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A TWO FIELD ITERATED ASYMPTOTIC-PRESERVING METHOD
FOR HIGHLY ANISOTROPIC ELLIPTIC EQUATIONS

FABRICE DELUZET ∗ AND JACEK NARSKI∗

Abstract. A new two field iterated Asymptotic-Preserving method is introduced for the numeri-
cal resolution of strongly anisotropic elliptic equations. This method does not rely on any integration
of the field defining the anisotropy. It rather harnesses an auxiliary variable removing any stiffness
from the equation. Compared to precedent realizations using the same approach, the iterated method
allows for the resolution of each field independently within an iterative process to converge the two
unknowns. This brings advantages in the computational efficiency of the method for large meshes, a
better scaling of the matrices condition number with respect to the mesh refinement as well as the
ability to address complex anisotropy topology including closed field lines.
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1. Introduction. The present paper is aimed at introducing a new Asymptotic-
Preserving scheme for the resolution of singular perturbation problems stemming
from strongly anisotropic elliptic equations. This type of equations are representative
of plasma physics evolution under large magnetic fields such as Tokamak plasmas
[8, 9]. Here the focus is made on a simplified model problem containing the main
difficulty characterizing these equations but without all the complexity of the physical
background. This simplified context allows the construction of analytic solutions
which are used to assess the effectiveness of the numerical method introduced herein.
Let b denote the vector field providing the direction of the magnetic field, b verifying
|b| = 1, the model problem writes

−∇ · (Aε∇uε) = fε in Ω,

n · Aε∇uε = 0 on ΓN ,

uε = 0 on ΓD ,

(1)

where n is the outward normal to the domain, ΓN ∪ ΓD the domain boundary, with
b · n = 0 on ΓD and b · n 6= 0 on ΓN . The anisotropy of the problem is defined by
the diffusion matrix Aε related to the vector field b by two positive functions A‖ and
A⊥ with

Aε =
1

ε
A‖b⊗ b + (Id− b⊗ b)A⊥(Id− b⊗ b) .(2)

In this equation Id is the identity matrix, the tensor product being denoted ⊗. The
parameter ε−1 defines the strength of the anisotropy.

The difficulty addressed in this paper is related to the singular nature of the
problem. Indeed in the limit of infinite anisotropy strength (ε → 0) the system
(1) is degenerate. Indeed, the differential operator in the elliptic equation reduces
to the dominant operator (the derivatives carried by ε−1 in (1)) which is supplied
with Neumann like boundary conditions. This degenerate system admits an infinite
amount of solutions, any function with no gradient along b being in the kernel of the
dominant operator.
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The derivation of efficient numerical methods for the approximation of this class
of problems is a difficult task. The straight discretization of (1) gives rise to sys-
tem matrices with condition number blowing up with the increase of the anisotropy
strength. This is outlined in precedent works (see [10] for numerical investigations
or [15] and [23] for an analysis). Therefore these approaches are limited to reduced
anisotropy strength.

A way to circumvent this difficulty is to develop Asymptotic-Preserving methods
as introduced in [14] for a different context. Actually a well posed system can be
derived to compute uniquely the solution in the limit of infinite parallel diffusion. The
aim of such method is to guarantee that the discrete system is consistent with this
well posed problem for vanishing ε rather than with the degenerate one. This ensures
that the condition number of the system matrix remains bounded independently of
the anisotropy strength.

In precedent works, different AP schemes have been derived for this class of prob-
lems. The first iterations were devoted to anisotropy directions aligned with one
coordinate [10, 5]. This requirement has been released in [11] and extended to closed
field lines in [16]. In all these works the problem is reformulated into a two field prob-
lem based on a decomposition of the solution into a microscopic and a macroscopic
component. This reformulated two field system offers the advantage of embedding the
limit problem. Hence, the limit ε→ 0 is a regular limit in this set of equations. How-
ever the decomposition of the solution is not unique and different numerical methods
can be derived according to the choices implemented in this reformulated system.
The present work aims at exploring further the possibilities offered by a different
decomposition. Note that the method developed herein does not rely on any geomet-
rical procedure, requiring an integration along the b-field lines as proposed by other
authors [6, 19, 22].

The main goal of the present work is to correct some of the weaknesses of the
precedent realizations, namely the Micro-Macro and the stabilized Micro-Macro meth-
ods. The first weakness is related to the structure of the discrete system issued from
the discretization of the reformulated problem. So far, this system strongly couples
the equations providing both components and is therefore solved at once. We pro-
pose a different method referred to as “two field iterated Asymptotic-Preserving”
method which offers the ability to solve each component independently, in an itera-
tive process. The system solved for each component is the same mildly anisotropic
problem parameterized by a numerical parameter ε0 � ε with a different source term
for every component. This gains an improved efficiency in terms of computational
resources compared to the direct resolution of the two field system implemented for
the Micro-Macro methods. The second advantage of this new method is related to
the conditioning of the system matrix. The linear systems issued from precedent AP
(Micro-Macro) methods [11, 15] have a condition number scaling as 1/h4, h denot-
ing the typical mesh size. The two field iterated method introduced herein requires
only the resolution of linear systems with a condition number scaling as 1/(ε0h

2).
An additional advantage is the ability to carry out numerical approximations with
closed field lines. This is a difficulty that can not be addressed by the Micro-Macro
AP scheme [11]. Indeed this numerical method requires that all the field lines cross
the domain boundary. It should be pointed out that a solution has been proposed in
[16] in the frame of the “stabilized” Micro-Macro scheme. It consists in introducing a
stabilization operator small enough not to deteriorate the precision of the numerical
method. The main difficulty with this approach lies in the choice of the stabilization
operator scaling. Indeed, it should be kept large enough to preserve a good condition-
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ing of the system matrix but small enough to be comparable to the truncation error
of the discretizations. This prevents from using the stabilized method with high order
methods. Another approach is proposed in [22] relying on an integration along the
magnetic field lines. This method is derived without coordinates or meshes related
to the magnetic field but requires precise integration along the field lines only imple-
mented with analytic expressions of the magnetic field. The two field iterated method
is free from these weaknesses. We also show that, the parameter ε0 can be chosen
in a wide range of values preventing the so-called locking effect [4] and securing a
fast convergence of the iterations as well as a good conditioning of the linear systems.
The numerical method is also free from the perpendicular dynamic pollution by the
parallel one, reported by other authors in very similar frameworks [12, 13, 20, 21].

The outlines of the paper are the following. The problem at hand in the present
work is stated in Section 2 with highlights on the singular nature of the limit ε→ 0.
The two field iterated AP method is then introduced and the convergence of the it-
erative procedure is demonstrated. Finally, emphasizes are made on how this new
method compares to precedent works. Numerical investigations are carried out in
Section 3. Different setups are proposed to asses the effectiveness of the method.
The locking effect is first investigated and the robustness of the method with respect
to this classical issue is outlined. The efficiency of the two field iterated method is
benchmarked against the Micro-Macro scheme. This demonstrates tremendous gains
for large meshes. Two other test cases are finally proposed. The second one is a dif-
fusion in a ring similarly to computations performed in [7, 18] but proposed here with
anisotropy strength much more severe. The last test case is aimed at demonstrating
the ability to carry out accurate numerical approximations in frameworks including
closed field lines.

2. The anisotropic problem and its asymptotic-preserving formulation.

2.1. Introduction and notations. Let b ∈ (C∞(Ω̄))d be a smooth vector field
in a domain Ω ⊂ Rd, with d = 2, 3 and |b(x)| = 1 for all x ∈ Ω. Let us also decompose
the boundary Γ = ∂Ω into two parts: ΓD parallel to b and its complement ΓN :

ΓD = {x ∈ Γ | b(x) · n = 0}, ΓN = Γ \ ΓD,(3)

where n is the outward normal to Ω. Let us also decompose any vector v ∈ Rd,
gradients ∇φ, with φ(x) a scalar function, and divergence ∇ · v into a part parallel
to the anisotropy direction and a part perpendicular to it with:

v‖ := (v · b)b , v⊥ := (Id− b⊗ b)v , such that v = v‖ + v⊥ ,

∇‖φ := (v·∇φ)∇u , ∇⊥φ := (Id− b⊗b)∇φ , such that ∇φ = ∇‖φ+∇⊥φ ,

∇‖ · v := ∇ · v‖ , ∇⊥ · v := ∇ · v⊥ , such that ∇·v = ∇‖ ·v +∇⊥·v ,

where we denoted Id the identity matrix and ⊗ the vector tensor product. The
following notations and definitions will be helpful in the sequel.

Definition 1. Let V and G be the functional spaces defined by

V = {v ∈ H1(Ω) : v|ΓD
= 0} ,(4)

G = {v ∈ V : ∇‖v = 0} .(5)

For any function φ ∈ V, ε0 ∈ R, ε0 > 0, A‖ ∈ C∞(Ω̄) a positive function and
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A⊥ ∈Md×d(C∞(Ω̄)) a matrix satisfying

A0||v||2 ≤ vTA⊥v ≤ A1||v||2 , ∀v ∈ Rd(6)

for some positive constants A0 and A1 , we introduce the operators ∆‖, ∆⊥ and ∆ε0

defined as

∆‖φ = ∇‖ ·
(
A‖∇‖φ

)
,(7a)

∆⊥φ = ∇⊥ · (A⊥∇⊥φ) ,(7b)

∆ε0φ = ∆‖φ+ ε0∆⊥φ ;(7c)

and for (u, v) ∈ V × V the associated bilinear forms

a‖(u, v) =

∫
Ω

A‖∇‖u · ∇‖vdx ,(8a)

a⊥(u, v) =

∫
Ω

(A⊥∇⊥u) · ∇⊥vdx .(8b)

Finally the matrix Aε0 is introduced with

(9a) Aε0 = A‖ (b⊗ b) + ε0 (Id− b⊗ b)A⊥ (Id− b⊗ b)

and the induced norm

||u||2ε0 = a‖(u, u) + ε0a⊥(u, u) .(9b)

2.2. The singular perturbation problem. The problem studied in this paper
is the following: find uε such that

−1

ε
∆‖u

ε −∆⊥u
ε = f in Ω,

1
εn‖ ·

(
A‖∇‖uε

)
+ n⊥ · (A⊥∇⊥uε) = 0 on ΓN ,

uε = 0 on ΓD ,

(10)

This problem is refereed to as a singular perturbation problem, because of its degen-
eracy for vanishing ε. Indeed, setting ε to 0 in (10), the problem reduces to

−∆‖u
0 = 0 in Ω,

n‖ ·
(
A‖∇‖u0

)
= 0 on ΓN ,

u0 = 0 on ΓD ,

(11)

which admits an infinite number of solutions as any function v that is constant in the
direction of anisotropy (v ∈ G) solves this problem. The limit of the solution can be
computed by multiplying (10) by a test function v ∈ G, integrating by parts over Ω
and then let ε→ 0. This leads to the following, well posed problem: find u0 ∈ G such
that ∫

Ω

(A⊥∇⊥)u0 · ∇⊥v =

∫
Ω

fv , ∀v ∈ G ,(12)

which defines a weak formulation of the limit problem. The difficulty when dealing
with the numerical approximation of (1) consists in imposing the consistency of the
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scheme with the limit problem (12) rather than the degenerate one (11) when ε→ 0.
Standard discretizations of the problem (10) are not compliant with this property. The
condition number of the associated system matrices are increasing with the anisotropy
strength ε−1. This translates that the numerical methods provide a discretization of
the degenerate problem for vanishing ε-values. To address this issue, the philosophy
of Asymptotic Preserving schemes relies on a discretization of a suitable reformulated
problem. This system is equivalent to the problem (10) for ε > 0, however the limit
problem (12) is recovered from the reformulated system when ε is set to 0.

Another difficulty encountered when dealing with the numerical resolution of
anisotropic problems is the so-called locking phenomenon [4]. To highlight this issue in
the present framework, let us again consider the reduced problem (11). This problem
states that the solution has no gradient along b for vanishing ε. If the discrete space
does not contain functions that are constant in the direction of the anisotropy, then
the numerical approximation of this problem does not converge to the solution of the
problem. It is important to point out that the locking is not related to the fact that the
reduced problem is ill posed on the continuous level but to the coarse approximation
properties of the discrete functional space. That is the case, for example, when
either unstructured (triangular) meshes or rectangular Cartesian grids with variable
anisotropy directions are used with low order numerical methods. For small non zero
values of ε, large enough to preserve a good conditioning of the matrix related to the
discretized version of the (10), the locking phenomenon is manifested in the discrete
solution converging to zero as ε gets smaller. This feature will be illustrated in the
section devoted to the numerical investigations.

2.3. A two field iterated Asymptotic-Preserving method. Let us now
propose a two step iterative method to solve the singular perturbation problem (10).
Let us consider ε̃0 smaller than one but big enough so that the singular perturbation
problem for ε = ε̃0 is not yet singular nor the discretized system suffers from locking.
Let us define ε0 = max{ε̃0, ε} so that ε0 is never smaller than ε.

Let us first observe that the source of the numerical issues in the resolution
of the original problem (10) is the dominant derivative, multiplied by ε−1, in the
direction of the anisotropy. The idea behind the herein proposed scheme relies on the
introduction of an additional variable that fulfils the following relation: ε∆‖q = ∆‖u.
This operation allows to eliminate the stiff term from the equation, preventing by this
means the degeneracy of the equation. The two field system becomes:{

−∆‖q −∆⊥u = f ,
−∆‖u = −ε∆‖q ,

(13)

supplied with the boundary conditions precised in (10) for both u and q. This system
does not have a unique solution as q is defined up to a function constant in the
direction of the anisotropy. Let us now multiply the first equation by ε0 and add it
to the second one to get:

(14) −∆ε0u = ε0f + (ε0 − ε)∆‖q,

allowing to compute u uniquely if q is known. The next step consists in decoupling
the problems and solve the two resulting equations in an iterative manner, finding
first an approximation to u using q computed in the previous step, then recompute q
and repeat until convergence. This yields the following iterations{

−∆ε0u
n+1 = ε0f + (ε0 − ε)∆‖qn,

−∆‖q
n+1 = f + ∆⊥u

n+1.
(15)
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The second equation of this iterative scheme is not yet invertible. Let us now add
the term −ε0∆⊥q

n+1 to the left hand side and subtract its equivalent for qn from the
left hand side. The resulting problem for qn+1 has a unique solution for given qn and
un+1. Finally, the two field iterated method is defined in the following way:

−∆ε0u
n+1 = ε0f + (ε0 − ε)∆‖qn in Ω,

n · Aε0∇un+1 = −(ε0 − ε)n ·
(
A‖∇‖qn

)
on ΓN ,

un+1 = 0 on ΓD ,

(16)


−∆ε0q

n+1 = f + ∆⊥(un+1 − ε0q
n) in Ω,

n · Aε0∇qn+1 = −n ·
(
A⊥∇⊥

(
un+1 − ε0q

n
))

on ΓN ,

qn+1 = 0 on ΓD ,

(17)

where qn+1 is an auxiliary variable and un+1 the approximation to uε. In this method,
the original strongly anisotropic elliptic problem (10) is replaced by a set of two only
mildly anisotropic equations parameterized by ε0 � ε. Moreover, the matrix to be
inverted in the first step (16) of the iterative method is the same as in the final step
(17), the only difference is in the right hand side of the equation. That is to say,
the matrix has to be factorized only once, the rest of the iterative scheme is a fast
triangular system solve. This method does note require any discretization of the space
G (functions constant in the direction of the anisotropy), which can be complicated
for generic field b. To be complete, the variational formulation of the iterative scheme
(16-17) is stated:
Find (qn+1, un+1) ∈ V × V such that

a‖(u
n+1, v) + ε0a⊥(un+1, v) = ε0(f, v)− (ε0 − ε)a‖(qn, v), ∀v ∈ V,(18)

a‖(q
n+1, w) + ε0a⊥(qn+1, w) = (f, w)− a⊥(un+1 − ε0q

n, w), ∀w ∈ V.(19)

Let us now prove that the iterative scheme (16-17) converges and that the limit
solution solves the original singular perturbation problem.

Theorem 2. For any (q0, u0) ∈ V × V, the sequence (qn, un)n>0 defined by the
iterative method (16-17) converges to a solution (q̄, ū). The component ū of the sta-
tionary point solves uniquely the initial singular perturbation problem (10) for ε > 0
and the limit problem (12) when ε = 0.

To prove Theorem 2, the following lemmas and proposition are necessary.

Lemma 3. The operator ∆ε0 is invertible on V. The eigenvalues of the operator
∆−1

ε0 ∆‖ are real non negative and bounded by 1. The eigen functions ν0 associated to
the null eigenvalue belong to the kernel of the operator ∆‖: ν

0 ∈ G.

Lemma 4. The iterative method defined by Eqs. (16-17) yields the following re-
currence

qn+1 = AIq
n −∆−1

ε0 ∆‖∆
−1
ε0 f(20)

for n ≥ 1, the iteration operator AI being defined as

AI = 1− ε

ε0
∆−1

ε0 ∆‖ −
ε0 − ε
ε0

(
∆−1

ε0 ∆‖
)2
.(21)

The eigenvalues of AI , denoted `i, are real with `i ∈ [0, 1]. The eigenfunctions asso-
ciated to the largest eigenvalue `i = 1 is in the kernel of the operator ∆‖.
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Lemma 5 (Orthogonality of qn+1 − qn with respect to w ∈ G). For any q0 ∈ V
all functions in the sequence (qn)n≥0 issued from the iterative method (16-17) differ
from each other only by a function orthogonal to G, the space of functions constant
in the direction of anisotropy with respect to the H1 seminorm. That is to say, for
any i, j ≥ 0 the difference qj − qi is orthogonal to G with respect to the H1 seminorm.
Moreover, if ∇⊥q0 = 0 than qn is orthogonal to G with respect to the H1 seminorm
for all n ≥ 0.

Proposition 6. For any fixed point (ū, q̄) of the iterative method defined by
Eqs. (16-17), the component ū is the solution of the singular perturbation problem
(10) for ε > 0 and of the limit problem (12) for ε = 0.

Proof of lemma 3. The operator ∆ε0 is invertible due to standard elliptic argu-
ments. The eigensystem of the operator ∆−1

ε0 ∆‖ is defined by the problem:
Find λi ∈ R and qi ∈ V such that

∆−1
ε0 ∆‖qi = λiqi ,(22)

or equivalently

∆‖qi = λi∆ε0qi.(23)

Multiplication by qi (or by q∗i , if qi is assumed to have complex values and λi ∈ C)
and integration by parts yield

λi =
a‖(qi, qi)

a‖(qi, qi) + ε0a⊥(qi, qi)
.(24)

Clearly all eigenvalues are real and between 0 and 1.

Proof of lemma 4. Thanks to Eq. (16) it follows that, on the one hand

un+1 = −ε0∆−1
ε0 f − (ε0 − ε)∆−1

ε0 ∆‖q
n(25)

and, on the other hand

f + ∆⊥u
n+1 =

1

ε0

(
−∆‖u

n+1 − (ε0 − ε)∆‖qn
)
.

Plugging this identity into Eq. (17) yields,

(26) ∆ε0q
n+1 = ∆ε0q

n +
1

ε0
∆‖u

n+1 − ε

ε0
∆‖q

n .

After some algebra and using Eq. (25), the recurrence relation (20) between qn+1

and qn is recovered. The eigenvalues of the iteration operator AI defined by Eq. (21)
verify

`i = 1− ε

ε0
λi −

ε0 − ε
ε0

λ2
i(27)

where λi are the eigenvalues of the operator ∆−1
ε0 ∆‖ characterized in lemma 3. Note

that `i is a decreasing function of λi for ε0 > ε, with `i = 1 for λi = 0 and `i = 0 for
λi = 1.

7



Proof of lemma 5. Let us first prove that qn+1 − qn is orthogonal to the space G
with respect to the H1 seminorm. Let us plug w ∈ G into (19) to get

ε0a⊥(qn+1, w) = (f, w)− a⊥(un+1, w) + ε0a⊥(qn, w) , ∀w ∈ G.(28)

Owing to the identity a⊥(un+1, w) = (f, w) and thanks to (18) evaluated with v =
w ∈ G, the following relation is derived

a⊥(qn+1 − qn, w) = 0 , ∀w ∈ G,(29)

which finally leads to

a‖(q
n+1 − qn, w) + a⊥(qn+1 − qn, w) = 0 , ∀w ∈ G.(30)

This proves that qn+1 − qn is orthogonal to G with respect to the H1 seminorm. It
follows immediately that qn+l − qn is also orthogonal to G for any l ≥ 1 and n ≥ 0:

(31) a‖(q
n+l − qn, w) + a⊥(qn+l − qn, w)

=

n+l−1∑
i=n

(
a‖(q

i+1 − qi, w) + a⊥(qi+1 − qi, w)
)

= 0 , ∀w ∈ G.

Moreover, if ∇⊥q0 = 0 than qn is orthogonal to G in the H1 seminorm.

Proof of Proposition 6. Let (q̄, ū) be the stationary point of the iterative scheme.
Eqs. (16) and (17) yield

−∆‖q̄ −∆⊥ū = f(32)

−∆‖ū− ε0∆⊥ū = −ε∆‖q̄ + ε0

(
f + ∆‖q̄

)
(33)

which gives

∆‖ū = ε∆‖q̄,(34)

a relation that couples the parallel gradient of ū with that of q̄. Combining this again
with (32) one obtains the initial singular perturbation problem:

−1

ε
∆‖ū−∆⊥ū = f.(35)

The boundary conditions become:

n · ∇‖q̄ = −n · ∇⊥ū(36)

and

n · Aε0∇ū = −(ε0 − ε)n · ∇‖q̄ = (ε0 − ε)n · ∇⊥ū,(37)

which proves that the boundary conditions for the original singular perturbation prob-
lem are recovered for the converged solution of the iterative scheme.

This problem admits a unique solution ū for ε 6= 0, independent on u0. If ε = 0
then Eqs. (32) and (35) provide the following system:{

−∆‖q̄ −∆⊥ū = f ,
−∆‖ū = 0 .

(38)

The second equation forces ū to belong to the space G of functions constant in the
direction of anisotropy and the first equation defines the strong formulation of the
limit problem (12) with q̄ acting as a Lagrange multiplier.

8



Proof of Theorem 2. Let us write (19) for un with n ≥ 1, subtract it from the
equation for un+1 and choose v = un+1 − un. One obtains

(39) a‖
(
un+1 − un, un+1 − un

)
+ ε0a⊥

(
un+1 − un, un+1 − un

)
=

− (ε0 − ε)a‖
(
qn − qn−1, un+1 − un

)
The Cauchy-Schwartz inequality yields

||un+1 − un||ε0 ≤ (ε0 − ε)||∇‖(qn − qn−1)||.(40)

It is now sufficient to prove that the sequence (qn)n>0 converges. Thanks to Lemma 4,
it follows

qn+1 − qn = AI

(
qn − qn−1

)
(41)

for n ≥ 1, AI being the iteration operator defined by Eq. (21). The eigenvalues of AI

are real and non negative (see lemma 4). Moreover, the largest eigenvalue is equal
to 1 with the associated eigenfunctions belonging to G, the kernel of the operator
∆‖. Thanks to lemma 5, in particular Eq. (29), we conclude that qn − qn−1 does not
contain any non trivial function from G which concludes the proof.

Remark 7 (Non uniqueness of q). The stationary point (q̄, ū) of the iterative
method (16-17) is one of the solutions of the following problem: find (q, u) ∈ V × V
such that {

a⊥(u, v) + a‖(q, v) = (f, v) , ∀v ∈ V ,
a‖(u,w)− εa‖(q, w) = 0 , ∀w ∈ V .(42)

The above system does not admit a unique solution. Indeed, if (q, u) solves this prob-
lem, then (q + g, u) also does for any function g ∈ G. Therefore q is not uniquely
determined by Eqs. (42). The TFI method consists in the choice q = q̄. Note that
q̄ depends on the initial value q0 and is obtained as the stationary point of the well
posed set of equations (16-17).

2.4. A comparison with the Micro-Macro AP-schemes. The two field
iterated scheme bares some similarities with the Asymptotic Preserving scheme based
on Micro-Macro decomposition (MMAPP) proposed in [11]. Indeed, the MMAP
scheme couples Eqs. (32) and (34) but with a different choice for q and no iterative
process. The weak formulation of the MMAP scheme writes:

Find (q, u) ∈ V in × V such that{
a⊥(u, v) + a‖(q, v) = (f, v) , ∀v ∈ V ,
a‖(u,w)− εa‖(q, w) = 0 , ∀w ∈ V in .

V in = {v ∈ V : v = 0 on Γin} ,

(43)

Γin being the part of the boundary where b ·n > 0. Note that, from this formulation,
the two equations can be hardly decoupled to define an iterative process. Hence,
the MMAP scheme is solved at once for the two fields (u, q). The uniqueness of
q is strongly related to the assumption that all the field lines intersect the domain
boundary, hence the definition of V in. The MMAP method is therefore restricted to
anisotropy fields that do not contain closed lines. However, one can tackle this problem
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by introducing a stabilization operator [16, 15]) yielding the weak formulation of the
stabilized MMAP

Find (q, u) ∈ V × V such that{
a⊥(u, v) + a‖(q, v) = (f, v) , ∀v ∈ V ,
a‖(u,w)− εa‖(q, w) = σhk(q, w) , ∀w ∈ V .(44)

where σ and k are stabilization parameters chosen in order to match the scale of the
scheme approximation error. Precisely, k = 2 for P1-FEM and k = 3 for P2-FEM. The
difficulty here lies in the calibration of the stabilization parameters in order not to alter
the precision of the scheme and to preserve a moderate condition number of the system
matrix. The conditioning of the matrix for the discrete MMAP formulation depends
on 1/h4 and 1/(σh2+k) for the stabilized version [15]. It is therefore ε independent.

The method here introduced is well defined for all anisotropy topologies including
closed field lines. The matrix stemming from the discretization of the operator ∆ε0

is indeed invertible regardless of the anisotropy direction b. Moreover, the condi-
tion number of the two scalar systems are not only ε independent, but it also scales
more favorably, as 1/(ε0h

2), independently of the precision of the numerical method.
The two field iterated method may appear similar to the stabilized MMAP scheme.
However, at convergence this new formulation is completely equivalent to the original
set of equations with no condition on ε0. This is a crucial feature that allows to
choose ε0 in a large range of values. Contrariwise, this choice is tightly constrained
for the stabilization parameters and of course test case dependent. This new method
hence permits to overcome the limitations of the stabilization methods for high order
methods.

3. Numerical investigations.

3.1. Introduction. The goal of this section is to present some validation tests
for the proposed method. We study the finite element formulation of the problem in
different two dimensional settings, finite elements being usually a method of choice
when dealing with elliptic problems. We consider two frameworks. The first one is
a first order P1-FEM on unstructured triangular grids. The second one relies on a
Cartesian rectangular grid with a second order Q2-FEM discretization.

Three configurations are considered:
1. A rectangular domain with open field lines and oscillating anisotropy direc-

tions;
2. A ring shaped domain with closed circular field lines;
3. A rectangular domain with both open and closed lines.

The first test is performed with both P1 (unstructured grids) and Q2 (Cartesian Mesh)
finite elements. The second test case is carried out with P1-FEM and the last one
with Q2-FEM.

The iterative scheme presented herein relies on the iterative resolution of a mildly
anisotropic problem for both u and q. The discretization of such problems by FEM
may suffer from locking [3, 4]. We therefore propose to analyse how the locking effect
can be circumvented thanks to the choice of the numerical method as well as the value
of the parameter ε0. This later parameter defines the strength of the anisotropy in
the problem solved at each step of the iterative process. It is thus a key point in
parameterizing the efficiency of the numerical method.

Let us first focus on the finite element discretization of the iterative scheme.
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α = 0 α = 2, m = 1 α = 2, m = 10

Fig. 1. Test problem 1: Exact solution for three sets of parameters defining the anositopry
directions.

The finite element space Vh denotes either the P1 or the Q2 elements defined on a
discretization of the domain Ω with a mesh cell of typical size h. Let the homogeneous
Dirichlet boundary conditions on ΓD be enforced in the definition of Vh, i.e. Vh ⊂ V.
A discrete formulation of the scheme reads: find (q̄h, ūh) ∈ Vh × Vh, the stationary
point of the sequence (qn+1

h , un+1
h ) ∈ Vh × Vh, n ≥ 1, solution to

{
a‖(u

n+1
h , vh) + ε0a⊥(un+1

h , vh) = ε0(f, vh)− (ε0 − ε)a‖(qnh , vh), ∀vh ∈ Vh,
a‖(q

n+1
h , wh) + ε0a⊥(qn+1

h , wh) = (f, wh)− a⊥(un+1
h − εqnh , wh), ∀wh ∈ Vh,

(45)

In all the numerical investigations conducted in the sequel, the iterative method
(45) is initiated with q0

h = u0
h = 0. The manufactured solution method is implemented

in order to define the different setups. An analytic anisotropy direction is defined by
means of a vector field b. The analytic expression of the problem solution uε is used
together with that of b to compute the source term f accordingly to

f = −∆⊥u
ε − 1

ε
∆‖u

ε .

This expression is introduced in the system (45) to carry out the numerical approx-
imation (q̄h, ūh). The component ūh is thus compared against the exact analytic
expression of the problem solution to evaluate the effectiveness of this new numerical
method.

3.2. Test problem 1: Open field lines with oscillating anisotropy direc-
tions. Let Ω = [0, 1] × [0, 1] be the square computational domain. Let us consider
the anisotropy direction defined by

b =
B

|B|
, B =

(
α(2y − 1) cos(mπx) + π
παm(y2 − y) sin(mπx)

)
,(46)

where m/2 is the number of oscillation periods in the computational domain and α
its amplitude. For α = 0 this vector field is constant and aligned along the direction
of x. When α > 0 the field oscillates in the domain. The analytic solution of the
problem is given by

uε = sin
(
πy + α(y2 − y) cos(mπx)

)
+ ε cos (2πx) sin (πy) ,(47)

Three configurations will be investigated. A constant anisotropy direction aligned
the x-direction. This setup is defined by α = 0. An anisotropy direction slowly varying
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Fig. 2. Test Problem 1 (P1-FEM, unstructured mesh): Relative L2 (left) and H1 (right) errors
as functions of the iteration number, for an anisotropy direction aligned with one coordinate (α = 0)
and different ε0-values.

in the computational domain, parametrized by α = 2, m = 1. Finally an anisotropy
direction with fast oscillations, defined by α = 2, m = 10. For these computations,
the anisotropy ratio is set to ε = 10−15. Therefore the only variations of the problem
solution occur along the direction defined by b. The plots displayed on Fig. 1 relate
the solution as well as the anisotropy direction for the configurations precised above.

For these three anisotropies, the numerical method (45) is performed on 30 it-
erations to define the numerical approximation ūh carried out with different values
for the parameter ε0, on eight different meshes with h ranging from 1/10 to 1/1280.
The corresponding number of mesh vertices varies from 153 for the coarsest mesh to
approximately 2 · 106 for the most refined mesh.

P1-FEM, Unstructured triangular meshes. The relative L2 and H1 errors are
displayed on Figs. 2, 3 and 4 for the aligned, slowly and rapidly varying anisotropy
directions defined above.

For the aligned anisotropy direction (α = 0, see Fig. 2) and ε0 = 10−1 the
convergence of the iterative method in the L2 norm is obtained after at most five
iterations (for the finest mesh) and after at most three iterations in the H1-norm.
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Fig. 3. Test Problem 1 (P1-FEM, unstructured mesh): Relative L2 (left) and H1 (right) errors
as functions of the iteration number, for a slowly varying anisotropy direction (α = 2, m = 1) and
for different ε0-values.

For ε0 = 10−2 the convergence is even faster with two iterations being sufficient for
the H1-norm and three for the L2-norm. The results are however less precise than
for ε0 = 10−1. Moreover, for the coarsest meshes the divergence of the iterations is
observed. This is due to the locking phenomena, as explained in the next lines. This
effect is even more visible with ε0 = 10−3.

For the slowly variable direction of anisotropy (α = 2, m = 1, Fig. 3) the conver-
gence is slow for ε0 = 10−1. The stationary point can not be reached in 30 iterations
in the L2-norm for the most refined meshes. For intermediate and coarse meshes the
convergence is however obtained in less than 10 iterations. The locking is causing slow
divergence of the numerical solution for the coarsest mesh (h = 10−1). For ε0 = 10−2

the stationary point is reached in at most 3 iterations for both norms. Some locking
effects are manifested in small augmentation of the error in course of the iterations.
This is observed on the L2 norm evolution for the coarsest mesh and for all meshes
using the H1 norm. For ε0 = 10−3 the stationary point is obtained in just two iter-
ations for both norms. The precision is however worse compared to ε0 = 10−2 and
the locking causes the relative error to blow up for two coarsest meshes. For these
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Fig. 4. Test Problem 1 (P1-FEM, unstructured mesh): Relative L2 (left) and H1 (right) errors
as functions of the iteration number, for a rapidly varying anisotropy direction (α = 2, m = 10) for
different ε0-values.

computations, the norm of the numerical solution is converging towards zero. This
feature characterizes the locking.

In the most demanding test case with rapidly oscillating anisotropy direction
(α = 2, m = 10, Figure 4) the optimal value of ε0 is again 10−2: the stationary point
is thus obtained after two iterations in both norms. The same convergence rate is
obtained for ε0 = 10−3 but the numerical error is approximately ten times bigger
with this setting. The locking allows accurate computations only on the finest meshes
for this test case. For ε0 = 10−1 the convergence is very slow and the stationary point
is not obtained for fine meshes in 30 iterations.

Q2-FEM, Cartesian meshes. The results related to these computations are gath-
ered on Figs. 5–10. The use of Cartesian grids eliminates the locking phenomenon
for the anisotropy aligned with one coordinate (see Figs 5 and 6 related to α = 0).
The stationary point is reached in 8 iterations for ε0 = 10−1, in 4 for ε0 = 10−2, 3
for ε0 = 10−3 and 2 for ε0 = 10−4. The precision remains the same whatever the
values of ε0 for the H1 norm (see Fig. 6). An increase of the L2 error norm is ob-
served for the most refined meshes and the smallest ε0-value (10−4). One can indeed
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Fig. 5. Test Problem 1 (Q2-FEM, Cartesian grid): Relative L2 error as a function of the
iteration number for an anisotropy direction aligned with one coordinate (α = 0) and for different
ε0-values.

observe on Fig. 5 that the L2 error increases when the number of cells ranges from
320 × 320 (h = 0.003125) to 640 × 640 (h = 0.0015625) and then to 1280 × 1280
(h = 0.00078125). Similar conclusions hold true for the computations carried out
on the two most refined meshes with ε0 = 10−3. The rate of convergence is almost
independent of the mesh size. However more iterations are mandatory on the finest
meshes to converge the solution to the precision accessible on these grids.

This loss of precision is explained by the conditioning of the matrix (stemming
from the discretization of the operator ∆ε0), which is proportional to 1/ε0h

2. For the
most refined meshes and the smallest values of ε0, the condition number of this matrix
(computed by MUMPS [1, 2]) is estimated as large as 109. Therefore computing a
numerical approximation with a precision larger than 10−6 is out of reach. The
condition number estimated for ε0 = 10−1 is of the order of 106 which accounts for
the improved precision (10−9) obtained with this value of the parameter.

For the varying anisotropy directions the second order finite elements help to
prevent the locking. This is a feature documented in the literature [3, 4]. For the
slowly varying case (Figs. 7 and 8) the numerical solution converges even for the coarse
meshes except for the smallest value ε0 = 10−4. However, even in this case, no blow
up of the error is observed. For ε0 = 10−1 the stationary point is reached in up to 12
iterations for mesh sizes smaller than or equal to 80×80 (h ≤ 0.025) for the L2 norm.
For finer meshes the algorithm does not converge within 30 iterations in the L2 norm
(Fig. 7). In the H1 norm (see Fig. 8) the convergence is obtained for mesh sizes smaller
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Fig. 6. Test Problem 1 (Q2-FEM, Cartesian grid): Relative H1 error as a function of the
iteration number for an anisotropy direction aligned with one coordinate (α = 0) and for different
ε0-values.

than or equal to 320×320 (h ≤ 0.003125). The best performance for intermediate and
refined meshes is obtained for ε0-values in the range [10−4, 10−3]. The convergence
is thus obtained after three iterations only. For coarse meshes however some locking
effects are still observed with the deterioration of the precision, more apparent for the
smallest ε0-values.

When the anisotropy direction is varying rapidly in the computational domain
(Figs. 9 and 10), the locking is causing the blow up of the numerical error for coarse
meshes. Here also, the norm of the numerical approximation is observed to converge
towards zero. For intermediate and refined meshes, the convergence is observed for
all values of ε0. The convergence rate increases with the vanishing of ε0. The best
numerical precision is obtained for ε0 = 10−3.

Partial conclusions and comments. This first test case is intended to asses the
importance of the parameter ε0 and the robustness of the method with respect to the
choice of its value.

The convergence rate of the iterative method increases with the diminishing of
ε0. However the values of this parameter are submitted to certain constraints. For
low order polynomial representations, small values of ε0 produce the so-called locking
which destroys the accuracy of the approximation on the coarsest meshes, this effect
being more pronounced on unstructured grids. The locking is significantly mitigated
thanks to higher order polynomial representation, as reported by the literature [3, 4]
and demonstrated by the computations carried out on Cartesian meshes (since only a
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Fig. 7. Test Problem 1 (Q2-FEM, Cartesian grid): Relative L2 error for a slowly varying
anisotropy direction (α = 2, m = 1) and different ε0-values.

P1-FEM method is implemented on triangular meshes, this can not be illustrated on
triangular grids). The comparisons of the first and second order methods demonstrate
that the locking can be avoided thanks to the use of high order discretizations. This
effect remains only for the coarsest meshes with Q2-FEM. However this feature should
be put into perspective. Indeed coarse meshes do not contain enough points to resolve
accurately the variations of the anisotropy. Hence any numerical method can hardly
yield acceptable results. With high order methods (Q2-FEM), the iterative method
introduced in this paper is robust with respect to the choice of the parameter ε0. The
convergence is secured for the values of this parameter between 10−3 and 10−2 for all
the computations carried out in the frame of this first test case. With ε0 = 10−4 the
convergence is obtained in less than 10 iterations for all the investigations conducted.
However for computations carried on the most refined meshes with this small value
of ε0, the precision of the method is degraded. This is due to the deterioration of
the system matrix conditioning, proportional to 1/(ε0h

2). This weakness shall be
overcome thanks to the use of preconditioners to offset the deterioration of the matrix
condition number for large meshes. These investigations are deferred to future works.
Note that the results reported in the precedent figures are related to computations
carrying out anisotropy strengths as large as 1015. No significant differences have
been observed over the range of ε-values in [10−20, 1] regarding the method precision,
convergence properties and optimal choice of the parameter ε0. This is illustrated on
Figure 11 presenting the L2 and H1 errors as functions of the anisotropy strength
ε as well as the number of iterations required to convergence. These computations
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Fig. 8. Test Problem 1 (Q2-FEM, Cartesian grid): Relative H1 error for a slowly varying
anisotropy direction (α = 2, m = 1) and different ε0-values.

are related to the test problem 1, with mildly varying anisotropy (α = 2, m = 1)
carried out on a mesh with 3202 points with the Q2-FEM and for ε0 = 10−3. The
method is observed to be precise irrespectively to the anisotropy strength on the range
ε ∈ [10−15, 1].

Comparisons with MMAP scheme. The MMAP scheme, introduced in [11], con-
sists in solving the two fields (u, q) problem (42). In this system, the uniqueness of
the auxiliary variable q is provided by demanding additionally that q = 0 on the part
of the boundary where the field lines enter the computational domain (b · n > 0).

A comparison of the precision of the two field iterative method and the MMAP
method is reported in Tab. 1. Note that the conditioning of the matrix associated with

α = 0 α = 2, m = 1 α = 2, m = 10

method L2 # H1 # L2 # H1 # L2 # H1 #
MMAP 9.68 10−8 8.52 10−5 1.47 10−9 1.46 10−6 4.31 10−7 1.36 10−4

ε0 = 10−1 6.85 10−10 8 8.98 10−7 6 4.11 10−6 - 2.86 10−5 - 1.72 10−3 - 4.84 10−3 -
ε0 = 10−2 9.36 10−10 5 8.98 10−7 3 6.28 10−8 - 1.74 10−6 - 1.19 10−5 - 1.52 10−4 -
ε0 = 10−3 7.11 10−9 3 8.98 10−7 3 1.23 10−9 12 1.42 10−6 4 1.81 10−6 5 1.36 10−4 3
ε0 = 10−4 1.23 10−7 2 9.07 10−7 2 1.74 10−9 3 1.43 10−6 2 1.78 10−5 2 1.38 10−4 2

Table 1
Test Problem 1: Comparisons of the precision of the MMAP and the iterative method for a Q2-

FEM discretization on a mesh with 1280 × 1280 points (h = 0.00078125). The number of iterations
required to obtain the smallest relative error in L2 and H1 norms is reported for the different ε0-
values parameterizing the iterative method (“-” meaning that the method has not converged in 30
iterations).
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Fig. 9. Test Problem 1 (Q2-FEM, Cartesian grid): Relative L2 error for a rapidly varying
anisotropy direction (α = 2, m = 10) and different ε0-values.

the MMAP scheme is proportional to 1/h4. It is estimated as large as 1012 for the
aligned (α = 0) and rapidly varying anisotropy directions (α = 2,m = 10) and 1010

for slowly varying directions (α = 2,m = 1) for the most refined mesh considered
so far (1280 × 1280, h = 0.00078125). The large matrix conditioning deteriorates
the precision of the method for the aligned case for the finest mesh and the optimal
convergence rate is lost. That explains the fact that the iterative scheme is 100 more
precise than the MMAP method in this configuration. For less refined meshes, the
MMAP scheme and the iterative scheme with ε0 ∼ 10−3 yield similar precision.

The numerical efficiency of the two methods are now compared. It may seem at
first glance that the iterative scheme is more time consuming that the MMAP method
as it requires several resolutions of a linear system. However, the system related to
the iterative scheme is twice as small and hence its resolution is faster and requires
less memory in comparison to the MMAP scheme. Moreover the iteration number
to convergence is small when ε0 is close to the optimal range of values. In Tab. 2 a
comparison of the computational time for both methods is proposed. The same sparse
direct solver, namely the MUMPS package [1, 2] is used to implement the LU matrix
factorization and solve the linear systems involved in any method. These results show
that the MMAP method is approximately twice as fast on coarse and intermediate
meshes. On the 640×640 mesh it is the iterative scheme that performs better. Finally,
for the finest mesh (1280 × 1280), the difference is clearly in favour of the iterative
scheme which turns to be seven times faster. The computational cost required for the
resolution of a linear system twice as large explains the poor efficiency of the MMAP
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Fig. 10. Test Problem 1 (Q2-FEM, Cartesian grid): Relative H1 error for a rapidly varying
anisotropy direction (α = 2, m = 10) and different ε0-values.

compared to the iterative method for the largest mesh. Solving few times a linear
system with a small size is more efficient than solving once a large linear system.

Mesh
iterative scheme

MMAP
total per iter. iter. to conv. time to conv.

102 0.181s 0.006s 2 0.012s 0.009s
202 0.477s 0.016s 2 0.032s 0.018s
402 1.992s 0.066s 2 0.132s 0.063s
802 8.051s 0.268s 2 0.536s 0.282s
1602 36.07s 1.202s 2 2.404s 1.121s
3202 144s 4.8s 2 9.6s 5.5s
6402 9m42s 19.4s 3 58.2s 1m42s
12802 44m16s 1m28s 5 7m20s 52m28s

Table 2
Comparison of the runtime of the iterative scheme (total runtime for 30 iterations, time per it-

eration, number of iterations for convergence and time to convergence) with the runtime obtained for
the MMAP scheme for Q2-FEM on different mesh. Runtimes obtained on the MacBook Pro laptop
equipped with a 3.1 GHz Intel Core i7 dual core processor, 16GB of RAM and a Solid State Drive.
The code is written in fortran compiled with gfortran-5.4.0 with -Ofast -march=corei7 optimization
flags.

3.3. Test problem 2 — diffusion in a ring. This test case reproduces the
framework proposed in [7] and [17] investigating anisotropic diffusion problems in a
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Fig. 11. Test Problem 1 (Q2-FEM, cartesian mesh): Relative L2 (left) and H1 (center) errors
as well as the number of iterations to convergence in the L2 norm (left) as functions of the anisotropy
strength ε, for a slowly varying anisotropy direction (α = 2, m = 1) for ε0 = 10−3 and h = 1/320.

Torus. It consists in simulating the diffusion in a circular domain, a context repre-
sentative of magetized plasma simulation for Tokamaks. The computational domain
is defined by Ω = {(x, y) ∈ R×R|0.25 ≤ x2 + y2 ≤ 1} and the anisotropy direction is
given by the field b provided in polar coordinates (r, θ):

b =

(
cos θ
− sin θ

)
.(48)

The analytic solution of the original problem, as represented on Fig. 12, is given by

uε = − sin(2πr) + ε sin(2πr) cos θ .(49)

These simulations are only performed on unstructured meshes (triangles and P1-
FEM) with ε = 10−15 defining a severe anisotropy. It is important to notice, that
standard discretization of this problem, although much more elaborated than the one
implemented herein (see for instance [7, 17, 18]) cannot handle anisotropy strengthes
ε−1 larger than ∼ 104, this ratio being limited to 10−2 in [7, 18]. It is important also
to point out that the elliptic problem addressed in the present paper is much more
demanding, from the numerical point of view, than the diffusion problem considered
by other authors. Indeed the discretization of the time derivative of the solution intro-
duces a mass matrix offsetting partially the anisotropy. This effect is more significant
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Fig. 12. Exact solution for the test problem 2.

than the time step values are small. This artefact is not present in the system at
hand in the present work, addressing the stationary problem. This guarantees that
the numerical parameters can be set accordingly to the physics of interest rather than
to prevent the deterioration of the matrix conditioning. The convergence results of
the two field iterated method are presented in Fig. 13.

The scheme behaves well for this test case too. The conclusions drawn from the
preceding investigations hold true for this setup. The solution converges rapidly to
the stationary point for ε0 = 10−2 and ε0 = 10−3. For ε0 = 10−1 the convergence is
very slow and the stationary point is reached for the coarsest meshes only. The best
precision is obtained for ε0 = 10−2.

3.4. Test problem 3 — magnetic islands. The last test case is also related
to the physics describing hot plasmas in Tokamaks. The main difficulty of this test
case is the presence of two so-called magnetic islands. They consist of closed magnetic
field lines in some specific regions of the domain. Some of the magnetic field lines
are open and reconnect the boundaries of the domain, the other being closed. In the
sequel, the typical size of these structures will be parametrized by a (in our simulations
a = 0.05). The computational domain is square Ω = [0, 1]× [0, 1]. If B represents the
local magnetic field, b = B/|B| is the vector field defining the direction of anisotropy
with

b =
B

|B|
, B =

(
− cos(πy)

4a sin(4πx)

)
.(50)

The the analytical solution is either given by

uε = sin (sin(πy)− a cos(4πx)) + ε cos(2πx) sin(2πy),(51)

or

uε = sin (10 (sin(πy)− a cos(4πx))) + ε cos(2πx) sin(10πy) .(52)

The first solution is mildly oscillating in the domain and while the second defines a
highly oscillatory solution, which is challenging for a numerical method to capture.
The analytical solutions as well as the anisotropy direction are presented on Fig. 14.
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Fig. 13. Test problem 2: Relative L2 (left) and H1 (right) error norms for different values of
ε0 and a P1-FEM on different mesh resolutions.

Fig. 14. Test problem 3: Exact solutions as defined by Eqs. (51) (left) and (52) (right) and
anisotropy direction.
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The source term of the problem is analytically computed according to the pre-
ceding definitions of the anisotropy direction and solutions, in order to implement the
manufactured solution technique. However, the magnetic field data are discrete and
carried out on the same mesh. In contrast the method proposed in [22] relies on an
analytic magnetic field in order to perform integrations along the field lines with a
resolution much greater than that of the mesh.
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Fig. 15. Test problem 3: Relative L2 (left) and H1 (right) errors as functions of the number
of iterations for the slowly oscillating solution carried out with a Q2-FEM on several meshes and
different values of ε0.

The numerical convergence of the iterative scheme for intermediate and refined
meshes and values of ε0 equal to 10−3 and 10−4 is presented in Figs. 15 and 16. With
the largest value of ε0 the convergence is very slow and for coarse meshes the locking
prevents the convergence. Even on fine meshes the scheme has not converged in 30
iterations in both slowly and rapidly oscilating variants. We did not observe any
significant difference in the convergence speed for both setups. Except for the two
coarsest meshes, the convergence is observed for the computations carried out with
the smallest value of ε0, with a rate hardly dependent of the mesh size.

4. Conclusions. In this paper a new Asymptotic-Preserving scheme is intro-
duced for the efficient resolution of anisotropic elliptic equations. This method con-
sists in iterating the resolution of two one field problems which require the solution
of the same linear system. This system is issued from the discretization of a mildly
anisotropic problem, parameterized by a numerical parameter ε0 � ε, where ε−1 is
the strength of the anisotropy. The advantages of this new scheme are three folds.
First the method can address any topology of anisotropies including closed field lines
with no specific requirement on the grid carrying out either the unknown or the
magnetic field. Second, the condition number of the linear systems solved for the it-
erated method scales better than that of other asymptotic-preserving (Micro-Macro)
methods. Third, the computational efficiency of the method may be substantially
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Fig. 16. Test problem 3: Relative L2 (left) and H1 (right) errors as functions of the number
of iterations for the rapidly oscillating solution carried out with a Q2-FEM on several meshes and
different values of ε0.

improved with respect to these later methods. This is already demonstrated for large
meshes in two dimensional frameworks. More substantial gains can be anticipated
for three dimensional computations since the linear systems at hand are issued from
classical elliptic problems for which very efficient solvers can be used. This issue will
be investigated in subsequent works. The method already appears to be robust with
respect to the choice of ε0 and do not suffer from the locking effect provided that
high order methods and meshes resolving the magnetic field variations are used. The
convergence of the iterations is improved for small ε0-values, however at the price of
a deterioration of the matrix conditioning. Future works will also be devoted to the
construction of preconditioners, in order to offset the deterioration of the matrix con-
ditioning when increasing the anisotropy of the inner problems. The extension of the
method to anisotropies with varying strengths is also an issue that will be investigated
in subsequent works.
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