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High-Order ADI Schemes
for Convection-Diffusion Equations
with Mixed Derivative Terms

B. Düring, M. Fournié, and A. Rigal

Abstract We present new high-order Alternating Direction Implicit (ADI) schemes
for the numerical solution of initial-boundary value problems for convection-
diffusion equations with cross derivative terms. Our approach is based on the
unconditionally stable ADI scheme proposed by Hundsdorfer (Appl Numer Math
42:213–233, 2002). Different numerical discretizations which lead to schemes
which are fourth-order accurate in space and second-order accurate in time are
discussed.

1 Introduction

We consider the multi-dimensional convection-diffusion equation

ut D div.Dru/ C c � ru (1)

on a rectangular domain ˝ � R
2, supplemented with initial and boundary

conditions. In (1),
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are a given nonzero convection vector and a given, fully populated (non-diagonal),
and positive definite diffusion matrix, respectively. Thus, both mixed derivative and
convection terms are present in (1).

After rearranging, problem (1) may be formulated as

@u.x; y; t/

@t
D .d12 C d21/

@2u

@x@y„ ƒ‚ …
DWF0.u/

C .c1

@u

@x
C d11

@2u

@x2
/„ ƒ‚ …

DWF1.u/

C .c2

@u

@y
C d22

@2u

@y2
/

„ ƒ‚ …
DWF2.u/

: (2)

This type of convection-diffusion equations with mixed derivatives arise fre-
quently in many applications, e.g. in financial mathematics for option pricing in
stochastic volatility models or in numerical mathematics when coordinate transfor-
mations are applied. Such transformations are particularly useful to allow working
on simple (rectangular) domains or on uniform grids (to have better accuracy). Thus,
this approach allows to consider complex domains or to define non-uniform meshes
to take into account the stiffness behavior of the solution in some part of the domain.

In the mathematical literature, there exist a number of numerical approaches to
approximate solutions to (1), e.g. finite difference schemes, spectral methods, finite
volume and finite element methods. Here, we consider (1) on a rectangular domain
˝ � R

2. In this situation a finite difference approach seems most straight-forward.
The Alternating Direction Implicit (ADI) method introduced by Peaceman and

Rachford [1], Douglas [4,5], Fairweather and Mitchell [7] is a very powerful method
that is especially useful for solving parabolic equations on rectangular domains.
Beam and Warming [2], however, have shown that no simple ADI scheme involving
only discrete solutions at time levels n and n C 1 can be second-order accurate
in time in the presence of mixed derivatives (F0 ¤ 0 in (2)). To overcome this
limitation and construct an unconditionally stable ADI scheme of second order in
time, a number of results have been given by Hundsdorfer [11,12] and more recently
by in ’t Hout and Welfert [10]. These schemes are second-order accurate in time and
space.

High-Order Compact (HOC) schemes (see, e.g. [8, 14]) employ a nine-point
computational stencil using the eight neighbouring points of the reference grid point
only and show good numerical properties. Several papers consider the application
of HOC schemes (fourth order accurate in space) for two-dimensional convection-
diffusion problems with mixed derivatives [3,6] but without ADI splitting. Moreover,
the HOC approach introduces a high algebraic complexity in the derivation of the
scheme.

We are interested in obtaining efficient, high-order ADI schemes, i.e. schemes
which have a consistency order equal to two in time and to four in space, which are
unconditionally stable and robust (no oscillations). We combine the second-order
ADI splitting scheme presented in [10, 12] with different high-order schemes to
approximate F0; F1; F2 in (2). We note that some results on coupling HOC with
ADI have been presented in [13], however, without mixed derivative terms present
in the equation.
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Up to the knowledge of the authors there are currently no results for ADI-HOC
in the presence of mixed derivative terms. In this preparatory work we validate the
coupling of ADI and HOC by numerical experiments.

2 Splitting in Time

In time, we consider the following splitting scheme presented in [10, 12]. We
consider (2), and we look for a (semi-discrete) approximation U n � u.tn/ with
tn D n�t for a time step �t . The scheme used corresponds to

8̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:̂

Y 0 D U n�1 C �t F.U n�1/;

Y 1 D Y 0 C ��t.F1.Y 1/ � F1.U n�1//;

Y 2 D Y 1 C ��t.F2.Y 2/ � F2.U n�1//;
QY 0 D Y 0 C ��t .F.Y 2/ � F.U n�1//;
QY 1 D QY 0 C ��t.F1. QY 1/ � F1.Y 2//;
QY 2 D QY 1 C ��t.F2. QY 2/ � F2.Y 2//;

U n D QY 2;

(3)

with constant parameters � and �; and F D F0 C F1 C F2: To ensure second-order
consistency in time we choose � D 1=2. The parameter � is arbitrary and typically
fixed to � D 1=2. The choice of � is discussed in [12]. Larger � gives stronger
damping of implicit terms and lower values return better accuracy (some numerical
results for � D 1=2 C p

3=6 are given in Sect. 4).
We note that F0 is treated explicitly, whereas F1; F2 (unidirectional contributions

in F ) are treated implicitly. In the following section, we discuss different high-order
(fourth order) strategies for the discretization in space.

3 High-Order Approximation in Space

For the discretization in space, we replace the rectangular domain ˝ D ŒL1; R1� �
ŒL2; R2� � R

2 with R1 > L1, R2 > L2 by a uniform grid Z D fxi 2 ŒL1; R1� W
xi D L1 C .i � 1/�x, i D 1; : : : ; N g � fyj 2 ŒL2; R2� W yj D L2 C .j � 1/�y ,
j D 1; : : : ; M g consisting of N � M grid points, with space steps �x D .R1 �
L1/=.N �1/ and �y D .R2�L2/=.M �1/. Let ui;j denote the approximate solution
in .xi ; yj / at some fixed time (we omit the superscript n to simplify the notation).

We present different fourth-order schemes to approximate F0; F1; F2 in (3). The
first one uses five nodes in each direction and the second one is compact. Both
schemes are considered with boundary conditions of either periodic or Dirichlet
type.
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3.1 Fourth-Order Scheme Using Five Nodes

We denote by ıx0, ıxC and ıx�, the standard central, forward and backward finite
difference operators, respectively. The second-order central difference operator is
denoted by ı2

x ,

ı2
xui;j D ıxCıx�ui;j D uiC1;j � 2ui;j C ui�1;j

�2
x

:

The difference operators in the y-direction, ıy0, ıyC, ıy� and ı2
y , are defined

analogously. Then it is possible to define fourth-order approximations based on,

.ux/i;j �
�

1 � �2
x

6
ı2

x

�
ıx0ui;j D �uiC2;j C 8uiC1;j � 8ui�1;j C ui�2;j

12�x

;

.uy/i;j �
�

1 � �2
y

6
ı2

y

�
ıy0ui;j D �ui;j C2 C 8ui;j C1 � 8ui;j �1 C ui;j �2

12�y

;

.uxx/i;j �
�

1 � �2
x

12
ı2

x

�
ı2

xui;j D �uiC2;j C 16uiC1;j � 30ui;j C 16ui�1;j � ui�2;j

12�2
x

;

.uyy/i;j �
�

1 � �2
y

12
ı2

y

�
ı2

yui;j D �ui;j C2 C 16ui;j C1 � 30ui;j C 16ui;j �1 � ui;j �2

12�2
y

;

.uxy/i;j �
�

1 � �2
x

6
ı2

x

�
ıx0

�
1 � �2

y

6
ı2

y

�
ıy0ui;j

D 1

144�x�y

�
64.uiC1;j C1 � ui�1;j C1 C ui�1;j �1 � uiC1;j �1/

C8.�uiC2;j C1 � uiC1;j C2 C ui�1;j C1 C ui�2;j C1

�ui�2;j �1 � ui�1;j �2 C uiC1;j �2 C uiC2;j �1/

C.uiC2;j C2 � ui�2;j C2 C ui�2;j �2 � uiC2;j �2/
�
:

(4)

For each differential operators appearing in F0, F1 and F2, we use these five-points
fourth-order difference formulae.

Combining this spatial discretization with the time splitting (3), we obtain a high-
order, five-points ADI scheme denoted HO5. Its order of consistency is two in time
and four in space.

3.2 Fourth-Order Compact Scheme

We start by deriving a fourth-order HOC scheme for

F1.u/ D d11

@2u

@x2
C c1

@u

@x
D g; (5)
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with some arbitrary right hand side g: We employ central difference operators to
approximate the derivatives in (5) using

@u

@x
.xi ; yj / D ıx0ui;j � �2

x

6

@3u

@x3
.xi ; yj / C O.�4

x/; (6)

@2u

@x2
.xi ; yj / D ı2

xui;j � �2
x

12

@4u

@x4
.xi ; yj / C O.�4

x/: (7)

By differentiating (5), we can compute the following auxiliary relations for the
derivatives appearing in (6), (7) (in the following, for the sake of brevity we omit
the argument .xi ; yj / of the continuous functions)

@3u

@x3
D 1

d11

@g

@x
� c1

d11

@2u

@x2
; (8)

@4u

@x4
D 1

d11

@2g

@x2
� c1

d11

@3u

@x3
D 1

d11

@2g

@x2
� c1

d11

�
1

d11

@g

@x
� c1

d11

@2u

@x2

�
: (9)

Hence, using (8) and (9) in (6) and (7), respectively, Eq. (5) can be approximated by

d11ı
2
xui;j Cc1ıx0ui;j D gi;j C �2

x

12

�
c1

d11

@g

@x
C @2g

@x2
� c2

1

d11

@2u

@x2

�
CO.�4

x/: (10)

We note that all derivatives on the right hand side of (10) can be approximated
on a compact stencil using second-order central difference operators. This yields a
high-order compact scheme of fourth order for (5) which is given by

d11ı
2
xui;j Cc1ıx0ui;j C�2

x

12

c2
1

d11

ı2
xui;j D gi;j C�2

x

12

�
c1

d11

ıx0gi;j C ı2
xgi;j

�
: (11)

In a similar fashion we can discretize the operator F2.u/ D g by a high-order
compact scheme of fourth order given by

d22ı
2
yui;j C c2ıy0ui;j C �2

y

12

c2
2

d22

ı2
yui;j D gi;j C �2

y

12

�
c2

d22

ıy0gi;j C ı2
ygi;j

�
:

(12)

Defining vectors U D .u1;1; : : : ; uN;M / and G D .g1;1; : : : ; gN;M /, we can state
these schemes (11) and (12) in matrix form AxU D BxG (for F1.u/ D g) and
AyU D ByG (for F2.u/ D g), respectively. We apply these HOC schemes to
find the unidirectional contributions Y 1, QY 1, and Y 2, QY 2 in (3), respectively. For
example, to compute

Y 1 D Y 0 C �t

2
.F1.Y 1/ � F1.U n�1//
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in the second step of (3) (which is equivalent to F1.Y
1 � U n�1/ D � 2

�t
.Y 0 � Y 1/),

we use Ax.Y 1 � U n�1/ D Bx.� 2
�t

.Y 0 � Y 1// that can be rewrite into

�
Bx � �t

2
Ax

�
Y 1 D BxY 0 � �t

2
AxU n�1:

Note that the matrix .Bx � .�t =2/ Ax/ appears twice in (3), in steps 2 and 5.
Similarly, .By � .�t=2/ Ay/ appears in steps 3 and 6 of (3). Hence, using
LU-factorisation, only two matrix inversions are necessary in each time step of (3).
Moreover, for the case of constant coefficients, these matrices can be LU-factorized
before iterating in time to obtain an even more efficient algorithm.

To compute Y 0 and QY 0 in steps 1 and 4 of (3) which require evaluation of F0

(mixed term) we use an explicit approximation using the five-points fourth-order
formulae (4).

Combining this spatial discretization with the time splitting (3), we obtain a high-
order compact ADI scheme denoted HOC. Its order of consistency is two in time
and four in space.

4 Numerical Experiments

We present numerical experiments on a square domain ˝ D Œ0; 1� � Œ0; 1� for two
types of boundary conditions, periodic and Dirichlet type. The initial condition is
given at time T0 D 0 and the solution is computed at the final time Tf D 0:1 with
different meshes �x D �y D h and different time steps �t . In our numerical tests
we focus on the errors with respect to time and to space.

In the first part, we consider the periodic boundary value problem considered
in [10]. We implement the scheme detailed in [10] based on second-order finite
difference approximations (referred to as CDS below) and compare its behaviour
to our new schemes HO5 (Sect. 3.1) and HOC (Sect. 3.2). In the second part, we
consider Dirichlet boundary conditions and restrict our study to the more interesting
HOC scheme. In that part, we extend the splitting scheme to a convection-diffusion
equation with source term.

4.1 Periodic Boundary Conditions

The problem given in [10] is formulated on the domain ˝ D Œ0; 1� � Œ0; 1�. The
solution u satisfies (1) where

c D �
�

2

3

�
; D D 0:025

�
1 2

2 4

�
;
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Table 1 Numerical convergence rates in time for � D 1
2

l2-error convergence rate l1-error convergence rate

Scheme h D 0:1 h D 0:025 h D 0:00625 h D 0:1 h D 0:025 h D 0:00625

CDS 2.2002 2.1975 2.1969 2.1973 2.1958 2.1956
HO5 2.1999 2.1973 2.1969 2.1992 2.1953 2.1955
HOC 2.2002 2.1973 2.1969 2.2007 2.1953 2.1955

Table 2 Numerical convergence rates in space of l2-error for fixed � as �x; �t ! 0 and � D 1
2

Scheme � D 0:4 � D 0:2 � D 0:1 � D 0:05

CDS 1.7828 1.7909 1.7821 1.7845
HO5 2.2291 2.5188 2.8153 3.0672
HOC 2.2685 2.5191 2.8152 3.0671

with periodic boundary conditions and initial condition u.x; y; T0/ D
e�4.sin2.�x/Ccos2.�y//. We employ the splitting (3) with � D 1=2 and � D 1=2.

We first present a numerical study to compute the order of convergence in time
of the schemes CDS, HO5 and HOC. Asymptotically, we expect the error " to
converge as

" D C�m
t

at some rate m with C representing a constant. This implies

log."/ D log.C / C m log.�t /:

Hence, the double-logarithmic plot " against �t should be asymptotic to a straight
line with slope m that corresponds to the order of convergence in time of the scheme.
We denote by "2 and "1 the errors in the l2-norm and l1-norm, respectively. We
refer to Table 1 for the order of convergence in time computed for different fixed
mesh widths h 2 f0:1; 0:0:025; 0:00625g and time steps �t 2 ŒTf =30; Tf =90�. The
solution computed for �t D Tf =100 is considered as reference solution to compute
the errors. The global errors for the splitting behave like C.�t/

2. We also observe
that the constant C only depends weakly on the spatial mesh widths h.

In the following, we study the spatial convergence. The double-logarithmic plots
"2 and "1 against h give the rates of convergence. Contrary to the time convergence,
the order now depends on the parabolic mesh ratio � D �t =�2

x, so the numerical
tests are performed for a set of different constant values of �. For simulations, � is
fixed at constant values � 2 f0:4; 0:2; 0:1; 0:005g while �x D �y D h ! 0 (�t is
then given by �t D �h2). The results for the l2-error are given in Table 2 and for
the l1-error in Table 3. The solution computed for h D 0:00625 is used as reference
solution to compute the errors.

Remark. The choice of the parameter � is discussed in [12]. However, for the
convergence rates, � seems to have little influence. For example, for the scheme
HO5 with � D 1=2 C p

3=6 we obtain very similar results as shown in Table 4.
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Table 3 Numerical convergence rates in space of l1-error for fixed � as �x; �t ! 0 and � D 1
2

Scheme � D 0:4 � D 0:2 � D 0:1 � D 0:05

CDS 1.7170 1.7125 1.7040 1.7038
HO5 2.2931 2.6166 2.9182 3.1584
HOC 2.3175 2.6176 2.9184 3.1584

Table 4 Numerical convergence rates in space for HO5 for fixed � as �x; �t ! 0 and � D
1
2

C
p

3

6

� D 0:4 � D 0:2 � D 0:1 � D 0:05

l2 rate 2.2310 2.5186 2.8152 3.0671
l1 rate 2.2938 2.6164 2.9181 3.1584

4.2 Dirichlet Boundary Conditions

In this section we only consider the HOC scheme which presents more interesting
properties than the other schemes. Indeed, compared to CDS, its accuracy is larger
and compared to HO5, no specific treatment at the boundaries is required for the uni-
directional terms F1, F2, the compact scheme is optimal in this respect. A particular
treatment is necessary when ghost points appear in the explicit approximation
of the mixed term F0. To preserve the global performance, the accuracy of the
approximation near the boundary conditions has to be sufficiently high. We have
used a sixth-order approximation in one direction (although lower order may also
be used [9]). For example, for u0;j on the boundary, at a ghost point u�1;j we impose

u�1;j D 5u0;j � 10u1;j C 10u2;j � 5u3;j C u4;j :

For the numerical tests, we consider the problem

ut D div.Dru/ C c � ru C S

on the domain ˝ D Œ0; 1� � Œ0; 1� where

c D �
�

2

3

�
; D D 0:025

�
1 2

2 4

�
;

and the source term S is determined in such a way that the solution is equal to
u.x; y; t/ D � 1

tC1
sin.�x/ sin.�y/: The Dirichlet boundary condition and initial

condition are deduced from the solution. To incorporate the source term S in the
splitting (3), F needs to be replaced by F C S . More specifically, F.U n�1/ is
replaced by F.U n�1/CS.tn�1/ and F.Y 2/ by F.Y 2/CS.tn/. We perform the same
numerical experiments as in the previous section. The final time is fixed to Tf D 0:1

and the errors are computed with respect to a reference solution computed on a fine
grid in space (�x D �y D 0:00625). Different meshes in space are considered
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Fig. 1 Numerical convergence rate in space for HOC (� D 1
2
) and � D 0:4

Table 5 Numerical convergence rates of l2-error and l1-error for HOC (� D 1
2
) for different

constant values of � (dirichlet boundary conditions)

� D 0:4 � D 0:2 � D 0:1 � D 0:05

l2 rate 4.0971 4.1875 4.2129 4.2196
l1 rate 4.1530 4.2372 4.2717 4.2806

for �x D �y D h and h 2 f0:1; 0:05; 0:025; 0:0125g. For � D 0:4 the double-
logarithmic plots "2 and "1 against h are given in Fig. 1.

The results of several numerical tests are reported in Table 5 for fixed parabolic
mesh ratio � D �t =�2

x while �x; �t ! 0. In all situations, the new HOC
scheme shows a good performance with fourth-order convergence rates in space,
independent of the parabolic mesh ratio �.

5 Conclusion

We have presented new high-order Alternating Direction Implicit (ADI) schemes
for the numerical solution of initial-boundary value problems for convection-
diffusion equations with mixed derivative terms. Using the unconditionally stable
ADI scheme from [12] we have proposed different spatial discretizations which
lead to schemes which are fourth-order accurate in space and second-order accurate
in time.

We have performed a numerical convergence analysis with periodic and Dirichlet
boundary conditions where high-order convergence is observed. In some cases,
the order depends on the parabolic mesh ratio. More detailed discussions of these
schemes including this dependence and a stability analysis will be presented in a
forthcoming paper.
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