

Chemical modulation of mechanical properties during the making of wood in a growing tree *Bernard Thibaut CNRS*

The physical chemistry of green chemistry Montpellier Nov 26th 2015

First step in building of a tree: external additive manufacturing

Growth in length give *long slender beams* whose section grows in diameter by adding successive new layers of woody material

Primary growth

Section of a trunk

Mechanical problems for a tree

Resistance to bending and posture control are the main problems

Resistance of a beam to bending: a key for trees

Importance of **material properties** as modulus of elasticity and rupture strength (should be > maximum stress)

Additive manufacturing and branch posture control

Increasing mass and bending momentum will lead to more and more deflexion of the beam unless there is an **active action (forces)** in the last produced layer in order to counteract the increase in bending momentum

Producing forces in polymer additive manufacturing

In this case, during the free polymerisation of the polymer, there should be a small shrinkage ε_p , from 100 µdef to some 1000 µdef (µdef = 1/1000000). Layer strain is blocked by the solid core, inducing a stress (necessary to produce an opposite strain in the layer) $\sigma_p = E^* \epsilon_p$ (E: modulus of elasticity of the polymerised layer). The total force acting on the core is $F=\sigma_p^*\Delta S$ (ΔS : area of the new layer section)

Efficient material for beam manufacturing

Low weight Good stiffness/weight ratio High anisotropy

Polymers Cellular materials Fibre composites

Fibre composite is highly anisotropic and efficient in bending

Honeycomb like structure for spruce

Irregular radial growth for a Guyanese tree

Honeycomb materials are anisotropic. Playing on cell number and cell expansion is a way to modify geometry at constant weight

Green polymers as basic material

Second step: internal additive manufacturing

Cell wall thickening by deposit of polymer layers inside the cavities

S: secondary wall deposited inside the cell, on the primary wall, during maturation With 3 layers S_1, S_2 and S_3

P: primary wall produced during cell expansion

ML: middle lamella glue line between two cells produced by cell division

Growing wall thickness means growing wood density and wood strength

Secondary wall layers: fibre composite material (second level of anisotropy)

Fibre cell wall composition S_2 layer is the thickest one

Specific MOE = MOE /Density

MFA: cellulose microfibril angle in S2 layer

Managing polymerisation to control posture: active reaction against bending in a branch

Direction of the branch

Maturation strain is depending on chemical composition

Compression wood

Higher lignin content and different composition in lignin monomers in CW

Maturation strain is also depending on MFA

Conclusion: bio-inspiration in additive manufacturing?

- Chemistry of the monomers using CO2 resource
- Combining honeycomb and fibre composite
- Combining *structural effect* by cell expansion and *material effect* by fibre organisation
- Using polymerisation residual stresses as tools for final form control

And/or bio-sourcing by tree deconstruction?

- Cross-cutting
- Splitting
- Sawing

Solid wood

- Veneering
- Fragmenting
- Plywood and particle panels

- Defibration Paper and fibre panels
- Fibrillating Crystalline nano-cellulose
- Molecule extraction Synthons

At the end energy is always available

Thank you for your attention

