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We consider (in its variational formulation) the following n×n system defined on a smooth bounded domain Ω ⊂ R N with homogeneous Dirichlet boundary conditions:

(S F ) -∆U = AU + µU + F in Ω, U| ∂Ω = 0.
Here F is given with components f i ∈ L p , p > N, 1 ≤ i ≤ n; U, with components u i , 1 ≤ i ≤ n is the unknown. µ is a real parameter. We are interested by the change of sign of the solutions to (S F ) as µ goes over some critical values.
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Preliminaries

Matrix A: A is a n×n cooperative matrix, which means that a ij ≥ 0 for i = j. Sometimes we assume it is a stricly cooperative matrix that is a ij > 0 for i = j.

Definition 1 A square matrix B is a non singular M-matrix if it is of the form σI -C with C ≥ 0 and σ > ρ(C) the spectral radius of C.

Eigenvalues (ξ k ) of Matrix A, k ∈ {1, ..., k}: Let us denote by ξ k the real eigenvalues of A (written in a non increasing order) and by X k the associated eigenvectors:

AX k = ξ k X k . (1) 
1 ≤ k ≤ k ≤ n.

Eigenvalues (λ s ) of the Dirichlet Laplacian:

As usual we denote by 0 < λ 1 < λ 2 ≤ ... ≤ λ s ≤ ... the eigenvalues of the Dirichlet Laplacian defined on Ω and by φ s the orthonormal basis in L 2 (Ω) of associated eigenfunctions; moreover, we choose φ 1 , associated to λ 1 , positive.

Eigenvalues (µ s,k ) of System (S F ):

We say that µ is an eigenvalue of (S F ) if there exists a non zero U satisfying (S 0 ) :

-∆U = AU + µU in Ω, U| ∂Ω = 0.
Proposition 1 With our above notations, the real eigenvalues of (S F ) are the numbers

µ s,k := λ s -ξ k , ∀s ∈ N * , 1 ≤ k ≤ k, (2) 
and the associated eigenvectors are U = X k φ s .

Main Results

From now on we assume:

Hypothesis 1 We assume µ = µ s,k for any s and k.

Theorem 1 (Existence Result):

Let A be a cooperative matrix. We assume Hypothesis 1. Then, for F ∈ (L 2 (Ω)) n , System (S F ) has a unique solution U with components u j in H 2 (Ω) ∩ H 1 0 (Ω).

Consider System (S F ) involving Matrix A and fix some s ≥ 1 with associated eigenpair (λ s , φ s ). For having nodal properties on the solution, we assume Hypotheses 2 and 3:

Hypothesis 2 We assume µ s,k = µ s ′ ,k ′ ⇒ λ s = λ s ′ and ξ k = ξ k ′ , or equiv- alently ξ k = ξ k ′ or λ s = λ s ′ ⇒ µ s,k = µ s ′ ,k ′ .

Hypothesis 3

We assume that φ s has q nodal domains Ω 1 , . . . , Ω I , . . . , Ω q and that these nodal domains enjoy the following two properties:

(P 1 ) each Ω I satisfies at each x ∈ ∂Ω I the interior ball condition, (P 2 ) for σ sufficiently small, say 0 < σ < σ 0 , each Ω I σ is arcwise connected, where

Ω I σ := {x ǫ Ω I : d(x, ∂Ω I ) > σ}.
Remark 1 Obviously if s = 1 then q = 1. In that case, (P 2 ) plays no role.

Notations ( r and r): Denote by r the largest integer l such that λ l < λ s and by r the smallest l such that λ l > λ s . Obviously if s = 1, r does not exist and r = 2.

We also introduce σ 1 > 0 such that

d( ΩI , ΩJ ) ≥ 4σ 1 if ΩI ∩ ΩJ = ∅, d( ΩI , ∂Ω) ≥ 4σ 1 if ΩJ ∩ ∂Ω = ∅. (3) 
Given F ∈ (L p (Ω)) n with p > N, we suppose that F can be written as (P 3 ) F = r l=1 Y l φ l + Zφ s + F , with Y l and Z in R n and where the components of F are orthogonal to the eigenspaces associated to λ 1 , . . . , λ r , λ s .

Note that (P 3 ) is not a restriction on F when λ s is simple. We also fix some k such that 1 ≤ k ≤ k where k is defined in [START_REF] Berman | Plemmons Nonnegative matrices in the mathematical sciences[END_REF]. We will study the situation where µ stays near µ s,k in the sense that µ r,k < µ < µ s,k or µ s,k < µ < µ r,k and we write µ = µ s,k + η, η ∈ R.

Notations ( B i , M i , n k , m k , ǫ k ):
For this given k, denote by B 1 , ..., B n the column vectors of matrix B := ξ k I -A and for i = 1, ..., n,

M i := det(B 1 , ..., B i-1 , Z, B i+1 , ..., B n ) (4)
Denote by n k the number of eigenvalues ξ j of A such that ξ j > ξ k and by m k the multiplicity of ξ k . Let ǫ k be the sign of (-1)

n k (-η) m k . Let U ∈ (H 1 0 (Ω)) n be the (unique) solution of (S F ); U ∈ (W 2,p (Ω)) n ⊂ (C 1 ( Ω)) n .
Theorem 2 (Nodal Properties): Let A be a n × n cooperative matrix and let s and k be as above. Assume Hypotheses 1, 2, 3 and let F satisfy (P 3 ) and suppose that there exists i 0 such that

M i 0 > 0. ( 5 
)
Take σ > 0 with σ < σ 0 and σ 1 . Then there exists δ = δ(F, σ, i 0

) > 0 such that (i) if µ s,k -δ < µ < µ s,k , then component u i 0 of U has exactly q nodal domains O 1 i 0 , . . . , O I i 0 , . . . O q i 0 , such that (i 1 ) Ω I σ ⊂ O I i 0 ⊂ ΩI σ for 1 ≤ I ≤ q, where ΩI σ := {x ∈ Ω : d(x, Ω I ) < σ}, (i 2 ) (-1) n k u i 0 (x)φ s (x) > 0 ∀x ∈ O I i 0 ∩ Ω I and any 1 ≤ I ≤ q, (i 3 ) if ŌI i 0 ∩ ŌJ i 0 = ∅ with I = J, then u i 0 (x)u i 0 (y) < 0 ∀x ∈ O I i 0 , y ∈ O J i 0 , (ii) if µ s,k < µ < µ s,k + δ,
then the same conclusion as in (i) above holds, with the only change that in

(i 2 ) one now has ǫ k u i 0 (x)φ s (x) > 0 for all x ∈ O I i 0 ∩ Ω I .
Remark 2 We thus see that, for µ close to µ s,k , u i 0 looks like ±φ s in the sense that it has the same number of nodal domains, that each O I i 0 appears as a small perturbation of the corresponding Ω I (cf. (i 1 )), with the same or opposite sign for u i 0 and φ s on the intersection (cf. (i 2 )). Moreover the sets O I i 0 enjoy the property that a change of sign occurs when going from one O I i 0 to an neighbouring one (cf.(i 3 )); this latter property should be looked at as a regularity property (c.f. (3.7) in [START_REF] Fleckinger | Thélin Maximum and antimaximum principles: Beyond the first eigenvalue[END_REF]).

Remark 3 Hypothesis 3 is trivially satisfied for N = 1. In that case, we have a system of ODE and for any s ≥ 1, λ s is simple and q = s; the nodal domains are intervals. We extend here to a system previous results valid for one equation ( Theorems 2.1 and 2.2 in [START_REF] Fleckinger | Thélin Maximum and antimaximum principles: Beyond the first eigenvalue[END_REF]).

Remark 4 For example, if N = 2 and Ω is the unit ball, Hypothesis 3 is satisfied for s = 1, 6, 15, ... (See [START_REF] Fleckinger | Thélin Maximum and antimaximum principles: Beyond the first eigenvalue[END_REF]). In that case, for s = 2, Hypothesis 3 is not satisfied but we conjecture that the result of Theorem 2 remains valid with the additional assumption F ∈ (W 1,p (Ω)) n (See [START_REF] Fleckinger | Thélin Maximum and antimaximum principles near the second eigenvalue[END_REF] for n = 1). For s = 4, Hypothesis 3 is not satisfied and Theorem 2 is not valid (See [START_REF] Fleckinger | Thélin Nodal domains for an elliptic problem with the spectral near the forth eigenvalue[END_REF] for n = 1).

Corollary 1 Let A be a cooperative matrix and F ∈ (L p (Ω)) n with p > N.

We assume Hypotheses 1 and 2 and that M i 0 > 0, for some i 0 . Then, there exists δ(F

) > 0 such that (i)For µ 1,k -δ < µ < µ 1,k , (-1) n k u i 0 > 0 in Ω. (ii)For µ 1,k < µ < µ 1,k + δ, ǫ k u i 0 < 0 in Ω.
Exemple 1 For n = 2 and A strictly cooperative , a simple calculus shows that A has exactly 2 distinct eigenvalues which are real: ξ 2 < ξ 1 and therefore n 1 = 0, n 2 = 1, and m 1 = m 2 = 1, so that ǫ 1 = sign(-η) and ǫ 2 = -sign(-η). Assuming M 1 > 0 and M 2 > 0, we have for

µ 1,1 -δ < µ < µ 1,1 , U >> 0, that is u 1 > 0 and u 2 > 0. (Maximum Principle). for µ 1,1 < µ < µ 1,1 + δ, U << 0, that is u 1 < 0 and u 2 < 0. (Antimaxi- mum Principle). for µ 1,2 -δ < µ < µ 1,2 , U << 0, that is u 1 < 0 and u 2 < 0. for µ 1,2 < µ < µ 1,2 + δ, U >> 0, that is u 1 > 0 and u 2 > 0.
More details concerning this example are written at the end of this paper (Annex I).

Proofs

Proof of Proposition 1:

Consider U = X k φ s , one has -∆U = -∆(X k φ s ) = X k λ s φ s and AU = A(X k φ s ) = (AX k )φ s = ξ k X k φ s ,
which shows that λ sξ k is an eigenvalue of (S F ). Conversely, assume µ is an eigenvalue of (S F ). Hence

-∆u i = Σ j a ij u j + µu i ,
where at least one of the u i say u j = 0.

Multiply by any φ s (s ∈ N * ) and integrate .

(λ sµ)y i = Σ j a ij y j where y i = u i φ s . Choosing s such that y j = 0, we have for vector Y with components y j (λ sµ)Y = AY which means that (λ sµ) is an eigenvalue ξ k of A. •

A derived system: Multiplying (S F ) by φ s as above we obtain that the vector X with components x i = u i φ s satisfies the following system

(S s,Z ) ((λ s -µ)I -A)X = Z
where Z is the vector with components z i = f i φ s . Our proofs are based on the following lemma:

Lemma 1 : Let A be a cooperative matrix, then there is some σ such that (σ) for σ ≥ σ, (σI -A) is a non singular Mmatrix.

Moreover we have

σ > ξ 1 ≥ ξ 2 ≥ .... ≥ ξ k. (6) 
Proof of Lemma 1: Set B = τ I + A where τ > 0 is such that b ij ≥ 0 for any i, j and take σ > ρ(B)τ . It follows that for any σ ≥ σ, (σI

-A) = (τ + σ)I -B with τ + σ > ρ(B) so that (σI -A) is a non-singular M-matrix.
Moreover, by Property D16 in [START_REF] Berman | Plemmons Nonnegative matrices in the mathematical sciences[END_REF] (see Annex II), all real eigenvalues of (σI -A) are positive; that means

0 < σ -ξ 1 ≤ σ -ξ 2 ≤ ... ≤ σ -ξ k,
and the second result follows.

• We also use the following decomposition of spaces:

Definition 2 : The spaces E and H For a given s 0 , we decompose the space (L 2 (Ω)) n into 2 orthogonal spaces, one with finite dimension and the other one H is the set of V ∈ (L 2 (Ω)) n with components v i orthogonal to φ s , s ∈ {1, ..., s 0 -1}, i ∈ {1, ..., n}. Analogously we decompose the space (H 1 0 (Ω)) n into 2 orthogonal spaces, one with finite dimension and the other one E is the set of V ∈ (H 1 0 (Ω)) n with components v i orthogonal to φ s for s ∈ {1, ..., s 0 -1}, i ∈ {1, ..., n}.

Proof of Theorem 1:

We fix µ satisfying Hypothesis 1. Uniqueness is obvious; we only consider existence. We choose s 0 such that we have simultaneously

λ s 0 -1 < λ s 0 , (7) 
and

λ s 0 -µ > σ, ( 8 
)
where σ is defined in Lemma 1. This is clearly possible since λ s → +∞ as s → +∞ . The consequence of ( 8) is that ((λ lµ)I -A) is a non singular M-matrix and therefore is invertible for l ≥ s 0 .

Claim: For any G ∈ H, System (S G ) has a unique solution V ∈ E. Proof of the claim: For proving this we proceed by approximation in finite dimensional spaces. Let E r (resp. H r ) be the subspace of vectors in E (resp. H) with components generated by φ s 0 , φ s 0 +1 , ..., φ s 0 +r . We consider a sequence

G r ∈ H r , r ∈ N * , such that G r → G in (L 2 (Ω)) n as r → ∞.
We first seek a solution V r ∈ E r of System (S G r ):

(S G r ) -∆V r = AV r + µV r + G r in Ω, V r | ∂Ω = 0.
Multiplying System (S G r ) by φ l we get for each l ∈ {s 0 , s 0 + 1, ..., s 0 + r}:

(S l,Y r l ) ((λ l -µ)I -A) X = Y r l ,
where Y r l = G r φ l . Since, again by Hypothesis 1, the matrix (λ lµ)I -A is invertible, it has a unique solution X = X r l . This gives a solution V r ∈ E r of System (S G r ) with components (v r i ) 1≤n≤n .

Multiplying (S G r ) by V r , and using the variational characterization of λ s 0 , we obtain, since a ij ≥ 0 for i = j, for 1 ≤ i ≤ n:

λ s 0 (v r i ) 2 ≤ |∇v r i )| 2 = Σ n j=1 a ij v r i v r j + µ (v r i ) 2 + g r i v r i ≤ Σ j =i a ij ( (v r i ) 2 ) 1/2 ( (v r j ) 2 ) 1/2 + (a ii + µ) (v r i ) 2 + ( (v r i ) 2 ) 1/2 ( (g r i ) 2 ) 1/2 .
Denoting by Xr [resp. Zr ] the vector with components

v r i L 2 [resp. g r i L 2 ] we derive ((λ s 0 -µ)I -A) Xr ≤ Zr .
By ( 8), ((λ s 0µ)I -A) is a non singular M-matrix. Then, it follows from property (N39) in [START_REF] Berman | Plemmons Nonnegative matrices in the mathematical sciences[END_REF] (or see Annex II) that 0 ≤ Xr ≤ ((λ s 0µ)I -A) -1 Zr .

Setting for any matrix

B = (b ij ), B = Σ i,j b 2 ij 1/2 , we obtain Xr ≤ ((λ s 0 -µ)I -A) -1 Zr ≤ ((λ s 0 -µ)I -A) -1 Zr . Hence V r (L 2 ) n ≤ C 1 G r (L 2 ) n ≤ C 2 G (L 2
) n , By regularity properties of the Laplacian,

V r (H 2 ) n ≤ C 3 G (L 2 ) n . (9) 
Finally a compactness argument proves now that V r converges to the solution V ∈ E of (S G ) and the claim is proved.

End of the proof of Theorem 1: Let F ∈ (L 2 (Ω)) n ; we write

F = F + G where G ∈ H and F ∈ (L 2 (Ω)) n where F = Σ s 0 -1 l=1 F l φ l .
Proceeding as above, we find Xl solving System (S l, F l ) since, by Hypothesis 1, (λ lµ)I -A is invertible, for 1 ≤ l ≤ s 0 -1. Hence System (S F ) has a unique solution Û = Σ s 0 -1 l=1 Xl φ l .

Therefore U = Û + V , where V is given by the Claim above, is the unique solution of (S F ). •

Technical lemmas:

We consider σ defined in Lemma 1 and let K be some positive constant; we choose t such that

λ t > max{λ t-1 , σ + K} (10) 
Lemma 2 i) There is some ǫ > 0 such that, for any l ∈ N and any µ ∈ R,

Det((λ l -µ)I -A) = (λ l -µ -ξ 1 ).....(λ l -µ -ξ k)Q(λ l -µ), (11) 
where Q(λ lµ) ≥ ǫ > 0 ii) For any µ < K and t satisfying ( 10), (λ tµ)I -A) is a non singular M-matrix and we have

Det((λ t -µ)I -A) ≥ (σ -ξ 1 ) kǫ > 0, (12) 
Proof of Lemma 2: i) This determinant is the characteristic polynomial of A and its computation shows that the quotinent polynomial is such that Q(λ lµ) ≥ ǫ > 0 since it involves only the non real eigenvalues of A.

ii) By Lemma 1, (λ t -µ)I -A) is a non singular M-matrix since λ t -µ > σ + Kµ > σ and by [START_REF] De Figueiredo | Mitidieri Maximum Principles for Cooperative Elliptic Systems C[END_REF], for 1 ≤ k ≤ k,

λ t -µ -ξ k > σ + K -µ -ξ k > σ -ξ 1 > 0.
Therefore, for any µ < K, [START_REF] Protter | Maximum Principles in Differential Equations Ed[END_REF] follows and the lemma is proved.

•

The spaces: As above we use Definition 2 and introduce the spaces E and H for s 0 = t. Let F ⊥ ∈ H and W ∈ (H 1 0 (Ω)) n be the solution of the following system

(S F ⊥ ) -∆W = AW + µW + F ⊥ in Ω, W | ∂Ω = 0,
where

F ⊥ is given with components f ⊥ i ∈ L p , p > N, 1 ≤ i ≤ n.
Lemma 3 We assume Hypothesis 1, and choose t satisfying Equation [START_REF] Fleckinger | Thélin Nonexistence of Solutions and an Anti-Maximum Principle for Cooperative Systems with the p-Laplacian[END_REF]. Then all components w j of W are orthogonal to φ 1 , ..., φ t-1 that is W ∈ E and set U ⊥ = W . Moreover, for µ < K, there exists a constant C, independent of µ such that

U ⊥ (L 2 ) n ≤ C F ⊥ (L 2 ) n and U ⊥ (C 1 (Ω)) n ≤ C F ⊥ (L 2 ) n . (13) 
The main point here is the fact that for these µ, (λ tµ)I -A is a non singular M-matrix (by Lemma 1).

Proof of Lemma 3:

-∆w i = Σa ij w j + µw i + f ⊥ i .
Multiplying by φ l for 1 ≤ l ≤ s -1, we obtain

(λ l -µ) w i φ l = Σa ij w j φ l
Denote by Z the vector with components w i φ l , we obtain

((λ l -µ)I -A) Z = 0.
By Hypothesis 1, this implies Z = 0 and therefore W ∈ E . Multiplying by w i , for 1 ≤ l ≤ s-1, and using the variational characterization of λ s , since w i φ l = 0, we obtain, since a ij ≥ 0 for i = j,

λ s (w i ) 2 ≤ |∇w i | 2 = Σa ij w j w i + µ (w i ) 2 + w i f ⊥ i ≤ Σ i =j a ij ( (w j ) 2 ) 1/2 ( (w i ) 2 ) 1/2 +(a ii +µ) (w 2 i )+( (f ⊥ i ) 2 ) 1/2 ( w i ) 2 ) 1/2 .
We divide by ( w 2 i ) 1/2 , and denote by X (resp. Z) the vector with components w i L 2 (resp. f ⊥ i L 2 ); we derive

((λ s -µ)I -A) X ≤ Z.
By Lemma 1 ((λ sµ)I -A) is a non singular M-matrix, and we get from property (N39) in [START_REF] Berman | Plemmons Nonnegative matrices in the mathematical sciences[END_REF] (or see Annex II below) that

X ≤ ((λ s -µ)I -A) -1 Z.
From [START_REF] Protter | Maximum Principles in Differential Equations Ed[END_REF], in Lemma 2, ((λ sµ)I -A) -1 is bounded independently of µ, and therefore

X ≤ ((λ s -µ)I -A) -1 Z ≤ ((λ s -µ)I -A) -1 Z ≤ C Z . Since W = U ⊥ this implies U ⊥ (L 2 ) n = W (L 2 ) n ≤ C F ⊥ (L 2 ) n .
We have the first relation in ( 13) of Lemma 3.

Proceeding now as in the case of one equation, we deduce from Sobolev imbedding theorem, and from regularity properties of the Laplacian that

W C 1 ( Ω) = U ⊥ C 1 ( Ω) is bounded independently of µ, (14) 
and the second result follows.

• Lemma 4 We assume Hypothesis 2. For any l ∈ N there exists δ l > 0 such that for µ = µ s,k + η with |η| ≤ δ l , the determinant of System S l,Z l is

|Det((λ l -µ)I -A)| ≥ 1 2 k |λ l -λ s | n k Π ξ j =ξ k |µ l,j -µ s,k | ǫ > 0,
where ǫ is defined in Lemma 2.

Proof of Lemma 4: Take µ = µ s,k + η with |η| ≤ δ l and

δ l = 1 2 Min{|λ l -λ s |, Min ξ j =ξ k {|µ l,j -µ s,k |}}.
Note that, by Hypothesis 2, δ l > 0.

Det((λ l -µ)I -A) = (λ l -µ -ξ 1 )...(λ l -µ -ξ k)Q(ξ k -η).
For the n k indices j such that ξ 

j = ξ k λ l -µ -ξ j = λ l -λ s -η so that |λ l -µ -ξ j | ≥ |λ l -λ s | -δ l ≥ 1 2 |λ l -λ s |.
For a given Z with components z 1 and z 2 , we consider (S 1,Z ):

((λ 1µ)I -A)X = Z that we write also (λ 1µa 11 )x 1a 12 x 2 = z 1 -a 21 z 1 + (λ 1µa 22 )x 2 = z 2 .

We use Cramer's formula: Here M 1 and M 2 are defined in [START_REF] De Figueiredo | Mitidieri A Maximum Principle for an Elliptic System and Applications to semilinear Problems[END_REF].

x 1 = N 1 D , x 2 = N 2 D ,
Near the first eigenvalue µ 1,1 , k = 1

For ξ j

 j = ξ k |λ lµξ j | = |µ l,jµ s,k -η| ≥ |µ l,jµ s,k | -|δ l | ≥ 1 2 |µ l,jµ s,k |,and the Lemma follows. • We develop the example announced in Section 2. Consider the 2 × 2 system (S F ) involving Matrix A:. a 11 a 12 a 21 a 22 and assume a 12 > 0, a 21 > 0 . A has 2 distinct real eigenvalues ξ 2 < ξ 1 . The eigenvalues are the roots of the characteristic polynomial P , and since P (a 11 ) = P (a 22 ) = -a 12 a 21 < 0, we have ξ 2 < a 11 < ξ 1 and ξ 2 < a 22 < ξ 1 .

  where D = det((λ 1µ)I -A) = (µµ 1,1 )(µµ 1,2 ).N 1 = z 1 (λ 1µa 22 ) + z 2 a 12 , N 2 = z 2 (λ 1µa 11 ) + z 1 a 21 .Obviously D < 0 for µ 1,1 < µ < µ 1,2 and > 0 otherwise.Near an eigenvalue µ 1,k , k = 1, 2: Write µ = µ 1,k + η = λ 1ξ k + η. (16)As µ → µ 1,k , D → 0 andN 1 = z 1 (ξ ka 22 ) + z 2 a 12ηz 1 → M 1 := z 1 (ξ ka 22 ) + z 2 a 12 , N 2 = z 2 (ξ ka 11 ) + z 1 a 21ηz 2 → M 2 := z 2 (ξ ka 11 ) + z 1 a 21 .

Proof of Theorem 2 : From (P 3 ) in Hypothesis 3,

where F is orthogonal to the eigenspaces associated to λ 1 , . . . , λ r , λ s , the solution U of (S F ) is

where U l = X l φ l is solution of (S F l ), and Û satisfies (S F ).

We compute first the components on φ s : Let µ = µ s,k + η < µ r,k . Multiplying (S F ) by φ s we derive that X solves (S s,Z ):

where

and as in [START_REF] Fleckinger | Thélin On maximum principles and existence of positive solutions for some cooperative elliptic systems[END_REF],

Therefore, for |η| < δ ′ , D has the sign of (-1) n k (-η) m k , and lim D η→0 = 0. Since M i 0 > 0, we obtain that lim ǫ k x i 0 = +∞ as η → 0.

We establish now upperbounds for the remaining parts of the solution: We choose µ < µ r,k and ŝ such that λ ŝ > λ ŝ-1 and λ ŝ > σ + µ r,k , where σ is defined in Lemma 1. Here K = µ r,k . It follows from Lemma 3 that (λ ŝµ)I -A is a non singular M-matrix. Now we use again the sets E and H defined in Definition 2 for s 0 = ŝ. For F ∈ (L p (Ω)) n , we decompose F in (P 3 ) and write

where U ⊥ ∈ E satisfies (S F ⊥ ), the components x i of X are computed before and U l satisfies (S F l ) for l = 1, ..., r and l = r, ..., ŝ -1. Since µ < µ r,k , we can take µ = µ s,k + η with |η| ≤ δ ŝ so that the Hypotheses of Lemma 3 are satisfied; it follows again (13) that is :

For l = 1, ..., r and l = r, ..., ŝ -1, U l = X l φ l satifies (S F l ); so multiplying (S F l ) by φ l , we obtain that X l satisfies (S l,Z l ). Again, it follows from Cramer's formulae that X l , and hence U l , are bounded independently of µ.

Setting δ = min{δ ′ , δ 1 , ..., δ r , δ r..., δ ŝ} where δ ′ is defined above and µ = µ s,k + η with |η| ≤ δ we derive that for all these l, U l C 1 (Ω) are bounded independently of µ. Combining the results concerning the U l and U ⊥ with the behavior of Zφ s near µ s,k , we may write As η → 0, D → 0 with the sign of -η . If z 1 = f φ 1 > 0 and z 2 = f 2 φ 1 > 0, by 15, M 1 > 0 and M 2 > 0. For η small enough, N 1 and N 2 have the same sign than M 1 and M 2 , and are positive. Finally

If z 1 < 0 and z 2 < 0, the signs are reversed.

Near the eigenvalue µ 1,2 , k = 2 As η → 0, D → 0 with the sign of +η . Assuming M 1 > 0, M 2 > 0, we obtain that, for η small enough,

The sign of the components of the solutions change as µ goes over an eigenvalue µ 1,k , k = 1, 2.

Annex II: Non singular M -matrices

A matrix A which can be expressed sI -B , s > ρ(B) , B ≥ 0, with B a matrix with all terms non negative (B ≥ 0) and ρ(B) its spectral radius is called a non singular M-matrix.

We list here some of the 50 equivalent properties of a non singular M-matrix shown in Bermann and Plemmons, ( [START_REF] Berman | Plemmons Nonnegative matrices in the mathematical sciences[END_REF], p132 to 138).

(A1) All of the principal minors of A are positive.

(A5) A does not reverse the sign of any vector; that is if X = 0 with components X i and Y = AX, Y with components Y i , then for some subscript i: X i Y i > 0.

(D15) A + tI is non singular for each t ≥ 0.

(D16) Every real eigenvalue of A is positive.

(I27) A is "semipositive"; that is there exists X >> 0 with AX >> 0.

(I28) There exists X > 0 with AX >> 0.

(N38) A is with positive inverse; that is A -1 exists and A -1 ≥ 0.

(N39) A is monotone; that is

An example

B is a strictly cooperative matrix with non real eigenvalues: P (λ) = (3λ)(λ 2 + 3λ + 3) gives the eigenvalues of B : 3, (-3 ± (i √ 3)/2. Obviously ρ(B) = 3 and sI -B is a non singular M-matrix for s > 3.