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ABSTRACT The recent evolution of mobile communication systems toward a 5G network is associated
with the search for new types of non-orthogonal modulations such as Sparse Code Multiple Access
(SCMA). Such modulations are proposed in response to demands for increasing the number of connected
users. SCMA is a non-orthogonal multiple access technique that offers improved Bit Error Rate (BER)
performance and higher spectral efficiency than other comparable techniques, but these improvements come
at the cost of complex decoders. There are many challenges in designing near-optimum high throughput
SCMA decoders. This paper explores means to enhance the performance of SCMA decoders. To achieve
this goal, various improvements to the MPA algorithms are proposed. They notably aim at adapting SCMA
decoding to the Single Instruction Multiple Data (SIMD) paradigm. An approximate modeling of noise is
performed to reduce the complexity of floating-point calculations. The effects of Forward Error Corrections
(FEC) such as polar, turbo and LDPC codes, as well as different ways of accessing memory and improving
power efficiency of modified MPAs are investigated. The results show that the throughput of a SCMA
decoder can be increased by 3.1 to 21 times when compared to the original MPA on different computing
platforms using the suggested improvements.

INDEX TERMS 5G, BER, exponential estimations, Intel Advanced Vector Extensions (AVX), iterative
multi-user detection, Knights Corner Instruction (KNCI), log-MPA, Maximum Likelihood (ML), Message
Passing Algorithm (MPA), power efficiency, SCMA, Single Instruction Multiple Data (SIMD), Streaming
SIMD Extension (SSE).

I. INTRODUCTION

Non-orthogonal Multiple Access (NOMA) mechanisms are
investigated as means to improve the fifth-generation mobile
communication systems (5G) [1] to realize massive connec-
tivity and to reduce bit error rates. Sparse Code Multiple
Access (SCMA) is a NOMA mechanism that offers better bit
error rate performance and higher spectral efficiency, while
the sparsity of the codebooks ensures lower complexity of
decoding compared to other non-orthogonal modulations [2].
SCMA is a promising candidate for 5G communication
systems since it provides up to 300% more connectivity
by spreading information of each user’s codebook over sets
of shared OFDM frequency tones [3]. According to the
NGMN white paper [4], 5G is seriously considered to fulfill
more diverse scenarios compared to 4G. Applications can be
broadband support in dense areas, low latency connectivity

for Augmented Reality (AR) and reliable communication
for intelligent industrial controls, Internet of Things (IoT) or
Internet of Mission Critical Things (IoMCT). Unfortunately,
massive connectivity and spectral efficiency of SCMA come
at the cost of high complexity in the decoder, making the
design of high throughput and low complexity decoders a
challenge for systems exploiting SCMA [5].

Exploiting sparsity of the codebooks, Belief Propagation
(BP) or Message Passing Algorithm (MPA) decoders were
introduced to achieve near Maximum Likelihood perfor-
mance with lower complexity [6]. Substantial research works
were conducted on improving SCMA decoders to satisfy the
uplink requirements of 5G. Indeed, MPA is populated with
many exponential computations to calculate the extrinsic
information and probabilities of the received signal. This
is based on modeling the channel noise with a Gaussian
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probability density function (PDF). A classical improvement
to this bottleneck is the computation of extrinsic information
in the logarithm domain, which led to develop the log-MPA
decoder. In [7], fixed point and floating-point implementa-
tions of the MPA and log-MPA on FPGA are studied. The
bit error rate performance and complexity of the MPA and
log-MPA are compared and it is concluded that using log-
MPA with 4 message passing iterations achieves a good
tradeoff between performance and complexity. In [8], several
complexity reduction techniques are proposed to increase the
system throughput. These techniques are 1) SCMA codebook
design with minimum number of projections, 2) clustered
MPA (CMPA) which defines sub-graphs in MPA and runs
MPA on them, and 3) selected exponential computations.
In [9] an adaptive Gaussian approximation is used to unselect
the edges of the graph with smaller modulus. In addition,
mean and variance feedbacks are employed to compensate in-
formation loss caused by unselected edges. User’s codebooks
play an important role for fast convergence of the MPA or
log-MPA. As investigated in [10]–[12], revisiting codebook
design can help to reduce the number of iterations needed
for MPA decoding of SCMA. In [13], an improved MPA is
proposed which eliminates determined user codewords after
certain number of iterations and continue the iterations for
undetermined user’s codewords. Similarly, in [14], a belief
threshold is set to choose the most reliable edge probabilities
and continue the iterations for the others. A Shuffled MPA
(S-MPA) is introduced in [15]. S-MPA is based on shuffling
the messages between function nodes and variable nodes. As
a result, the convergence rate is accelerated. A Monte Carlo
Markov Chain Method is proposed in [16] to decode SCMA
signals and sphere decoding is also explored in [17], [18] for
SCMA receiver design.

The main difference between this work and previously
cited works is that the present paper combines an ana-
lytic view of MPA complexity with hardware and resource
aware programming, exploiting hardware features available
in general purpose processors (GPPs). The SCMA decoding
algorithms are revised in light of the needs of Cloud Radio
Access Networks (C-RANs) and to take full advantage of
key hardware features available in GPPs such as their SIMD
engine. In the early 2000s, the performance of many pro-
cessors improved significantly due to clock rate increases.
This increase of performance needed very minimal if any
programming effort, however the drawbacks of high clock
rate was more power and energy consumption, overheating
of processors, leakage currents and signal integrity problems.
These disadvantages led designers to follow new paradigms
such as thread-level and data-level parallelisms that provide
good performance at lower clock speeds. Another challenge
was data access efficiency in cache and RAM for perfor-
mance critical algorithms. Higher performance also came
from improved cache access efficiency of heterogeneous
processors and parallel access to the L1 cache through vector-
ized instructions. Therefore, complicated and control heavy
algorithms such as MPA have to be adapted for efficient exe-

cution on heterogeneous architectures and their exploitable
parallelism must be expressed at every level of the code,
whether in arithmetic or memory access instructions. Par-
ticularly, various Single Instruction Multiple Data (SIMD)
extensions and thread-level parallelism are used to increase
the throughput of MPA decoding on various platforms.

This paper reports on two contributions that can be useful
for any variation of the aforementioned MPA. First, MPA and
log-MPA have been adapted to use SIMD extensions lever-
aging the available data-level parallelism. The algorithms
are revised to have aligned and contiguous access to mem-
ory, which is crucial to achieve high memory throughput.
Various SIMD instruction set architectures (ISAs) such as
Advanced Vector Extensions (AVX), Streaming SIMD Ex-
tension (SSE), Knights Corner Instruction (KNCI) and ARM
NEON are used to enhance the performance of various parts
of the algorithm. Multi-threaded programming technique and
power efficiency are also studied in this paper.

Second, efforts have been made to reduce the high dy-
namic ranges and high storage burden that are induced
by the numerous calculations of the exponential function
embedded in MPA, which is one of its main points of
congestion. To eliminate calculations of the exponentials in
the MPA, this paper uses approximate modeling of noise.
Indeed, a Gaussian Probability Density Function (PDF) is
estimated with sub-optimal, bell shaped, polynomial PDFs.
Using polynomial PDFs enables a significant throughput
improvement with a very small degradation on the bit error
rate performance. In addition, this technique enables to use
vectorized instructions for the calculation of the probabilities,
as opposed to log-MPA. Details will be explained in the
sequel. The impacts of turbo codes [19], polar codes [20] and
LDPC codes [21] are investigated.

In this paper, symbols B, N, Z, R and C denote binary,
natural, integer, real and complex numbers. Scalar, vector
and matrix are presented as x, x, X respectively. The n’th
element of a vector denoted by xn and Xn,m is the element
of n’th row and m’th column of matrix X . Notation diag(x)
shows a diagonal matrix where its n’th diagonal element is
xn. In addition, the transpose of a matrix is expressed as
XT . The paper is organized as follows, Section II introduces
the SCMA algorithm. Maximum Likelihood, MPA and log-
MPA decoding methods are explained in this section as
a background to this research. Section III elaborates on
proposed improvements such as vectorizing the algorithm,
exponential estimations, contiguous access to memory and
other hardware oriented techniques. Section IV explores the
bit error rate performance as well as the throughput, the
latency, the power consumption, and the energy efficiency
of the proposed MPA and log-MPA implementations. Some
profiling metrics are given to better understand the results.
Section V is dedicated to study the effects of suggested tech-
niques on block error rate after channel coding. Finally, the
main findings of this research are summarized in Section VI.
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FIGURE 1: a) SCMA encoder with 6 users (layers) and 4 physical resources, b) SCMA uplink chain with channel coding, c)
Factor graph representation of a decoder, d) Message Passing Algorithm based on Bayesian factor graph: (I) Resource to user
message, (II) Guess swap at each user and user to resource message, (III) Final guess at each user.

II. BACKGROUND

A. OVERVIEW OF THE SCMA SYSTEM MODEL

An SCMA encoder with J users (layers) and K physical
resources is a function that maps a binary stream of data
to K-dimensional complex constellations f : Blog2(M) →
X, x = f(b) where X ⊂ Ck. The K-dimensional complex
codeword x is a sparse vector with N < K non-zero entries.
Each layer j = 1, ..., J has its own codebook to generate
the desired codeword according to the binary input stream.
Fig. 1 shows SCMA uplink chain with J = 6, K = 4
and N = 2. SCMA codewords are spread over K physical
resources, such as OFDMA tones. Fig. 1a shows that in the
multiplexed scheme of SCMA, all chosen codewords of the
J layers are added together after being multiplied by the
channel coefficient hj . Then, the entire uplink chain is shown
in Fig. 1b. The output of the SCMA encoder is affected by the
white additive noise n.

y =

J∑
j=1

diag(hj)xj + n, (1)

where xj = (x1, ..., xKj)
T and hj = (h1, ..., hKj)

T are
respectively codeword and channel coefficients of layer j.

B. SCMA DETECTION SCHEMES

1) Maximum Likelihood

For an arbitrary codeword, the optimum decision, i.e. the
one that minimizes the likelihood of transmission errors after
decoding, is the one resulting from the Maximum Likelihood
(ML) estimation, which can be described as:

x̂ML = arg min
c∈X

||y − c||2, (2)

given the received codeword. In (2), the soft outputs x̂
are also called Log-Likelihood Ratios (LLRs) that can be
calculated with the following equation:

LLRx = ln

(∑
C∈L0

x
P(y|c)∑

C∈L1
x

P(y|c)

)
, (3)

where LLRx is the log likelihood ratio of bit x obtained
from codeword x̂. This codeword comes from L1

x the set of
codewords in which bit x is 1 and L0

x the set of codewords
in which bit x is 0. The probability function P(y|c) can
be expressed as in (4) when a signal is transmitted over an
additive white Gaussian channel with σ2 variance:

P(y|c) =
1√
2πσ

exp

(
− ||y − c||2

2σ2

)
. (4)

Although the ML method provides the best guess for x̂ML,
performing the computation with this method requires unac-
ceptable complexity in real applications. In the case of six
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users and codebooks matrices size 4 × 4 as in Fig. 1a, the
calculation of the soft output for each bit in (4) needs 4096
exponential function computations, which is unacceptable.
Nevertheless, in this article the result of this method is used
to compare with practical methods to characterize the BER
performance degradation of MPA and log-MPA.

2) Message Passing Algorithm (MPA)
Fig. 1c shows a Bayesian factor graph representation of an
MPA decoder with six users and four physical resources.
Thanks to sparsity of the codebooks, exactly three users
collide in each physical resource. There are four possible
codewords for each of the three connected user’s codebooks
which gives 64 possible combined codewords in each phys-
ical resource. In the first step of the MPA, the 64 distances
between each possible combined codewords and the actual
received codeword are calculated.

dRESβ(m,H) = ||yβ −
∑

hl,muxl,mu ||
l⊂ζ,mu∈{1,...,K}

, (5)

ζ is the set of users connected to resource β and the con-
sidered codeword is denoted as m. For instance, (5) can be
re-written for resource 4 as:

dRES4(m2,m4,m6,h2,h4,h5) =

||y4 −
(
h2x2(m2) + (h4x4(m4) + (h5x5(m5)

)
||

m2,4,6=1,2,3,4

. (6)

In which m2, m4, m5 indicate the different codewords for
users 5, 4, and 2 in (6). Assuming perfect channel estima-
tion and Gaussian noise, these Euclidean distances can be
expressed as probabilities using (7):

Ψ(dRESβ) = exp

(
−
d2RESβ

2σ2

)
. (7)

After calculating the residual probability of each codeword
with (7), iterative MPA starts exchanging beliefs (probabil-
ities) on possible received codewords among the users and
resources nodes of the factor-graph. According to Fig. 1d(I),
a message from resources to users has been defined to con-
tain extrinsic information of two other connected users. For
instance, a message from resource 4 to user 2 containing the
probability information of codeword i can be expressed as:

µRES4→UE2(i) =

4∑
j=1

4∑
i=1

Ψ
(
dRES4(i, j, k,H)

)
×µUE4→RES4(j)× µUE5→RES4(k).

(8)

As shown in Fig. 1d(II) there are only two resources con-
nected to each user. A message from a user to a resource is a
normalized guess swap at the user node:

µUE3→RES1(i) =
µRES3→UE3(i)∑
i µRES3→UE3(i)

, (9)

message passing between users and resources (see (8) and
(9)) will be repeated three to eight times to reach the desired
decoding performance. The final belief at each user B (i) is

the multiplication of all incoming messages as illustrated in
Fig. 1d(III) and (10) for UE4 and codeword i. Finally, (11) is
used to calculate soft outputs for bit bx:

B3(i) = µRES1→UE3(i)× µRES3→UE3(i), (10)

LLRx = ln

(
P(y|bx = 0)

P(y|bx = 1)

)

= ln

(∑
mBm(i) when bx=0∑
mBm(i) when bx=1

)
.

(11)

3) Log-MAP
Since calculation of exponentials in (7) requires relatively
high computational effort, changing the algorithm to log
domain using the Jacobi formula (12) is a classical improve-
ment of MPA:

ln

(
N∑
i−1

exp(fi)

)
≈ max{f1, f2, ..., fN} (12)

using Jacobi formula, (8) can be reduced to:

µRES1→UE5(i) = max

(
− d2RES1(i, j, k,H)

2σ2

)
j,k=1,...,4

+µUE2→RES1(j) + µUE3→RES1(k),

(13)

due to elimination of exponential’s high dynamic ranges,
there is no need to normalize the guess swap and (9) will
be:

µUE3→RES1(i) = µRES3→UE3(i). (14)

The rest of the algorithm can be expressed as follows:

B3(i) = µRES3→UE3(i) + µRES1→UE3(i), (15)

LLRx = max
i

(Bm(i) when bx=0)−max
i

(Bm(i) when bx=1).
(16)

III. PROPOSED IMPROVEMENTS
Besides methodical improvements of the MPA such as log-
MPA, hardware oriented improvements are important to take
full benefit of C-RAN servers capabilities. Since MPA and
log-MPA are control heavy algorithms, mishandling of data
can induce huge performance losses. This section explores
how MPA can be reformulated: 1) to improve data locality in
cache and to reduce cache misses and branch mispredictions
2) to reorder the data paths in order to help exploiting data-
level parallelism at each step of the MPA and log-MPA algo-
rithms and 3) to exploit approximated modeling of additive
white Gaussian noise in order to eliminate exponential cal-
culations and to drastically reduce the number of instructions
for SSE, NEON, AVX and KNCI ISAs.

A. FLATTENING MATRICES TO REDUCE CACHE
MISSES AND BRANCH MISSES
Considering (6) and (7), there are 64 calculations of distances
and probabilities for each resource (256 for all resources).
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Using a multidimensional array (4×4×4) should be avoided,
because it typically causes bad data locality, which leads to an
increased number of cache misses. These misses negatively
affect the throughput, and this is significant, since this pro-
cess must be repeated in the decoder for each received 12-bit
block of data. Flattening a d-dimensional array to a vector
using (17) is appropriate to prevent cache misses and improve
the spatial locality of data. This is done with the help of an
index defined as:

index =

d∑
i=1

(
d∏

j=i+1

Nj

)
ni. (17)

Where Nj is the size of the jth dimension of the array and
ni is the location of a target element in that dimension.
Improving data locality with a stride of a single floating-point
number in each element makes it easier for the processor to
have aligned and contiguous accesses to the memory through
SIMD ISA. Utilizing SIMD instructions helps to reduce the
total number of mispredicted branches in the algorithm. Con-
tiguous accesses to the L1 cache are performed by chunks of
128-bit, 256-bit or 512-bit. It reduces the number of iterations
in the for-loops and consequently it reduces the number of
branches. On the other hand, for a vector of sixty four 32-bit
floating-point numbers, 64 iterations are needed in the scalar
mode, while only 16, 8 or 4 iterations are required in the
vectorized modes using respectively SSE (or NEON), AVX
or KNCI ISAs.

B. ADAPTING THE ALGORITHMS TO IMPROVE
DATA-LEVEL PARALLELISM
SSE, NEON, AVX and KNCI ISAs handle SIMD opera-
tions [22]. KNCI and AVX use 512-bit and 256-bit registers,
while SSE and NEON use 128-bit registers. For instance,
an AVX operation can process eight 32-bit floating-point
numbers simultaneously. The AVX instructions also provide
high-performance loads and stores to the cache memory
due to data vectorization. Flattening matrices to vectors is
a prerequisite to enable AVX contiguous accesses to the
memory. Vectorized instructions such as AVX are accessible
in C++ through intrinsic functions. An intrinsic is a function
that directly maps to an assembly instructions (for some rare
exceptions it can be more than one instruction). Nowadays,
AVX units use sixteen 256-bit YMM registers and a 32-
bit MXCSR control register to handle vectors of eight 32-
bit or four 64-bit floating-point numbers. The AVX ISA
allows to perform SSE instructions using the lower 128-bit
lane of the YMM registers. For MPA, the SIMD instructions
are used to 1) compute the complex norm ||.|| in (5) and
(6), 2) calculate the exponentials in (7), 3) perform users to
resources messaging and final guesses at each user.

SIMD Computation of Complex Norms
Equations (5) and (6) use a complex norm function ||.||,
it can be optimized by using SIMD instructions. There
are two ways to perform this computation: Fig. 2a depicts
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2 22 22 22 2
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FIGURE 2: Complex norm AVX algorithm using a) Array of
Structures (AoS), b) Structure of Arrays (SoA).

how to implement the norm function using an Array of
Structures (AoS) for complex numbers. In this method,
the complex numbers are represented as two consecutive
floating-point numbers. The implementation with AoS uses
six intrinsic functions: one load (_mm256_loadu_ps),
one store (_mm256_storeu_ps), one multiplication
(_mm256_mul_ps), one permutation of the lanes
(_mm256_permute2f128_ps), one horizontal addition
(_mm256_hadd_ps) and one extraction of the highest
lane of the AVX register (_mm256_extractf128_ps).
Fig. 2b sketches the computation of the complex
norm using a Structure of Array (SoA) data lay-
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vec
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FIGURE 3: a) Vectorized Exponentials (N0 = 2σ2), b) Vector-
ized calculation of final guess at user 4.

out. This implementation also uses six intrinsic func-
tions: two loads (_mm256_loadu_ps), one store
(_mm256_storeu_ps), two standard multiplications
(_mm256_mul_ps), one addition (_mm256_add_ps).

Our experiments demonstrated that these two methods
have similar performances, however we used the Structure of
Arrays (SoA) since it is 1) easier to port for the ISAs that lack
from shuffle instructions and 2) trivial to extend for different
register lengths.

SIMD Computation of Exponential
To speedup the computational time of the exponentials used
in (7), the MIPP wrapper [23] has been used. MIPP proposes
a vectorized implementation of the exponential based on a se-
ries expansion. Many intrinsic functions are encapsulated to
compute the exponential. MIPP also allows to write portable
intrinsic codes. A single SIMD code is written for multiple
ISAs such as SSE, NEON, AVX, AVX512 and KNCI thanks
to the meta-programming techniques.

The flattened complex and normalized numbers are cal-
culated as shown in Fig. 2a and Fig. 2b to produce the
preliminary values used to compute the probabilities. Fig. 3a
illustrates the full process on a vector of eight floating-

point numbers. First the values are loaded into the YMM
registers, then they are multiplied by −1/2σ2 and finally the
exponential function is performed according to (7).

SIMD Message Passing
Some remaining parts of the MPA can be vectorized too.
Especially, the guess swaps and the computation of the final
guesses at each user node can be vectorized using SSE
instructions. Fig. 3b shows the computation of final guesses
for user 4. There are four messages from a resource to a
user containing the probabilities of four different codewords,
which are the elements of the SSE vectors. According to
Fig. 3b these vectors of probabilities are loaded into SSE,
NEON or the lowest lane of the AVX registers.

C. ESTIMATED-MPA (E-MPA)
Computation of the exponentials in (7) is one of the most
important bottlenecks of the MPA algorithm. It is possible
to further accelerate the computation by using proper esti-
mations. The exact exponential computation is not essential
to produce a satisfying estimation in the MPA algorithms.
Considering that (7) represents a Gaussian PDF, it can be
replaced by sub-optimal bell-shaped polynomial distributions
to model the noise. It will be shown in Section IV-B that using
a polynomial estimation can increase the throughput while
leading to marginal bit error rate degradation after the MPA
decoding. However, these estimated probabilities cause small
degradations of the block error rate (BLER) performance
after the channel decoding (cf. Section V). The proposed PDF
must satisfy two conditions to be valid: 1) it must be positive
and lower bounded at zero, 2) its integral over (−∞,∞) must
be equal to 1. The following function is suggested to estimate
the exponentials:

Ψ
′

dRESβ
=

2/π

2σ2 + 4d4RESβ
. (18)

The computation of Ψ
′

is faster than the original Ψ [24].
The probabilities produced using (7) and (18) are normalized
according to (9). Furthermore, the numerator 2/π does not
play an important role in MPA and can be uniformly elimi-
nated from all calculations to reduce the computational effort.
Thus,

Ψ
′

dRESβ
≈ 1

2σ2 + 4d4RESβ
, (19)

can be used as a systematic replacement to the vectorized
exponential MIPP function used in Fig. 3a. It reduces the
overall number of instructions to three intrinsic functions :
two multiplications (_mm256_mul_ps) and one addition
(_mm256_add_ps).

D. ACCURACY OF FLOATING-POINT COMPUTATIONS
The finite precision of floating-point calculations induces
losses in the results. Thus, technical standards such as
IEEE 754 define rounding rules, precision of calculations,
exception handling and underflow behavior. However, the
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MPA delivers approaching bit error rate results with less
precise floating-point models. For instance, in the GNU
compiler, -Ofast is a high-level compiler option which in-
cludes fast math libraries to handle floating-point calculations
(-ffast-math). The compiler uses various mathematical
simplifications as explained in [25] and uses approximated
libraries for the division and the square root functions. The
compiler also forces the value to zero in the case of an
underflow. Using -Ofast can improve the throughput of the
MPA algorithm as will be shown in Section IV.

In this work, other well-known optimization techniques,
such as loops unrolling, using references instead of pointers,
avoiding type conversions, preferring prefixed operators, and
functions inlining have been used to enhance the throughput
of the various message passing algorithms.

IV. PERFORMANCE ANALYSIS
In this section, the effects of the various optimizations con-
sidered in Section III are investigated. A key concern is to
ensure that the decoding error performance is not affected
by the execution time improvements, particularly when ap-
proximations are involved. Energy efficiency and power con-
sumption, throughput, memory access efficiency, hardware
complexity analysis are all important aspects that must be
considered.

A. EVALUATION OF ERROR PERFORMANCE
Fig. 4a shows the performance comparison of a maximum
likelihood (ML) decoder, an MPA decoder performing 5 iter-
ations and an estimated-MPA (E-MPA) decoder as explained
in Section III also performing 5 iterations. There are very
small differences in the bit error rate performance of the
three decoders (less than 0.10 dB). Although both MPA and
E-MPA show their optimum behavior with 5 iterations, the
convergence behavior of the two methods are different as
illustrated in Fig. 4b. E-MPA has a slower convergence rate
for less than three iterations. This phenomenon is expected
as the probability functions produced by bell-shaped polyno-
mial PDF do not have the quality of probabilities produced by
exponentials. However, the convergence behavior is almost
identical for more than 4 iterations. The other optimizations
like loops unrolling, fast math libraries and vectorization
were not found to degrade the BER performance or the
convergence rates.

B. CHARACTERIZING THROUGHPUT GAINS, ENERGY
EFFICIENCY AND POWER CONSUMPTION
Energy efficiency is of interest in the design of C-RAN
servers. It is determined by the rate of computation that
can be delivered by a processor. Joint optimization of the
throughput and energy consumption is a main goal of system
designers. Energy optimization can reduce the cost of cloud
services significantly while it can contribute to decrease
the emission of greenhouse gases. Power utilization is also
important because improved performance per Watt is useful
to limit power demands. This section explores the power,
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FIGURE 4: Performance of MPA compared with E-MPA.

energy efficiency and throughput of the various message
passing algorithms suggested in this work. Tests have been
conducted on three platforms running the Ubuntu Linux
operating system. The three systems are : 1) an IntelTM

Core-i7 6700HQ processor with AVX instructions (256-
bit SIMD) and four physical cores using 2-way Simulta-
neous Multi-Threading (SMT or Intel Hyper-ThreadingTM

technology) running at nominal frequency of 2.6 GHz, 2)
an ARMTM Cortex-A57 with NEON instructions (128-bit
SIMD) and four cores (no SMT) running at 2.0 GHz and
3) an IntelTM Xeon-Phi Knight-Corner 7120P with KNCI
instructions (512-bit SIMD) and 61 cores using 4-way SMT
and running at 1.2 GHz.

Table 1 shows the comparison of throughput, latency,
power consumption and energy of different decoding algo-
rithms that are executed on the three platforms to decode
768 Million bits. The average power and energy consumption
measured on the Core-i7 processor were obtained with the
turbostat software [26] which exploits the Intel performance
counters in Machine Specific Registers (MSRs) to monitor
CPU and RAM utilizations. However, in the case of ARM
and Xeon Phi platforms, external current sensors were used
to measure the energy and power consumptions.
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TABLE 1: Throughput, Latency, Power and Energy Charac-
teristics

Algorithm
Throughput

per Core
(Mbps)

Throughput
per Socket

(Mbps)

Latency
per Core

(ns)

Power
(W)

Energy
per Bit

(µJ)

In
te

lT
M

C
or

e-
i7

67
00

H
Q

E-MPA+AVX
(-Ofast) 17.46 75.46 57.2 40.02 0.66

MPA+AVX
(-Ofast) 15.06 67.83 66.4 40.53 0.73

Log-MPA
(-Ofast) 2.51 10.31 398.4 35.11 3.53

Log-MPA
(-O3) 1.11 6.37 900.9 33.11 6.02

MPA
(-Ofast) 3.58 14.85 279.3 33.01 2.49

MPA
(-O3) 0.55 3.51 1818.1 35.00 10.25

A
R

M
T

M
C

or
te

x-
A

57

E-MPA+NEON
(-Ofast) 3.79 15.30 263.8 7.93 0.52

MPA+NEON
(-Ofast) 2.09 8.40 478.4 7.56 0.90

Log-MPA
(-Ofast) 1.20 4.70 833.7 6.99 1.46

Log-MPA
(-O3) 0.75 3.01 1333.3 6.99 2.33

MPA
(-Ofast) 1.03 4.07 970.8 7.18 1.76

MPA
(-O3) 0.41 1.60 2439.0 6.99 4.21

X
eo

n-
Ph

i7
12

0P

E-MPA+KNCI
(-O2) 0.90 114.60 1111.1 198.00 1.73

MPA+KNCI
(-O2) 0.67 82.32 1492.5 198.00 2.41

Log-MPA
(-O2) 0.36 53.38 2777.7 184.00 3.45

MPA
(-O2) 0.28 36.09 3571.4 196.00 5.44

IntelTM Core-i7 6700HQ
The baseline implementation of MPA with level 3 (-O3)
optimization of the GNU compiler reaches 3.51 Mbps uti-
lizing all four physical cores of the processor (SMT on).
Log-MPA improves the performance to 6.37 Mbps benefiting
from elimination of the exponential calculations, still in -O3.
However, using the fast math libraries (-Ofast) and the
loop optimizations from Section III-D increases the through-
put to 14.85 Mbps for MPA and to 10.31 Mbps for log-MPA.
It is important to observe that MPA outperforms the log-
MPA with the fast math libraries and more aggressive op-
timizations, without compromising on the bit error rate per-
formance. This is because log-MPA induces inefficient data
accesses due to the messages passed from resources to users.
This phenomenon will be investigated further in Section IV.
Using the AVX and SSE SIMD ISAs reduces the branch
mispredictions and the cache misses (cf. Section III-A).
Consequently, the throughput is increased to 67.83 Mbps
in MPA and to 75.46 Mbps for the E-MPA where the Ψ′

estimated exponentials from (19) are performed. These re-
sults confirm significant throughput gains for the proposed
implementations, while the energy consumption is reduced.
Utilizing AVX increases the average power consumption of
MPA and log-MPA from 35 to 40 Watts but throughput and
latency are improved by much larger factors. It means that the
overall energy consumption have been decreased with AVX.

ARMTM Cortex-A57
On this platform [27], the throughput difference caused by
the fast math libraries of the GNU compiler is still visible for
MPA and log-MPA algorithms. With level three optimization

E-MPA
+SIMD

MPA
+SIMD

Log-MPA
(-Ofast)

Log-MPA MPA
(-Ofast)

MPA
0

2

4

6

8

10

12

0
.6
6

0.
7
3

3.
5
3

6.
0
2

2
.4
9

1
0
.2
5

1.
7
3 2.
41

3
.4
5

3.
4
5

5.
4
4

5.
4
4

0
.5
2

0.
9 1.
4
6 2.
3
3

1
.7
6

4.
21

µ
J
o
u
le
s
/
b
it

Intel Core-i7 6700HQ
Intel Xeon-Phi 7120P

ARM Cortex-A57

FIGURE 5: Graphical comparison of the energy consumed
per decoded bit for three different platforms.

(-O3), MPA and log-MPA run at 1.60 Mbps and 3.01 Mbps
respectively. When using fast math libraries (-Ofast) the
throughputs increased to 4.07 and 4.70 Mbps. It should be
noted that the four physical cores of the ARM platform were
utilized for those tests. Power consumption and energy used
per decoded bit is lower on the ARM platform than on the
Intel processors. The low power consumption of the ARM
platform notably comes at the cost of less powerful floating-
point arithmetic units (cf. MPA+NEON and E-MPA+NEON
in Table 1). Eliminating the exponential computations almost
doubled the performance in E-MPA (15.30 Mbps) as com-
pared to MPA+NEON (8.40 Mbps), which shows the limits
of low power processors when calculating many exponen-
tials. Nevertheless, by using E-MPA, the ARM low power
processors can be a good candidate for implementation of
SCMA decoders on C-RAN servers as it allows significant
energy savings.

IntelTM Xeon-Phi 7120P
The Xeon-Phi Knights Corner [28] benefits from the ability
to execute four hardware threads per core, while having
61 cores and 512-bit SIMD registers. In this case, 244
threads can be run to handle the MPA decoding task. Despite
these benefits, the Xeon-Phi Knight Corners suffers from
two main disadvantages: 1) the KNC instructions diversity
is reduced compared to AVX or AVX-512 ISAs and 2) the
cores frequency is relatively low in order to keep reasonable
power consumption and limits the heat dissipation. As an
example of missing instruction, the KNCI ISA does not
offer coalesced division (_mm512_div_ps) for floating-
point numbers. Beside those limitations, the E-MPA+KNCI
exhibits the highest throughput among the three mentioned
platforms (up to 114.60 Mbps). However, it consumes almost
three times more energy per bit compared to the ARM-based
implementations. The MPA decoding algorithm exhibits its
best performance on this platform when cross compiled using
-O2 -mmic flags by an Intel icpc compiler. Using fast
math options such as -no-prec-div -no-prec-sqrt
-fp-speculation=fast -fp-model-fast=2 do
not change the results significantly with the Intel compiler.

Fig. 5 focuses on the energy consumed per decoded bit
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TABLE 2: Cache Performance Characterization

Algorithm
# of

Branches
(Million)

# of
Branch
Misses

(Million)

# of
Cache
Ref.

(Million)

# of
Cache
Misses

(Million)

Instruction
per Cycle

E-MPA+AVX 12267 422 275 70.83 1.23

MPA+AVX 12845 401 244 70.32 1.19

Log-MPA
(-Ofast) 148867 17584 484 73.02 0.67

Log-MPA
(-O3) 359967 18039 635 77.75 0.69

MPA
(-Ofast) 126578 7093 397 72.58 1.12

MPA
(-O3) 527075 9454 833 79.73 0.57

(also mentioned in Table 1). In summary, the SIMD algo-
rithms have a higher energy efficiency per decoded bit. The
processor resources are well stressed and the power does not
increase too much. Among the obtained results, the Xeon-
Phi obtains the best throughput while the Cortex-A57 has the
lowest energy consumption. In the case where the number
of users in the cloud is increased, the results presented in
this section are scalable up to the number of processing units
dedicated to them.

C. MEMORY (CACHE) ACCESS EFFICIENCY
Apart from SIMD operations and parallelization, cache
access efficiency plays an important role in the high-
performance implementation of algorithms on GPP. Table 2
shows the performance characterization of different MPA
algorithms on the Core-i7 6700HQ processor for decoding
768 Million bits. As reported in Table 2, contiguous accesses
to the memory using AVX instructions reduces the total
number of branches and references to the cache. Reducing
the number of branches and references to the cache increases
the throughput of the algorithm.

According to Table 2, MPA+AVX shows almost ten
times fewer branches (12845 Million) versus MPA -Ofast
(126578 Million) and consequently it offers better perfor-
mance. For MPA+AVX, 401 Million branches have been
mispredicted by the processors, compared to 7093 Millions
for MPA. For cache misses MPA+AVX produced two Mil-
lions fewer cache misses when compared to MPA and the
total number of cache references are also significantly (122
Millions) less than with MPA. The total number of cache
misses for various algorithms in Table 2 are between 70 to
79 Millions, while the total number of branch mispredictions
varies between 422 Millions to 6454 Millions. This high
dynamic range of branch mispredictions shows that reducing
the total number of branches and branch mispredictions have
more impact on increasing throughput of the MPA algorithm
in comparison to reducing cache misses. This phenomenon
also shows that using optimization methods such as log-MPA
which produces large number of branches due to the max(.)
function is not ideal for multi-processor servers in C-RAN.
These reported significant improvements have been brought
by SIMD instructions. Improving data locality, contiguous
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FIGURE 6: Profiling results of different MPA algorithms using
Intel Vtune ProfilerTM on Core-i7 6700HQ platform for decod-
ing 768 Million bits.

access to memory and parallelizing loops are the main rea-
sons that made SIMD algorithms exhibit better performance
when it comes to cache interface.

Table 2 also reports the number of Instructions per Cycle
(IPC) of each implementation. It is obvious that the number
of IPC was reduced in MPA -O3 and log-MPA due to poorer
memory access efficiency. This reduces the throughput of
those algorithms. On the other hand, without using con-
tiguous access to memory, the processor spends more time
for scalar load and stores. This can cause a bottleneck in
interfacing memory while other resources of the processor
are waiting to receive data and consequently it decreases the
IPC. By contrast, in the case of contiguous access to memory
(or cache) the processor can fetch sufficient data all at once
to support sustained processing thus reducing the memory
bottleneck and improving internal processing as reflected by
better IPC indices.

D. PROFILING AND HARDWARE COMPLEXITY
Previous sections explored how processor parallel resources,
efficient and contiguous memory access, and compiler opti-
mizations play an important role in getting efficient imple-
mentation of the SCMA algorithms. In [6], [7], [13], [15],
computational complexity, measured as operation counts,
was used to represent the complexity of the MPA. Opera-
tion counts can be misleading metrics when characterizing
algorithmic complexity of algorithms executing on general
purpose processors. Indeed, it misses significant factors such
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as cache misses, memory efficiency and precision of floating-
point calculations. In this section, the time complexity of the
various forms of SCMA decoders are investigated using the
Intel Vtune StudioTM profiler [22].

Fig. 6 reports profiling results obtained with different
SCMA decoders variations when applied to the decoding of
768 Million bits. Results were organized to show the exis-
tence of five bottlenecks i.e. logarithms in (11), exponentials
in (7), complex norm and complex subtraction in (5) and
messages passed from resources to users in (8).

Observing MPA and MPA (-Ofast) reveals the overhead
of exponentials and complex norms in the algorithm. For
example, the decoder spent more than 62 percent of its
time (32.35 seconds) to calculate exponentials and norms in
MPA (-Ofast). This led us to explore SIMD calculation of
these two steps. Comparing E-MPA+SIMD and MPA+SIMD
implementations to others such as MPA (-O3 or -Ofast)
shows a clear gain in throughput for calculation of the expo-
nentials and norms. In more details, E-MPA+SIMD spends
1.68 seconds computing exponentials and norms which is
more than 19 times faster than the initial computation of
norms and exponentials in MPA (-Ofast). On the other
hand, exponentials and norms computations are performing
as fast as complex subtract. This profiling results show the
efficiency of the proposed SIMD implementation methods.
By contrast, log-MPA has not shown good performance
using fast math library when compared to MPA. Inefficient
memory access, cache misses and high number of branches
are among the reasons that made log-MPA exhibits lower
throughput than expected. Those phenomena are induced by
comparison operations embedded in the max(.) function in
(13). Nevertheless, without using fast math libraries, log-
MPA still offers performance gains over MPA.

V. CHANNEL CODING
A. COMPLETE SIMULATION CHAIN

In the previous sections of this article, algorithmic improve-
ments and implementation techniques have been proposed.
These optimizations lead to drastic reductions of the pro-
cessing time and to an increase of the processing power
efficiency. This is done with approximately no degradation of
the BER performance after SCMA decoding. Nevertheless,
in a full communication chain, multiple access algorithms
are closely linked to the Forward Error Correction (FEC)
modules. Indeed, the input of the FEC decoder consists in
the outputs of the SCMA decoder.

In order to claim that the proposed improvements do not
degrade the overall error performance, it is necessary to em-
bed the SCMA encoder and decoder in a full communication
chain. To this purpose, we used the AFF3CT1 software which
is an ideal tool that provides the necessary simulation models
and allows performing the desired verifications.

1AFF3CT is an Open-source software (MIT license) for fast forward error
correction simulations, see http://aff3ct.github.io
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FIGURE 7: BLER evaluation of SCMA MPA and E-MPA
decoders combined with LDPC, polar and turbo codes.

AFF3CT is Open-source and specifically designed to of-
fer an efficient environment to the communication systems
designers. Monte-Carlo simulations can be run to measure
various metrics such as the BER and BLER performance, or
the throughputs and latencies of each module, e.g. FEC en-
coders and decoders, modulation and demodulation blocks,
or different channel models.

According to the latest 3GPP report [29], in the 5G stan-
dard, the two selected code families are the LDPC and polar
codes. Being implemented in the AFF3CT software, it is
possible to test our SCMA decoders in a complete commu-
nication chain, in conjunction with state-of-the art LDPC,
polar and even turbo decoders that were used in the LTE
standard [30]. Fig. 7 shows the BLER performances of MPA
and E-MPA decoders when combined with different channel
codes. For a matter of reproducibility, the full parameters of
the FEC used are reported in the next section. This research
does not claim any novelty in channel coding, however, we
found crucial to validate our proposed SCMA optimizations
in a sufficiently complete communication chain.
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B. CHANNEL CODING CONFIGURATIONS
Turbo codes
In a first validation, the turbo code from the LTE standard
is used. In the decoder, 6 iterations are done. The two sub-
decoders implement the max-log Maximum A Posteriori al-
gorithm (max-log-MAP) [31] with a 0.75 scaling factor [32].
In Fig. 7a, the rate is R ≈ 1/3, no puncturing is performed,
the number of information bits K is 1024 and the codeword
length N is 3084. In Fig. 7b, R ≈ 1/2 with the puncturing of
half of the parity bits, K = 2048, and N = 4108.

LDPC codes
In a second set of validations, the LDPC codes used in this
paper are based on MacKay matrices that have been taken
from [33]. In Fig. 7a, the matrix used is (K = 272, N =
816), and in Fig. 7b the matrix is (K = 2000, N = 4000).
In both figures, the decoder used is a Belief Propagation (BP)
decoder with an Horizontal Layered scheduling [34]. For the
update rules, the Sum-Product Algorithm (SPA) has been
used [35]. The number of iterations is 100.

Polar codes
In the final validation, polar codes are built by suitably
selecting the frozen bits. We used the Gaussian Approxima-
tion (GA) technique of [36]. The input SNR for the code
construction with the GA is 1 dB, which apparently is very
low considering that the SNR are 4 to 5 dB in the convergence
zone. This is motivated by the fact that the GA algorithm is
designed to work with the BPSK modulation. Using SCMA
completely modifies the histogram of the LLR values for a
given SNR. Therefore, a shift on the input SNR of the GA
algorithm must be applied in order to efficiently select the
frozen bits. If this shift is not applied, the decoding perfor-
mances of the polar code degrades drastically. The number
of information bits and the codeword length are (K = 682,
N = 2048) in Fig. 7a and (K = 2048,N = 4096) in Fig. 7b.
The decoder is a Successive Cancellation List (SCL) decoder
with L = 32 and a 32-bit GZIP CRC that was proposed
in [37].

C. EFFECTS OF E-MPA ON ERROR CORRECTION
In Fig. 7, the number of iterations of the SCMA demodulator
is 5. The objective of simulating multiple channel codes is
not to compare them with each other. A fair comparison of
the different channel codes would indeed impose using the
same code lengths and more importantly their computational
complexity should be compared, which is not the case here.
Our goal here is to study the impact of using E-MPA on
the BER and FER performances when the channel codes are
included in the communication chain. For each channel code,
two curves are plotted: one for the E-MPA and the other for
the MPA. Only 0.2 to 0.4 dB separate the two versions of the
algorithm for all the considered channel codes. These results
show the extent to which uncertainty of estimations affects
channel coding. The decoding speed improvement brought

by the E-MPA algorithm has a cost in terms of decoding
performance. This trade-off should be considered in order to
meet the system constraints.

VI. CONCLUSIONS
In this paper, in consideration of the potential of Cloud-
RAN that would support 5G communication, we focused on
improving the efficiency of 5G SCMA receivers on the type
of multiprocessors that can be found in such servers. We
provided test results using different platforms such as ARM
Cortex, Xeon-Phi and Core-i7. The benefits of using SIMD
and various algorithmic simplifications have been studied
and test results were presented. Among the platforms, the
ARM Cortex-A57 was shown to offer the lowest energy con-
sumption per decoded bit, while many-core platforms such
as Xeon-Phi Knight’s Corner 7120P had the best throughput.
In addition, an estimation of conditional probabilities using
polynomial distributions instead of Gaussian distribution was
proposed to increase throughput. This estimation has shown
to offer throughput improvements of 15 to 90 percent de-
pending on the platform used, while it causes a very small
degradation of BLER after channel decoding. To support this
claim, the error performance of telecommunication chains
combining MPA and E-MPA with channel coding with
LDPC, polar codes and turbo codes with code rates R = 1/3
and R = 1/2 were tested.
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