse, which
is sufficient to build a 2-approximation for the OWMR problem, as we detail in the next section.

We assume that the holding costs are either shelf age dependent at all locations or level dependent
at all locations. For level (resp. shelf age) dependent holding costs, we assume that the assumptions
(LD) in §4.1 (resp. (SA) in §4.2) are satisfied.

Decomposition into subproblems (Splitting phase). We assume from now that the pro-
curement costs satisfy assumptions (P). In particular the procurement cost p0t (·) at the warehouse
is 2-linearly sandwiched between some affine procurement costs (At + bx) and 2(At + bx).

We consider the following decomposition into subproblems:

(Ŝi) Retailer i is considered as a single-echelon location facing demand dit, with procurement
cost pi(·). The holding costs are split as in §4.

(Ŝ0) The warehouse is regarded as a single-echelon, multi-item system with a fixed ordering cost
Ar in period r. The holding costs are split as in §4.

Observe that (Ŝ0) is identical to the single-echelon problems we have considered for the warehouse
in §4 and thus an optimal policy can be found efficiently. Another consequence is that ZIO policies
remain dominant for the problem (Ŝ0).

This is not necessarily true for a problem (Ŝi) associated with a retailer, since an optimal policy
may order a fraction of a subsequent demand to complete a batch. However we can show that the
so called Positive Consumption Ordering (PCO) policies are dominant. Remind that we assume
without loss of generality that demands are satisfied in a FCFS manner in each policy. Hence for
a given period t we can define without ambiguity the consumption in t from (an order in period)
s≤ t as the number of units ordered in s that are used to serve demands till period t included.
Definition 2. We say that a policy is a Positive Consumption Ordering (PCO) policy if for

each order s, the consumption in period s from order s is strictly positive.
That is, a PCO policy orders in a period s only if at least a fraction of the quantity ordered is
used to serve the demand of period s. Clearly ZIO policies are a special case of PCO policies that
require in addition that all units serving a specific demand are ordered in the same period. Also
note that due to the FCFS discipline, the units on hand at the beginning of a period t have all
been ordered in the previous ordering period. This simple observation on PCO policies is in fact
the main property used in our analysis. It is easy to see that PCO policies are dominant for each
system (Ŝi): For any i > 0, there exists an optimal policy that orders in a period s only if the
consumption of the order in period s is not null. Otherwise the order in period s can simply be
postponed, maintaining a feasible policy without increasing the total cost (the procurement costs
are stationary and the holding costs can only decrease when an order is delayed).
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Performance guarantee The split & uncross algorithm can be applied directly to the optimal
PCO policies π̂∗i for subproblems (Ŝi). As in the previous sections, it builds a feasible uncrossing
policy πui for each retailer i. The analysis of the previous sections asserts that the holding cost
incurred by policy πu is at most twice the total holding costs of the policies π̂∗i for the problems
(Ŝi). This holds with level dependent or shelf age dependent holding costs (see §4.1 and §4.2).

It remains to show that the procurement cost K(πu) incurred by policy πu is still at most twice
the sum of the procurement costs incurred by the policies π̂∗i . We first prove a technical lemma
which states that in the case of linearly sandwiched procurement costs, the simple fact that a
single-echelon policy χ′ orders in the same periods as an other one χ is sufficient to bound its
procurement costs, regardless of the quantities ordered by both policies.

Lemma 9 (Sandwiched procurement costs). Consider a single-echelon system with λ-
linearly sandwiched procurement costs pt(·). Let χ and χ′ be two feasible policies that order respec-
tively quantities zt and z′t in period t, such that zt = 0⇒ z′t = 0. That is, policy χ′ can order in
period t only if policy χ orders. Then the overall procurement cost of χ′ is at most λ times the
overall procurement cost of χ:

T∑
t=1

pt(z
′
t)≤ λ

T∑
t=1

pt(zt)

Proof. The proof is immediate from the definition of linearly sandwiched procurement costs.
Let Z (resp. Z ′) be the set of periods when policy χ (resp. χ′) orders. By definition we have∑T

t=1 pt(zt) ≥
∑

t∈Z At + b
∑T

t=1 zt and
∑T

t=1 pt(z
′
t) ≤ λ(

∑
t∈Z′ At + b

∑T

t=1 z
′
t). Since policy χ′ can

order only if policy χ orders, we have Z ′ ⊆ Z. In addition any feasible policy must order exactly
the total demands on the horizon, that is

∑T

t=1 zt =
∑T

t=1 z
′
t. The result follows. �

This allows us to bound the total procurement cost of policy πu at each location as follows.

Lemma 10. Ki(πu)≤ 2Ki(π̂∗i ) for all i= 0, . . . ,N .

Proof. For the warehouse, one can note that even though the uncrossing operation may
change drastically the quantities ordered between π̂∗0 and πu0 , both policies share (by construction)
the same ordering periods. Therefore, the inequality is straightforward from Lemma 9 and property
(P4) for i= 0.

Now let i be a W -retailer and consider a crossing ordering period s in policy π̂∗i . Let qs > 0 and
qs+ ≥ 0 be the quantity ordered by π̂∗i in period s and s+, respectively. Note that qs+ > 0 if and
only if s+ is an ordering period of π̂∗i . Let x≥ 0 be the stock level at the beginning of period s+,
before receiving qs+. As π̂∗i is PCO (and FCFS) and s is a crossing order, π̂∗i does not place any
order between s and s+ and thus x≤ qs.

In the uncrossed policy πu, only qs−x units are ordered in period s and qs+ +x units are ordered
in period s+. Since the procurement cost pi(·) is sub-additive and non-decreasing, we have

pi(qs−x) + pi(qs+ +x)≤ pi(qs) + pi(qs+) + pi(x)≤ 2pi(qs) + pi(qs+).

If i is a J-retailers, the uncrossing algorithm can be seen in two steps. First, uncross the crossing
orders as for W -retailers by adding an order at s+. This step at most doubles the procurement
cost (same arguments as for W -retailers). Second, synchronize orders that are not crossing with
s−. This second step can only decrease the ordering cost at retailer i as the procurement costs are
sub-additive and stationary. �

Lemma 10 implies that K(πu)≤ 2
∑N

i=0Ki(π̂∗i ). We can state the following theorem:

Theorem 4. The split and uncross algorithm with procurement costs that satisfy assumptions
(P) has a performance guarantee of two for the one-warehouse multi-retailer problem, either with
level dependent holding costs (that satisfy assumptions (LD)) or with shelf age dependent holding
costs (that satisfy assumptions (SA)).
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Complexity analysis. The complexity of the split and uncross algorithm depends on the
complexity of the uncrossing algorithm and on the complexity to solve the single echelon problems
to optimality. The uncrossing algorithm is unchanged. When the input policies are PCO and FCFS,
it can be implemented in O(NT ), as a demand dit is served by at most two pairs of orders. The
warehouse single-echelon problem (Ŝ0) is similar to the previous sections and can be solved in
O(NT ) for linear holding cost, O(NT 2) for metric holding cost and O(NT 3) for level dependent
holding cost.

At retailer i, the complexity to solve the single echelon problem (Ŝi) depends on the procurement
cost function under consideration. Li et al. (2004) propose a O(T 3 logT ) algorithm for the single-
echelon single-item problem with nondecreasing concave holding cost and non-decreasing LTL
freight cost function f . The complexity can be reduced to O(T 3) for linear holding costs using
Monge arrays.

6. Capacity constraint at the W -retailers In this section, we show how to adapt our
technique to an OWMR problem in which the W -retailers are subject to capacity constraints. We
prove that a slightly modified uncrossing algorithm leads to similar results as the ones obtained
in §3 (uncapacitated, linear holding costs and fixed ordering costs). The case of FTL procurement
costs and of more general holding cost structures is then briefly discussed at the end of the section.

Limitations on the size of orders is a common restriction met by companies in practice. Such
situations may arise from physical constraints on the transportation mode (size of a carrier) or from
the maximum number of units a location can handle when it receives an order. Florian and Klein
(1971) were among the first to introduce such capacity constraints by considering a single-echelon
lot-sizing problem in which the quantity ordered in period t cannot exceed a given capacity Ct ≥ 0.
In the constant capacity case where Ct = C for each period t, they proposed a polynomial-time
algorithm in O(T 4) to compute an optimal solution to the problem when holding costs are concave
functions. For linear holding costs, the complexity has been improved to O(T 3) by van Hoesel and
Wagelmans (1996) (for concave variable procurement costs) and to O(T 2 logT ) by Van Vyve (2007)
(for linear variable procurement costs). However, when the capacities are time-dependent, Florian
et al. (1980) and Bitran and Yanasse (1982) have shown that the capacitated lot-sizing problem
is NP-hard, even with no holding cost. Very few papers have proposed exact or approximation
algorithms for capacitated multi-echelon systems. van Hoesel et al. (2005) present a polynomial
time algorithm for serial systems, where the capacity occurs only at the first level. In particular,
its time complexity is in O(T 5) in the case of 2 levels and linear holding costs. Recently, Levi et al.
(2008a) propose an approximation algorithm for the capacitated multi-item lot-sizing problem.
This is a special case of the OWMR problem where the fixed costs are zero at all retailers and the
capacity constraints appear only at the warehouse.

Assumptions. The assumptions are the same as in §3. Holding costs are linear at each location
and fixed ordering costs are stationary at the retailers. In addition we assume, contrary to the rest
of the paper, that the fixed ordering costs at the warehouse are stationary, that is K0

t = K0 for
all periods. Moreover, in each period t, a W -retailer i cannot order a quantity greater than its
capacity Ci. The warehouse orders and the J-retailers orders remains unbounded.

Smooth capacitated problem. Observe that neither ZIO nor PCO policies (see §5 for a
definition) are dominant for a capacitated lot-sizing problem, since it may be necessary to order
at full capacity during several periods to serve a large subsequent demand. However, we establish
below that PCO policies remain dominant for the so-called smooth capacitated instances. We say
that an instance is smooth if the demand at a period never exceeds the capacity. It is easy to see
that any OWMR instance can be transformed (in linear time) into a smooth capacitated instance
without modifying the set of feasible solutions as noticed by Bitran and Yanasse (1982): Consider
a W -retailer i and a period t such that dit >C

i. Any feasible policy must order at least ω= dit−Ci
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Figure 2. Uncrossing of a problematic crossing order s at a W -retailer. Only orders are represented at the warehouse.

units of the demand in some previous periods and physically hold them its stock from period t−1 to
t. Thus we can consider the equivalent instance with a demand d̄it =Ci and d̄it−1 = dit−1 +ω. Notice
that for any policy π, the costs incurred on these two instances differ by a positive constant hiω
independent of π. Therefore any policy with a performance guarantee α for the modified instance
also has a guarantee α for the initial instance. We have the following result (the proof is given in
Appendix G):

Lemma 11. PCO policies are dominant for the smooth capacitated lot-sizing problem.

Modified uncrossing algorithm. Similarly to the previous sections, we define for each W -
retailer i the (smooth capacitated) subproblem (Ŝi) as a single-echelon problem with capacity
constraint Ci, a fixed ordering cost Ki and holding costs ĥi = 1

2
hi. The definition of the subproblems

for the J-retailers and the warehouse are identical to the decomposition used in §3. Since PCO
policies are dominant, one may consider to apply directly the uncrossing algorithm. However, the
resulting policy may be infeasible. To see why, consider a PCO policy π̂i for the W -retailer i. Let
qt ≤Ci be the quantity ordered in period t by policy π̂i. On one hand, the uncrossed policy built by
the algorithm essentially orders the same quantities at the same periods, if they are not crossing,
and thus satisfies the capacity constraint as π̂i is feasible for (Ŝi). On the other hand, if s is a
crossing ordering period in policy π̂i, the algorithm diminishes the quantity qs ordered in period s
by its stock level, say x, at the beginning of period s+, and orders these units in period s+. Since
πi is PCO, the quantity x cannot exceed qs − 1 units, and thus is lower than capacity Ci. The
problem arises if s+ is already an ordering period of policy π̂i. We say that such crossing order is
problematic. In this situation the uncrossing policy πu must order at period s+ the quantity x plus
the quantity qs+, which may be as large as 2Ci− 1.

To overcome this difficulty, we adapt the uncrossing algorithm by adding some ordering periods
also at the warehouse. This motivates the stationarity assumption made on K0. More precisely,
if there exists a problematic crossing order s at a W -retailer, then we add the ordering period
r′ = s+ − 1 at the warehouse. Let R′ be the resulting set of ordering periods at the warehouse.
Clearly we have at most doubled the number of ordering periods, that is |R′| ≤ 2|R|. Notice that a
problematic crossing order s relatively to the set R of warehouse orders becomes a non problematic
crossing order relatively to the set R′ if s < r′. In this case, we uncross the ordering period s using
the additional warehouse order r′, by ordering the number x of units in stock in policy π̂i at the
beginning of period r′, both at the warehouse and at the retailer i at period r′. If it happens that
s= r′, we simply order the same quantities at the retailer i in periods s and s+ as in policy π̂i, since
in this case s is not crossing with respect to the set R′. In both case the quantities ordered do not
exceed the capacity of the retailer. Figure 2 illustrates the adaptation of the uncrossing algorithm
on a problematic crossing order.

It is easy to check that the resulting policy is feasible, that is, satisfies the capacity constraints
for all W -retailers. Observe that the PCO assumption is necessary: Basically it ensures that the
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inventory level at the beginning of a period is always lower than the capacity constraint, since
for each order (which is limited to Ci units), at least one unit is consumed in its period under
a FCFS discipline. Using Lemma 11 and the analysis of previous sections, we obtain in corollary
that the OWMR problem can still be approximated with a performance guarantee of 2 by the split
& uncross algorithm. The time complexity is dominated by the computation of the optimal PCO
policies for the capacitated lot-sizing problems at the W -retailers.

Theorem 5. The (modified) split and uncross algorithm is a 2-approximation for the OWMR
problem with a constant capacity constraint at W -retailers, linear holding costs and stationary fixed
ordering costs. Its time complexity is O(NT 2 logT ).

Though Theorem 5 extends in a simple way Theorem 1 using the properties of the PCO policies,
the result does not hold if a capacity constraint appears at a J-retailer or at the warehouse. The
reason is that the uncrossing algorithm synchronizes the orders of J-retailers with the warehouse,
which may result into a large order quantity violating the capacity constraint at the retailer and/or
the warehouse. Even if set IJ is empty, uncrossing an order at a W -retailer generates a new order
at the next warehouse ordering period. This uncrossing order may violate the warehouse capacity,
as many W -retailers may need to uncross with the same warehouse order. As Levi et al. (2008a)
mention in their paper, other new ideas are certainly needed to be able to take into account fixed
item ordering cost with a capacity at the warehouse.

Extension to FTL procurement costs. We turn our attention to the more general case of
FTL procurement costs introduced in §5. We only need two ingredients to extend the uncrossing
algorithm while preserving a performance guarantee of 2: The single echelon lot-sizing problems
(Ŝi) at the W -retailers should be polynomially solvable, and the PCO policies should be dominant
for the smooth instances to ensure the feasibility of the uncrossed policy. To ensure the latter point,
we restrict ourself to the case where the capacity Ci is a multiple of the batch size Bi at each
retailer. We have the following result (see Appendix G for the proof):

Lemma 12. PCO policies are dominant for smooth capacitated lot-sizing problem with FTL
cost structure if the capacity is a multiple of the batch size.

Though restrictive, we think that this condition is of practical relevance. Notice that if the
capacity is not a multiple of the batch size, PCO policies are not dominant anymore: Consider the
instance with C = 3, B = 2 and demands d= (0,3,3) to satisfy. All the costs but the fixed cost per
batch are null. We set k= 1. A PCO policy must orders 4 batches, while the optimal policy orders
only 3 (full) batches. The single echelon lot-sizing problem with FTL cost structure and linear
holding costs remains polynomially solvable in presence of a stationary capacity, see Akbalik and
Rapine (2012). In the case where the capacity is a multiple of the batch size, the authors proposed
a dynamic programming algorithm of time complexity O(T 4). It results that the OWMR problem
with FTL cost structure and capacitated W -retailers can be approximated with a guarantee of 2
by the uncrossing algorithm in time O(NT 4) for linear holding costs at the W -retailers.

7. Perspectives and recent developments The split & uncross procedure presented in this
paper has proven to be highly adaptable to various types of costs for the OWMR problem. In fact, it
is fairly easy to see that most of the cost structures presented in this paper can be combined without
deteriorating the worst-case bound. We also believe that the techniques introduced in this paper
can be adapted to deal with even more complex inventory control settings. Indeed it was already
proven recently that those ideas could be extended to provide efficient approximation algorithms
in the context of the OWMR problem with backlogs and lost sales, see Gayon et al. (2016), and
for general distribution problems over several layers, see Stauffer (2016). We are convinced that
other applications will follow.
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Appendix A: Proof of the dominance of synchronized policies for J-retailers, § 4.1

Consider a J-retailer i satisfying property (LD3) defined in §4.1: For any period t and any quantities

x, y and q, the inequality hit(y+ q)−hit(y)≤ h0
t (x+ q)−h0

t (x) holds. We prove that it is dominant

for i to synchronize its orders with the warehouse. Assume that a policy π does not satisfy this

property and let s be the first period when retailer i orders while the warehouse does not. Let

r be the previous ordering period of the warehouse and q be the quantity ordered in period s

by retailer i. We denote by xt and yt the stock on hand at the warehouse and at the retailer,

respectively. We now consider the alternative policy π′ that shifts the order of period s to period r,

ordering the quantity q. The stock levels of policy π′ on interval [r, s) are x′t = xt−q and y′t = yt+q.

If we compute the holding costs paid by π and π′ on [r, s), we get
∑s−1

t=r (h0
t (xt) + hit(yt)) and∑s−1

t=r (h0
t (xt− q) +hit(yt + q)), respectively. The inequality on marginal costs ensures that the cost

incurred by π′ is less than or equal to the cost of π. Before period r and after period s both policies

are identical by construction. Using an interchange argument, we conclude that it is dominant to

synchronize all the orders of retailer i with the warehouse.

Appendix B: Proof of Lemma 4, §4.1 We consider that we are given a single-echelon

feasible policy πi for each problem (Ŝi). The proof of Lemma 4 for the uncrossing algorithm is

similar to the one of Lemma 3. We only need to prove that (5) still holds with level dependent

holding costs, that is the total holding cost incurred by πu is at most the sum of the holding costs

incurred by the policies πi’s. We prove here a slightly more general result than Lemma 4: we require

only policy π0 to be ZIO; for the retailers we assume that policy πi is PCO, see Definition 2 §5. In

particular a ZIO policy is a PCO policy.

We first introduce some notation. For i= 0, . . . ,N , we denote by xuit the inventory level at location

i in the final policy πui in period t. Similarly for i= 1, . . . ,N let xit be the inventory level of policy

πi in period t. We use a different notation for policy π0 at the warehouse, in order to distinguish

between item 0 and items i ∈ IJ . Recall that item 0 in (Ŝ0) stands for the aggregated demands of

all the W -retailers. Specifically, for i ∈ {0} ∪ IJ , we denote by yit the inventory level of policy π0

for item i in period t.

In the following we consider a specific unit of demand dit and we let r and s be the ordering

periods of this unit in the single-echelon policies π0 and πi, respectively. Recall that the ordering

periods drit, sitc in πu are defined by (3). Assume that this unit of demand is hold in stock at a

location j at some period τ in policy πu. We distinguish in the following between the case where i

is a W -retailer and i is a J-retailer.
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Firstly, consider that i is a W -retailer. The definition of pair drit, sitc implies in particular that

sit ≥ s. That is, each unit at the retailer is ordered later (or at the same period) in πu than in πi. As

a consequence we have xuiτ ≤ xiτ for all periods τ . Therefore from (LD1) we have for all t= 1, . . . , T

Hi(πu)≤Hi(πi). (7)

At the warehouse, notice that only units supplying W -retailers are kept in stock in policy πu,

since all the pairs of orders for demands of J-retailers are synchronized by construction. Consider

a period τ such that the unit of demand dit is kept at the warehouse in policy πu. Notice that

necessarily we have rit ≤ τ < sit. For this situation to happen for a W -retailer, we must have

drit, sitc= dr, sc, see (3). It results in particular that r≤ τ < t, that is, this unit is also in stock at

period τ in policy π0. We can conclude that xu0τ ≤ y0τ for all periods τ , and thus

H0(π
u)≤

T∑
τ=1

h0(y0τ ). (8)

Secondly, consider that i is a J-retailer. We prove that the holding cost incurred by πui is lower

than or equal to the the holding cost incurred by πi plus the holding cost incurred by item i in

policy π0. We count the holding cost of πui for each ordering interval [u,u+] of the warehouse,

from the beginning of period u till the beginning of period u+. Observe that these intervals form

a partition of the time horizon, therefore we only need to prove that on each interval the holding

costs paid by πu is at most the holding costs paid by πi or by π0 for item i. Let u and u+ be 2

consecutive ordering periods at the warehouse in policy πu. Consider that the unit of demand (i, t)

is in stock in πui at a period τ , u ≤ τ < u+. By construction, see Definition (3) of ordering pairs

of πu, we have rit = sit ≥min{r, s}. Notice that sit is synchronised with the ordering periods of

the warehouse, thus for the unit to be in stock at period τ , we necessarily have sit ≤ u. Since (3)

implies in particular that sit ≥ s-, it involves that s < u+. We now distinguish between 2 cases:

• case 1: Policy πi does not order in periods u+ 1, . . . , u+ − 1. Hence either s ≤ u or s ≥ u+.

Since we have noticed that necessarily s < u+, we are in the situation where s≤ u. In other words,

the unit is also in stock at period τ in policy πi. This is true for any units and any instant τ , hence

we can conclude that:

xuiτ ≤ xiτ ∀τ, u≤ τ < u+

• case 2: There exists a period v, u< v < u+ where policy πi orders. Consider again one unit of

demand (i, t) in stock in πu at the retailer at a period τ , u≤ τ < u+. We first prove that necessarily

t < u+, that is, the unit serves a demand before the next ordering period of the warehouse. Assume

for the sake of contradiction that t≥ u+. On one hand, since policy π0 is ZIO, we must have r≥ u+.

On the other hand, we have noticed that s < u+. Thus we are in the situation where s < r, and
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sit is defined as period s+. Since sit = s+ ≤ u, we can conclude that s ≤ u. This contradicts the

assumption that πi is PCO, since all units ordered before period u should be consummed by the

end of period v < u+ ≤ t. As a consequence, for the unit to be in stock at period τ in policy πui ,

we must have t < u+. Clearly, this unit should be ordered no latter than period t in any feasible

policy. It implies that in policy π0, this unit is ordered no latter that period t-, that is, we have

r≤ u. In other words, the unit is also in stock at period τ in policy π0. This is true for any units

and any instant τ , hence we can conclude that

xuiτ ≤ yiτ ∀τ, u≤ τ < u+

Thus, depending on the warehouse intervals [u,u+) considered, the stock level xuiτ is lower or equal

either to the stock level in policy πi or to the stock of item i in policy π0. Hence we obtain that:

Hi(πu)≤Hi(πi) +
T∑
τ=1

hiτ (yiτ ). (9)

Summing inequalities (7), (8) and (9), we obtain that:

H(πu) =H0(π
u) +

∑
i∈IW

Hi(πu) +
∑
i∈IJ

Hi(πu)

≤
T∑
τ=1

h0
τ (y0τ ) +

∑
i∈IW

Hi(πi) +
∑
i∈IJ

(
Hi(πi) +

T∑
τ=1

hiτ (yiτ )

)

≤
N∑
i=0

Hi(πi).

Hence (5) still holds and Lemma 4 follows.

Appendix C: Proof of Lemma 5, §4.1 Consider an optimal policy πOPT =

(πOPT
0 , πOPT

1 , . . . , πOPT
N ) of cost C ∗ for the OWMR instance. To prove the result, we exhibit feasible

policies π̃i for each system (Ŝi) such that Ĉ0(π̃0)+
∑N

i=1 Ĉi(π̃i) is less than or equal to C ∗. Lemma 5

then follows from the optimality of each policy π̂∗i for system (Ŝi).

According to (LD3), one can choose policy πOPT such that no inventory is held at the warehouse

for J-retailers. We denote by xOPT
it the inventory level of πOPT in period t in location i and we let

xet ≡ xOPT
0t +

∑
i∈IW

xOPT
it be the aggregated stock level of the warehouse and W -retailers altogether,

which represents the echelon stock of the system when set IJ is empty. We now specify a feasible

policy π̃i for each system (Ŝi):

• For each i > 0, policy π̃i is identical to policy πOPT restricted to retailer i: It orders the same

quantities in the same periods.
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• For the multi-item problem (Ŝ0), policy π̃0 orders when policy πOPT places its warehouse

orders. In addition, the quantity ordered in a period r corresponds to the cumulative demand of

retailers in IW until the next ordering period (excluded), plus all the quantities ordered in period

r by retailers in IJ .

We first prove that the sum of the costs of policies π̃i applied to systems (Ŝi) is lower than the

optimal cost C ∗ for the original problem.

It is straightforward to see that the total ordering cost paid by policies π̃i is exactly the total

ordering cost paid by policy πOPT, since they order at the same periods. Therefore we focus on the

holding costs incurred by policies π̃i. We denote by x̃it the inventory level at retailer i in period t

for policy π̃i, i > 0, and by ỹit the inventory level of item i for policy π̃0 at the warehouse. Recall

that item 0 represents the aggregation of the W -retailers. For this product, we have for each period

t:

ĥ0
t (ỹ0t) =

1

2
h0
t (ỹ0t)≤

1

2
h0
t (x

e
t)

≤ 1

2
h0
t (x

OPT
0t ) +

1

2

∑
i∈IW

h0
t (x

OPT
it )

≤ 1

2
h0
t (x

OPT
0t ) +

1

2

∑
i∈IW

hit(x
OPT
it ).

The first inequality comes from (LD1), the non-decreasing property of h0
t (·). Indeed in any

feasible policy the stock level at the warehouse plus the stock level at a subset of retailers has to be

sufficient to satisfy the demands of these retailers until the next ordering period of the warehouse

(which is precisely ỹ0t if we focus on product 0), which implies that ỹ0t ≤ xet . The second inequality

directly comes from (LD2), the sub-additivity of h0
t . The definition of set IW implies the last

inequality.

Now if we restrict our attention to items i∈ IJ of system (Ŝ0), we have by construction ỹit = xOPT
it

in each period. Hence the holding cost ĥit(ỹit) paid for such a product i∈ IJ in period t is exactly

1
2
hit(x

OPT
it ). Adding the holding costs paid for all products altogether in system (Ŝ0), we obtain for

each period t that:

ĥ0
t (ỹ0t) +

∑
i∈IJ

ĥit(ỹit)≤
1

2
h0
t (x

OPT
0t ) +

1

2

N∑
i=1

hit(x
OPT
it ).

Finally the stock level in each system (Ŝi), is identical to the stock level at retailer i in policy πOPT.

Hence we also have for each period t:

ĥit(x̃it) =
1

2
hit(x

OPT
it ) ∀i= 1, . . . ,N.
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As a consequence for each period t, the total holding cost paid by all the policies π̃i in (Ŝi) is at

most 1
2
h0
t (x

OPT
0t ) +

∑N

i=1 h
i
t(x

OPT
it ), which is a lower bound on the holding cost paid by policy πOPT,

since h0
t takes only positive values. Summing the holding costs paid by all the policies π̃i, we obtain

for each period t that:

N∑
i=0

Ĥ(π̂∗i ) = ĥ0
t (ỹ0t) +

∑
i∈IJ

ĥit(ỹit) +
N∑
i=1

ĥit(x̃it)

≤ 1

2
h0
t (x

OPT
0t ) +

N∑
i=1

hit(x
OPT
it )

≤
N∑
i=0

hit(x
OPT
it )

=H(πOPT).

The lemma follows.

Appendix D: Proof of Lemma 6, §4.2 The proof is similar to the one of Lemma 3. We

only need to prove that (5) still holds, that is, H(πu) ≤
∑N

i=0Hi(πi). Consider a specific unit of

demand dit and let r and s be the ordering periods of this unit in the single-echelon policies π0 and

πi, respectively. The ordering periods in πu are again defined by (3).

Case 1: i is a W -retailer. If r > s, the final holding cost incurred by policy πu is hits+s+ and we

have from properties (SA1), (SA2) and (SA3) :

hits+s+ ≤ hitss ≤ hitrt +hitss. (10)

If r≤ s, πu incurs a holding cost of hitrs and property (SA4) ensures that

hitrs ≤ hitrt +hitss. (11)

Case 2: i is a J-retailer. If r > s, πu incurs again a holding cost hits+s+. Properties (SA1) and

(SA3) implies

hits+s+ ≤ hitss ≤ hitrr +hitss. (12)

If r≤ s, the holding cost incurred by πu is equal to hit
s-s- . Using property (SA3), we obtain

hit
s-s- ≤ h

it
rr ≤ hitrr +hitss. (13)

In all cases, the holding cost incurred in the final policy to serve demand dit is lower than the

sum of the holding costs incurred in the single-echelon policies. Hence relation (5) still holds.
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Appendix E: Proof of Lemma 7, §4.2 Similarly to the proof of Lemma 2, consider an

optimal policy πOPT = (πOPT
0 , πOPT

1 , . . . , πOPT
N ) of cost C ∗ for the OWMR instance, for which (w.l.o.g)

no inventory is held at the warehouse for J-retailers. Let π̃i be the single-echelon policy for system

(Ŝi) that orders the same quantities of the same items as πOPT
i in the same periods. Clearly we

have Ki(π̃i) =Ki(πOPT
i ) for all i= 0, . . . ,N .

Now, consider a specific demand dit and assume πOPT uses the pair of orders dr, sc to serve this

demand, incurring a holding cost H it
rs. Then by construction π̃0 and π̃i order dit in periods r and

s, respectively. If i ∈ IJ , we have r = s and the holding costs incurred by π̃0 and π̃i to serve this

demand in problems (Ŝ0) and (Ŝi) are both equal to 1
2
H it
rr = 1

2
H it
ss. If i∈ IW , then the holding costs

incurred by π̃0 and π̃i to serve this demand in problems (Ŝ0) and (Ŝi) are equal to 1
2
H it
rr and 1

2
H it
ss,

respectively. Recall that from the monotonicity properties (SA2) and (SA3), we have that H it
rs is

greater that both of these quantities and thus H it
rs ≥ 1

2
H it
rr + 1

2
H it
ss for all i, t. Summing over all

demands, we obtain that H(πOPT)≥ Ĥ0(π̃0) +
∑N

i=1 Ĥi(π̃i). Therefore we have:

C ∗ =K(πOPT) +H(πOPT)

≥
N∑
i=0

Ki(π̃i) + Ĥ0(π̃0) +
N∑
i=1

Ĥi(π̃i)

= Ĉ0(π̃0) +
N∑
i=1

Ĉi(π̃i)

and the lower bound follows from the optimality of π̂∗0 , π̂
∗
1 , . . . , π̂

∗
N for problems (Ŝ0), (Ŝ1), . . . , (ŜN).

Appendix F: Proof of Lemma 8, §5 We prove here that any FTL procurement cost and

any LTL procurement costs satisfying conditions of Lemma 8 is 2-linearly sandwiched. Recall that

we restrict ourself to a stationary batch size B and a stationary fixed cost per batch k.

First consider a FTL procurement cost: FTLt(x) =Kt + dx/Bek. We define At =Kt + k/2 and

b= k
2B

. On one hand, for any quantity x > 0, we clearly have FTLt(x)≥Kt + k
B
x and FTLt(x)≥

Kt+k. It results that FTLt(x)≥At+ bx. On the other hand FTLt(x)≤Kt+( x
B

+1)k implies that

FTLt(x)≤ 2At + 2bx. Thus FTLt(x) is linearly sandwitched by At + bx.

Now consider a LTL procurement cost: LTLt(x) = Kt + bx/Bck + f(x− bx/Bc), with k ≤Kt.

Recall that we assume that freight cost function is non-decreasing on [0,B] with f(0) = 0 and

f(B) = k. We define two constants λ and µ as follows:

λ= inf{f(u)− k

2B
u | u∈ [0,B]}

µ= sup{f(u)− k

B
u | u∈ [0,B]}
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Consider a positive quantity x. For conciseness we denote by u(x) the quantity x−bx/Bc (u(x)∈

[0,B]). We thus have LTLt(x) =Kt + k
B

(x− u(x)) + f(u(x)). On one hand, by definition of λ, we

can write that LTLt(x)≥Kt +
k
B

(x−u(x)) +λ+ k
2B
u(x). It follows that LTLt(x)≥Kt +λ+ k

2B
x−

k
2B
u(x). Since u(x)≤ x, we have LTLt(x)≥Kt+λ+ k

2B
x. On the other hand, by definition of µ, we

have LTLt(x)≤Kt+
k
B
x+µ. We define At =Kt+λ and b= k

2B
. From what precedes, procurement

costs LTLt(x) are 2-linearly sandwiched if the inequality µ≤K + 2λ holds. Since we assume that

k≤Kt for each period, it is sufficient to establish that µ− k≤ 2λ.

To show that µ− k≤ 2λ, let ε > 0 be a fixed value. By definition of µ, there necessary exists at

least one value y ∈ [0,B] such that f(y)− k
B
y≥ µ−ε. For any u≤ y, using the fact that 0≤ f(u)≤ k,

we have:

f(u)− k

2B
u≥ 0− k

2B
y≥ 1

2
(µ− ε− f(y))≥ 1

2
(µ− ε− k).

For any u≥ y we have, since f is non-decreasing:

f(u)− k

2B
u≥ f(y)− k

2B
u≥ (µ− ε+

k

B
y)− k

2B
u≥ µ− ε− 1

2
k.

Observe that µ≥ 0 since f(0) = 0. It results that for all u∈ [0,B] we have f(u)− k
2B
u≥ 1

2
(µ−k)−ε.

By definition it implies that 2λ≥ µ− k− 2ε. Since the inequality holds for any ε > 0, we obtain

that 2λ≥ µ− k, which concludes the proof.

Appendix G: Proof of Lemmas 11 and 12, §6 Consider an instance of a smooth capac-

itated lot-sizing problem, with planning horizon T and capacity C. We assume the problem has a

feasible solution: That is,
∑s

t=1 dt ≤C · s for all s= 1, . . . T . We prove that PCO policies are dom-

inant under a FTL cost structure if the capacity is a multiple of the batch size B. We denote by

k the fixed cost of a batch. Notice that Lemma 11, without FTL procurement cost, is a particular

case by taking B =C and k= 0.

Consider a feasible policy π for the problem that does not satisfy the PCO property and let qt

be the quantity ordered by π in period t. We focus on u, the first ordering period of π that is not

PCO. It involves that π orders a quantity qu > 0 in period u and no unit of qu is consumed at u.

We can also assume that the total quantity ordered by π matches the total demand, therefore as

u is not PCO we have:
T∑
t=u

qt ≤
T∑

t=u+1

dt. (14)

We use an interchange argument to transform π into a feasible policy π′ of lower cost and which

is PCO on periods {1, . . . , u}. By repeating the transformation on the planning horizon, we can

then establish the dominance. The idea is to push forward the qu units while respecting the capacity

constraint. For each subsequent period, as many pushed units as possible are ordered in the period,
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and the remaining units are pushed again to the next period till all the qu units have been ordered.

Specifically, let δt be the quantity from order u pushed in period t. We have:

δt =

{
qu if t= u

(δt−1 + qt−C)
+

otherwise
, (15)

where x+ is defined as max{0, x}. Note that since π is feasible, qt ≤ C for all t = 1, . . . , T and

therefore δt is nonincreasing from (15). It implies in particular that δt ≤ qu ≤C.

We have to prove that (i) the resulting policy π′ is feasible, and (ii) the cost incurred is at most

the cost of π. Policy π′ is clearly feasible, since the remaining capacity from period u+ 1 till the

end of the planning horizon is sufficient to satisfy all subsequent demands, that is
∑T

t=u+1C ≥∑T

t=u+1 dt. This is a direct consequence of Inequality 14.

To compare the cost of π and π′, let v be the first period such that δv = 0. Notice that policy π′

orders at full capacity in periods u+ 1 till v− 1. The holding costs incurred in π′ are not greater

than the holding costs incurred by π, since all the pushed units are ordered later in time. Thus, we

only need to compare the number of ordering periods (where a fixed cost K is incurred) and the

number of fractional batches over the time interval [u, . . . , v]. Clearly, policy π orders in all these

periods, except possibly in period v, since qt = 0 implies that δt = 0. Since policy π′ does not order

in period u, its number of ordering periods is at most the ones of π. Now let us turn attention

to the number of fractional batches. Since all the periods u+ 1 till v − 1 order at full capacity,

at most one fractional batch may appear in policy π′, possibly in period v. Thus we can restrict

to the case where π orders only full batches over [u, . . . , v]. It implies that qt is a multiple of B

for all these periods. Using Equation 15, we obtain immediately that dv−1 is a multiple of v. As a

consequence the quantity q′v = qv + δv−1 ordered in π′ at period v is also a multiple of B. We can

conclude that the number of fractional batches used in policy π′ is always lower or equal to the

number of fractional batches used in policy π. The proof follows.
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