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Abstract

We present a novel algorithm for Fast Registration Of image Groups (FROG),
applied to large 3D image groups. Our approach extracts 3D SURF keypoints
from images, computes matched pairs of keypoints and registers the group by
minimizing pair distances in a hubless way i.e. without computing any central
mean image. Using keypoints significantly reduces the problem complexity com-
pared to voxel-based approaches, and enables us to provide an in-core global
optimization, similar to the Bundle Adjustment for 3D reconstruction. As we
aim to register images of different patients, the matching step yields many out-
liers. Then we propose a new EM-weighting algorithm which efficiently discards
outliers. Global optimization is carried out with a fast gradient descent algo-
rithm. This allows our approach to robustly register large datasets. The result
is a set of diffeomorphic half transforms which link the volumes together and
can be subsequently exploited for computational anatomy and landmark de-
tection. We show experimental results on whole-body CT scans, with groups
of up to 103 volumes. On a benchmark based on anatomical landmarks, our
algorithm compares favorably with the star-groupwise voxel-based ANTs and
NiftyReg approaches while being much faster. We also discuss the limitations
of our approach for lower resolution images such as brain MRI.

Keywords: Groupwise registration, keypoints

1. Introduction

Registration of several images together, also known as groupwise registration,
is nowadays most often carried out for human brain studies (Jenkinson et al.,
2002). Whole body studies remain rare as they still raise significant problems
(Xu et al., 2016). Advances in imaging techniques are constantly increasing
the number and size of 3D images in hospital databases, hence the need for
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low complexity groupwise image registration techniques. Instead of dense voxel
based registration, sparse keypoint matching, extracted from the images is a
promising approach. Keyoints are extracted with their location and description
vector. Points from different images are paired by comparing their description
vectors. This is a great challenge when shifting from intrapatient registration
to interpatient registration, as the human anatomy exhibits a large variability.

In this paper we propose a novel groupwise registration approach aimed at
large image databases which is able to register high resolution images, such as
whole body CT scans shown in Figure 9. As human anatomy exhibits high vari-
ability (e.g. men vs. women), our algorithm is hubless, i.e. it does not use any
central reference during registration. Inspired by advances in the computer
vision field, our algorithm exploits keypoint detection and matching, which
bring speed and robustness. Some paired points are erroneous (outliers) and
we devised an algorithm for robustness against these outliers, even when they
are very frequent. Potential applications range from computational anatomy
to forensic anthropology and robust patient-specific model construction. An
example of forensic application is probabilistic sex diagnosis using worldwide
variability in hip-bone measurements (Murail et al., 2008). Moreover, the ever-
increasing amount of medical images stored in Picture Archiving and Commu-
nication Systems (PACS) in hospitals offers a great opportunity for big data
analysis. Screening huge image groups could improve diagnosis and could be of
critical help for computational anatomy. Recent advances in machine learning
(Michalski et al., 2013) or atlas based-approaches (Iglesias and Sabuncu, 2015)
have pushed for efficient big data analysis tools. Yet the modest size of current
annotated medical image databases limits the use of these approaches for medi-
cal imaging. As a consequence, whole-body groupwise registration could bridge
the gap between big data and organ localization, segmentation, and computa-
tional anatomy. One known limitation for our approach is that the number of
extracted keypoints should be as high as possible to obtain the best accuracy.

The paper is organized as follows: section 2 presents previous works related
to registration, keypoints and Bundle Adjustment. Section 3 summarizes the
key contributions of our hubless approach. Section 4 explains our approach
in detail while section 5 shows results obtained with our approach, as well
as comparisons with both NiftyReg and ANTs star-groupwise algorithms. We
conclude the paper in section 6.

2. Related works

2.1. Image registration

Image registration, also known as image matching, fusion or warping, con-
sists of finding a transform τ between two or more images, mapping any point
p from a source image to a position τ(p) in the target image. It is a crucial step
in many medical applications, such as longitudinal studies (Scahill et al., 2003),
radiotherapy planning (Keall et al., 2005), brain studies (Jenkinson et al., 2002),
atlas-based segmentation (Lötjönen et al., 2010), image reconstruction (Huang
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et al., 2008) and microscopy (Vercauteren et al., 2007). We present here a brief
state of the art, and we refer the reader to Brown (1992); Maintz and Viergever
(1998); Sotiras et al. (2013) for thorough reviews of existing approaches.

2.1.1. Pairwise & Groupwise registration

Pairwise registration consists of matching one moving image to a fixed image.
Groupwise registration consists of registering a whole set of images together.

One can categorize groupwise registration approaches using graph theory, as
shown in Figure 1, where vertices represent images and edges represent trans-
forms. Then, transforming any image to any other image requires at least a
graph spanning all vertices. Then at least n − 1 transforms are needed for n
images.

• Star groupwise methods register each image of the set against a reference
image. In this case the graph is a star graph (Figure 1(a)). The output is
a set of half transforms τi, mapping each image i to the common space.
After registration, the transform τi→j from one image i to another image
j is a composition of the two half transforms τi and τj : τi→j = τ−1j ◦ τi.
These methods are biased by the choice of the initial reference or template
image. This bias takes two forms : the intensity bias and the shape
bias. Guimond et al. (2000) reduced these biases by iteratively updating
the reference image, taking into account the average of each transformed
image, and the average of image transformations. Later, Joshi et al. (2004)
improved the theoretical foundations of this approach via diffeomorphism.
An example of application for brain pediatric studies is shown in Fonov
et al. (2011). The publicly available softwares ANTs(Avants et al., 2008),
Elastix(Klein et al., 2010) and NiftyReg(Modat et al., 2008) belong to the
star groupwise category.

• Tree groupwise methods use a spanning tree graph and multiple refer-
ences (Wu et al., 2011), as shown by Figure 1(b). Variability can then be
distributed across several references instead of only one.

• Hubless methods use an abstract common space, but do not use any ref-
erence image: while star and spanning tree graphs are minimal graphs,
hubless methods use a dense graph to benefit from more constraints, as
shown by Figure 1(c). When registering n images, up to n(n − 1)/2 ob-
servations can be used. Observations can be pairwise registrations, or
local matches. Hamm et al. (2010) proposed GRAM, a hubless registra-
tion method, based on manifold learning. This algorithm requires dense
pairwise registration of all image pairs, which is very time consuming. As
an example, the authors report a processing time of 24 hours on a cluster
to register 416 low resolution images (68 × 56 × 72). Ying et al. (2014)
proposed a similar approach, using geodesic graph shrinkage. A recent
work on groupwise nonrigid registration was also proposed by Wu et al.
(2012), but is dedicated to the processing of brains acquired with MRI, as
it requires a segmentation of the image into White Matter, Grey Matter
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(a) Star (b) Tree (c) Hubless

Figure 1: Different groupwise registration methods. Images are outlined in red, reference im-
ages are outlined in dotted black, transforms in dashed orange and observations in black. For
dense registrations, observations are generally voxelwise difference, cross-correlation or mu-
tual information. For sparse registrations, observations are usually keypoint match distances.
Transforms are optimized via the minimization of an energy function driven by the obser-
vations. (a) star groupwise registration (1 reference, n transforms and n observations). (b)
tree-groupwise registration (multiple references, n−1 transforms, n−1 observations). (c) hub-
less registration, with no reference image but one abstract common space, n half-transforms

and at most
n(n−1)

2
observations.

and Ventricular Cerebrospinal Fluid. More recently, the approach pro-
posed in Agier et al. (2016) uses no reference at all. This allows handling
partially matching body parts and high variability but is restricted to rigid
transforms.

Groupwise registration has most often been used for brain analysis, as the
brain shape exhibits low variations between subjects overall. Whole body stud-
ies such as carried out by Suh et al. (2011) remain rare. The important advan-
tage of hubless approaches becomes clear when averaging a group of images is a
problem. A good example is to register full body images, where computing the
average between men and women is inconsistent in several regions.

2.1.2. Rigid & Deformable Registration

Rigid registration (Ashburner et al., 2003) consists of computing a linear
transform between two images. The transform can be a translation or a more
expressive one such as a combination of translation, rotation, or scaling. Rigid
transforms can be used for Procrustes Analysis (Schönemann, 1966), General-
ized Procrustes Analysis (Bartoli et al., 2013), mosaic assembly or as an initial-
ization step for nonrigid transform. Nonrigid (deformable) registration consists
of finding a free-form transform able to express local variability, which cannot
be done with a rigid transform. Nevertheless, the transform cannot be arbitrary,
and should generally be smooth and invertible.

2.1.3. Dense & Sparse Registration

Registration approaches can also be split in two classes, depending on how
they process the input data:
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Dense registration estimates displacement on the entire image domain (Avants
et al., 2008; Modat et al., 2008, 2014). The most common approaches use in-
tensity difference between images but there are many other criteria such as
cross-correlation(Lewis, 1995) or mutual-information(Pluim et al., 2003). The
output is a displacement vector for each input voxel. The key difficulties with
dense registration are high computational cost and an ill-posed optimization
problem, which generally needs explicit regularization(Robinson and Milanfar,
2004). As an example, the Advanced Normalization Tools (ANTs) framework
(Avants et al., 2008) registers two thoracic images in about 2 hours on our test
machine.

Sparse registration, instead of working on a dense grid, uses only point sets.
Compared to dense registration, sparse registration is much faster(Allaire et al.,
2008; Cheung and Hamarneh, 2009) but may yield less accurate results because
points do not always span the whole space. For nonrigid registration, sparse
transforms need an interpolant, such as splines (Szeliski and Coughlan, 1997)
or radial basis functions (Fornefett et al., 2001). The interpolant inherently
provides a smooth solution which helps regularizing the solution. Point sets can
be of different types:

• Reference landmarks which are distinguishable anatomic structures man-
ually placed on the image by an expert. This task is usually carried out
by physicians and can be time consuming. These are used in (Wang et al.,
2006; Li et al., 2012)

• Reference landmarks automatically placed on the image by an algorithm,
such as proposed by Zhu et al.(Zhu et al., 2013)

• Vertices of a surface mesh representing the object to register, such as
proposed in (Rasoulian et al., 2012)

• Keypoints, automatically detected and placed in the image. One impor-
tant difference between reference landmarks and keypoints is that key-
points are not defined by anatomical definitions but by mathematical
properties of the image. Hence, although it is interesting to find the same
keypoints in each image, this is never the case in practice, and the number
of extracted points from each image is not a priori known. Next section
(2.2) gives more details on keypoints.

Some works use a combination of both dense and sparse approaches. As an
example, Wu et al. (2012) uses driving voxels to speed up a dense method.

2.2. Keyoints

During the last decades keypoints (Harris and Stephens, 1988) have success-
fully been used for object recognition (Lowe, 1999), action recognition (Wang
et al., 2011), robotic navigation with Simultaneous Localization and Mapping
(Karlsson et al., 2005) and panorama creation (Anguelov et al., 2010). They aim
at being fast while reducing the amount of data to process, mainly to deal with
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real time processing or tasks involving large amounts of data. Their suitability
to medical imaging has been evaluated in (López et al., 1999), and various ap-
plications have been proposed in this context such as image annotation (Datta
et al., 2005), retrieval (Zheng et al., 2008) and segmentation (Kéchichian et al.,
2014; Wachinger et al., 2018). Initially designed for 2D images, keypoint ap-
proaches have been extended to process 3D medical images by (Allaire et al.,
2008; Agier et al., 2016; Cheung and Hamarneh, 2009; Rister et al., 2017).

The keypoint extraction pipeline is the following: first, for each image, a
detector extracts locations exhibiting important features such as corners (first
derivative analysis (Harris and Stephens, 1988)) or blobs (second derivative),
most often via fast approximations of theses derivatives. As an example, Scale
Invariant Feature Transform (SIFT) uses difference of Gaussians (Lowe, 2004)
and Speeded Up Robust Features (SURF) use integral images (Bay et al., 2006).
Afterwards, the neighborhood of each location is summarized into a compact
feature vector, called descriptor. SIFT populates the feature vector with orien-
tation histograms, while SURF stores local texture information.

Efficient registration can be performed as follows: (1) keypoints are extracted
from the input images, with locations and descriptions. (2) Keypoints from
different images are paired by comparing their feature vectors. Note that the
number of keypoints may vary between images. This results in a setM of paired
points. (3) Registration is performed by minimizing the distance between all
paired points of this set (Mikolajczyk and Schmid, 2005).

The use of paired points combined with sparse registration approaches leads
to very fast registration, in opposition to dense registration. Moreover, as key-
points have to be extracted only once per image, repeated registration with the
same reference image is very efficient.

Finally, keypoints are rarely used for groupwise registration, most of the
previous approaches use anatomical reference landmarks to perform groupwise
registration. Few papers deal with keypoints, such as Zhang et al. (Zhang and
Cootes, 2012). Note that (Zhang and Cootes, 2012) is restricted to 2D images.

2.3. Outlier rejection

A drawback of using keypoints is the significant number of mismatches (out-
liers) in the paired point set M. Outliers are pairs of keypoints with similar
descriptors describing regions which are actually different and therefore should
not be paired. Decreasing the image quality (using low end cameras and web-
cams used in consumer electronics devices) potentially increases the outlier ratio
to more than 30% of the set (Läbe and Förstner, 2004) (37% in (Mikolajczyk
and Schmid, 2002)).

In Rangarajan et al. (1997), a spatial mapping and the one-to-one correspon-
dences (or homologies) between point features extracted from the images try to
reject non-homologies as outliers. In Chui and Rangarajan (2003), an alter-
nating optimization algorithm successively updates the points correspondence
matrix and the transformation function while gradually reducing the temper-
ature in a deterministic annealing. The points correspondence matrix handles
outliers.
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In Myronenko and Song (2010), a probabilistic method called Coherent Point
Drift (CPD) fits the first point set centroids as a mixture of Gaussian with an
additional uniform distribution to account for outliers point set centroids to
the data points by likelihood maximization. The method forces the centroid to
move coherently as a group to preserve the topological structure.

M-estimators (Huber, 2011) provide a good way to mitigate the influence of
outliers in this context. During optimization, M-estimators provide an adaptive
weighting function which adjusts the contribution of each pair by computing
robust statistics on M. Each point pair can then be classified as inlier or out-
lier (soft classification) and weighted accordingly. For this aim, one needs an
estimation of the inlier contribution variance, computed via Median Absolute
Deviation (MAD). Note that the maximum outlier ratio that MAD can process
(the breakdown point (Donoho and Huber, 1983)), is 50%. Hence the break-
down point of the M-estimator is also 50%.

2.4. Bundle Adjustment

Bundle adjustment (BA) is a class of computer vision approaches which
allows reconstruction of a unique 3D scene from multiple 2D views by back
projection of keypoints in the 3D scene and global optimization (Triggs et al.,
2000). It allows efficient tracking even with low-end cameras (Karlsson et al.,
2005). Recent BA implementations can manage large amounts of data and
successfully reconstruct large parts of a city (Frahm et al., 2010).

BA jointly optimizes point positions, camera positions and camera param-
eters. Because of (1) the non-linearity of projective geometry (Hartley and
Zisserman, 2003), (2) mismatches and (3) the M-estimator, optimization is
high-dimensional and non-convex (Dauphin et al., 2014). As a consequence,
particular attention has to be paid to the optimization method. Algorithms
such as Levenberg-Marquart optimization (Moré, 1978) can be used to avoid
converging to a local minimum. BA also needs a good initialization to remain
close to the global minimum at any time.

3. Challenges and contributions

Our paper provides a unified solution to register in a nonrigid way a whole
image bundle at once. It can be seen as a complete graph registration because
each image is linked with all other images (figure 1(c)). Several challenges need
to be addressed:

• Amount of data: As we want to process many images in reasonable time,
we cannot use dense registration: each image from our test database con-
tains about 5123 voxels, each voxel being encoded with 32 bits. Depending
on the experiments, 20 to more than 100 images are used, representing
more than 50GB of image data. Current approaches process a lower num-
ber of images, as in (Shattuck et al., 2008). On top of a hubless approach
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Figure 2: Sparsity induced by a panoramic reconstruction with BA (top) compared to our
application (bottom). Overlap matrices of each problem are given on the right. The top image
is provided by Noso1, via Wikimedia Commons.

as in (Wu et al., 2012), we need a compact solution which avoids reading
voxel data and allows us to manage many images in an in-core way.

• Repeatability & Outliers: We have to overcome inter-patient variability.
When using keypoints, the rate of outliers increases from 30% for similar
patients up to 70% in case of different patients (see section 5.3.3). Two
main reasons stand out, both induced by inter-patient variability : (1)
match selectivity needs to be decreased to find more matches between
differing patients, (2) match consistency cannot be enforced (if three points
A, B, C are linked by two matches : AB and BC, A and C must match).
As a result, the rate of outliers can exceed the M-estimator breakdown
point (50%), hence the need for a more robust estimator.

• Computational complexity: The analogy with BA is not perfect. BA
processes a set of 2D images distributed in a 3D space. As each image
overlaps with few other images, BA can be significantly simplified to a
band matrix problem. In our case, we need to register 3D images in a 3D
space, and the overlap between images is much higher: the images are all
located within the human body, but for different patients. This results in
a dense matrix problem, illustrated by Figure 2.

To overcome these challenges, we introduce in this paper three main contri-
butions:

• Keypoint-based hubless registration: As input data, we use only the key-
points extracted from the images. We still use an abstract common space
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Image 1

Image 2

Image n

Keypoints 2

Keypoints n

1-Extraction

Keypoints 1 2-Matching

Point pairs Transfomation 2

Transfomation n

Transfomation 1

3-Registration

Figure 3: The three main steps in our algorithm: (1) Keypoints are extracted from each image.
(2) Matching constructs a list of point pairs from the point sets. (3) Registration optimizes a
transformation for each image in order to minimize point pair distances in the common space.

and half-transforms as in star groupwise registration, but we do not need
any central reference data : our optimization is driven only by inter-image
registration, as shown in Figure 1(c). Half-transforms are represented by
spline pyramids, and we use the graph linking all images together (the
complete graph) for the optimization. This compact framework can reg-
ister 100 images with a memory footprint of only 10GB.

• EM-weighting: To manage a ratio of outliers that can exceed 50%, we
devise an Expectation-Maximization algorithm which explicitly estimates
inlier and outlier distributions. Moreover, experimental results show that
the proposed EM-weighting yields better selectivity against outliers than
the M-estimator. As a result, EM-weighting allows our algorithm to con-
verge, while the M-estimator failed to provide convergence.

• Efficient optimization: We propose a fast energy function minimization
algorithm suited to our nonrigid problem. With this algorithm, our 24-
core testing computer registers 20 images (512x512x400 voxels each) in
about 10mn on our test machine. A laptop needs about 30mn.

4. Method

Our algorithm proceeds in three steps : (1) 3D SURF keypoint extraction
from all input images, (2) points pairing according to their descriptor, (3) half-
transforms optimization by minimizing the distance between paired points, while
aiming at discarding outlier influence. Figure 3 shows a block diagram of the
three steps.

4.1. Half transforms driven by keypoints

We consider a set I of n 3D images. In order to get rid of dense computation
at the earliest point in the process, we extract for each image i the 3D SURF
keypoint set Pi = {pia} as done by Agier et al. (2016). For simplicity, we define
P =

⋃
Pi. The entire algorithm uses physical coordinates (in millimeters),
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image 1
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T 2(p22)
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p11 p12 p21 p22 p31 p32 p41
m1 1 0 −1 0 0 0 0
m2 0 0 0 0 1 0 −1
m3 0 1 0 1 0 0 0
m4 0 1 0 0 0 −1 0
m5 0 0 0 1 0 0 −1



Figure 4: Example with 4 input images. For clarity purposes, only bone structures are
displayed. Overprinted on each image i: the grid on which lie the splines used to rep-
resent the nonrigid transform τ i. In the middle : the common space, which is used
to measure match distances. Similarly to Figure 1(c), matches are drawn in solid black
while point transforms are drawn in dashed orange. In this simple example, 7 key-
points were extracted : P = {p11, p12, p21, p22, p31, p32, p41}, and 5 matches were found: M ={

(p11, p
2
1), (p31, p

4
1), (p12, p

2
2), (p12, p

3
2), (p22, p

4
1)
}

. The match (p22, p
4
1) is an outlier. M is the match

matrix.

and is invariant to image sampling conditions. We compute the set of matched
keypointsM = {(pia, p

j
b)} for all image pairs (i, j), by combining several criteria:

feature vector distance, nearest neighbor ratio and Laplacian sign as in Bay
et al. (2006) and scale difference. As explained earlier in the paper,M contains
outliers. Optimizing the set of half transforms T = {τ i} is done by minimizing
the match (pia, p

j
b) distance-errors :

d(pia, p
j
b) = ‖τ i(pia)− τ j(pjb)‖ (1)

This L2 distance is the only measure computed in the abstract common
space. We use tensor products of Uniform Cubic B-splines to interpolate the
half-transforms τ i, driven by c control points placed on a rectilinear grid. Each
half-transform τ i is expressed as: τ i : p ∈ R3 7→ p+b(p)xi, where the jth element
of b(p) is the evaluation of the jth spline basis function at point p; xi is the c×3
spline coefficient matrix which represents the control point displacements (one
column for each coordinate). xi are unknowns we want to optimize for each
image. Figure 4 gives an overview of our framework, a simple example with 4
input images, 7 keypoints and 5 matches.

4.2. Outliers - EM-weighting

An efficient way of mitigating the presence of outliers in the set of paired
points is to use robust statistics such as M-estimators (Fox, 2002). The usual
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assumption made with M-estimators is that the probability distribution of the
distance (1) is a combination of one normal distribution (the inlier contribution),
and one uniform distribution (the outlier contribution). M-estimators need to
estimate inlier variance, the tuning parameter, which provides a way to balance
the contribution of each distance d(pia, p

j
b) (1) to the optimization criterion.

Smaller values of the tuning constant increase robustness to outliers.
In our case, the underlying distributions follow different laws:

• Inliers are norms of Gaussian random vectors of R3. They follow a χ
distribution with 3 degrees of freedom, also known as Maxwell distribution.

• Outliers are distances between random vectors of R3 following uniform
distributions. We propose to approximate their distribution using also a
Maxwell distribution.

Then, the probability density function of the distance can be expressed on
each image i as:

P i(d) = rif(d, si1) + (1− ri)f(d, si2)

f(d, s) =

√
2

π

d2

s3
e−

d2

2s2

(2)

where f is the Maxwell probability density function, si1 and si2 are respec-
tively the inlier and outlier scale parameters (the standard deviation of all vector
distance coordinates with zero mean) of the two Maxwell laws and ri is their
mixing ratio. Instead of estimating the inlier variance, we directly estimate
for each image i the parameters θi = (si1, s

i
2, r

i) of P i(d) using the Expectation-
Maximization (EM) algorithm (Dempster et al., 1977). As we explicitly estimate
the Maxwell laws, we can handle more than 50% of outliers as we do not rely
on the median operator. Following Bayes’ rule, we can infer for any match
distance-error d the probability of belonging to the inlier class I :

P (I|d, θi) =
rif(d, si1)

ri.f(d, si1) + (1− ri)f(d, si2)
(3)

This probability can be used as a weighting function to inhibit outlier con-
tributions. But as each match (pia, p

j
b) links two images, two probabilities can

actually be computed for each match: P (I|(pia, p
j
b), θ

i) and P (I|(pia, p
j
b), θ

j), us-
ing respectively image i and image j as statistical context. As a symmetric
criterion is preferable, we select the minimum value as a weight for each match:

w(pia, p
j
b) = min[P (I|d(pia, p

j
b), θ

i), P (I|d(pia, p
j
b), θ

j)] (4)

The minimum is a good heuristic since it increases selectivity against outliers.
It has been observed in our experiments that it is more effective to wrongly
reject more inliers than wrongly accept more outliers. Figure 5 shows example
data as well as a comparison between EM-weighting and M-estimators, showing
that our approach is more robust and more selective than the M-estimator.
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Figure 5: EM-weighting and M-estimators. Top : synthetic distance distribution, with inlier
distribution in light blue and outlier distribution in orange. The dark-blue and red curves
represent their approximations with Maxwell distributions. Middle : Real world example,
with more than 50 % of outliers. The gray histogram is computed for one image of the VIS-
CERAL data set after registration. The dark-blue and red curves respectively represent the
estimation of inlier and outlier distributions with Maxwell distributions. Bottom : Compari-
son of weighting functions computed with the same real world data. Blue: incorrect standard
deviation estimation leads the M-Estimator to include a lot of outliers. Green: M-estimator
with corrected standard deviation. Red: our EM-weighting yields better selectivity.

4.3. Energy minimization

4.3.1. Initialization

Before non-rigid registration, we optimize a 6-parameter transformation
(translation + anisotropic scale) λi defined for each image i as:

λi : p 7→ λi(p) = si ◦ p+ ti (5)

Where si and ti are vectors of R3 representing the anisotropic scale and
translation, respectively. The ◦ symbol stands for the component-wise Hadamar
product. Optimization is carried out using an iterative mean and variance
matching algorithm : for each iteration and each image i, the scale si is updated
to s̃i so that the component-wise variance va of keypoints pia in i gets closer to
the variance vb of their paired keypoints :

s̃i = ((vbx/vax)
γ
2 , (vby/vay)

γ
2 , (vbz/vaz))

γ
2 )T (6)

where γ is the update coefficient, lower than 1, and vT is the transpose of
vector v. The translation ti is updated to t̃i to displace in the common space
the mean pa of the keypoints pia closer to the mean pb of their paired keypoints:

t̃i = ti + γ(pb − pa) + pa ◦ ((1, 1, 1)T − s̃i) (7)

Note that in order to reduce the influence of outliers, paired points are
weighted by our EM-weighting scheme w(pia, p

j
b) (4) during computation of the
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variances (va and vb) and the mean values (pa and pb). In our experiments, we
carried out 50 iterations with γ = 0.5, and update the weights w(pia, p

j
b) once

every 10 iterations.

4.3.2. Deformable registration

Once linear registration is computed, we propose to find the best set of B-
Spline transforms T ∗ by minimizing for each keypoint the mean square distance
to its matching points, each match contribution (1) being weighted according
to EM-weighting (4):

E(T ) =

n∑
i=1

∑
pia∈Pi

 1

|N (pia)|
∑

pjb∈N (pia)

w(pia, p
j
b)d(pia, p

j
b)

2

 (8)

where |N (pia)| is the number of points matching with pia.
However, n−1 transforms are enough to register n volumes whereas there are

n unknown transforms τ i in our problem. This results in an underdetermined
problem: convergence is not guaranteed and the transforms can be subject to
global drift. Following Wu et al. (2012), we remove the degree of freedom by
adding an extra constraint to the control point displacements:

T ∗ = min
T

E(T ) s.t.

n∑
i=1

xi = 0 (9)

By traversing the set of matchesM, The energy function (8) can be rewritten
as:

E(T ) =
∑

(pia,p
j
b)∈M

(
s(pia, p

j
b)d(pia, p

j
b)
)2

(10)

where s(pia, p
j
b) is defined by :

s(pia, p
j
b) =

√√√√w(pia, p
j
b)

(
1

|N (pia)|
+

1

|N (pjb)|

)
(11)

Equation (10) can be expressed in matrix notation :

A = SM (P + BX)

E(X) = tr(AtA)
(12)

where S is the |M|×|M| diagonal matrix of all s(pia, p
j
b).

P is the |P|×3 matrix of keypoint locations.
M is the sparse |M|×|P| match matrix. Each line of M represents a match

between two keypoints, and contains exactly two nonzero values : one 1 and
one −1 in the columns corresponding to the two matching keypoints. M can
be seen as the incidence matrix of the match directed graph where vertices are

13



Algorithm 1 One level of gradient descent for deformable registration. α is a
small positive coefficient, nIterations is the number of iterations.

X̃0 ← 0
k ← 0
while k < nIterations do
if k mod 10 = 0 then

Compute the parameters θi

end if
Compute Sk from θi

Xk+1 ← X̃k − α2BtMtS2
kM

(
P + BX̃k

)
Split Xk+1 into n coefficient matrices xi

k+1,

x̃i
k+1 ← xi

k+1 − 1
n

∑n
j=1 x

j
k+1

Construct X̃k+1 by stacking the matrices x̃i
k+1

k ← k + 1
end while

keypoints and edges are matches with arbitrary orientation. An example of M
is shown by Figure 4.

B is the |P|×nc spline matrix. B is a sparse non-square block diagonal
matrix, where each non-zero block Bi is the |Pi|×c spline matrix for image i
(the stacking of all b(pia)).

X is the nc× 3 stacking of all matrices xi.
To minimize equation (10), inspired by the Iteratively Reweighted Least

Squares method, we use a gradient descent algorithm and we update the pa-
rameters θi every ten iterations. The gradient of equation (12) is :

∇E = 2BtMtS2M (P + BX) (13)

After each iteration, we shift the mean of the spline coefficients in order to
satisfy the constraint in (9). Note that an interesting byproduct of this step
is the iterative removal of spatial bias in the common space (Guimond et al.,
2000). Our gradient descent approach is summarized by algorithm 1.

We use a hierarchical approach, beginning with a coarse spline grid and in-
crementally doubling the grid density. This improves the speed of our approach
and keeps the solution close to the global minimum, which is required as we use
EM-weighting. Note that we achieve a significant simplification of the gradient
computation (13), by taking into account the fact that the matrices M and B
are sparse.

4.4. Guaranteed diffeomorphism

To guarantee that FROG outputs diffeomorphic half-transforms, we use a
method similar to Rueckert et al. (2006): A sufficient condition to guarantee
that a B-Spline based transformation is diffeomorphic is to check that for each
direction (x, y and z), the displacement d of each control point is below 0.4 ∗ g
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where g is the initial distance between control points (the grid spacing). Then,
for a given resolution level, instead of using a single transformation which may
not be diffeomorphic due to large control point displacements, we use a compo-
sition of several transformations, each respecting the diffeomorphism constraint.
As the composition of diffeomorphisms is a diffeomorphism, the resulting com-
position is also a diffeomorphism.

For a given resolution level, optimization begins with a single grid for each
half-transform. After each iteration, we check that the diffeomorphism con-
straint is fulfilled for all half-transforms. When the constraint is not satisfied,
the iteration is canceled, current half-transforms are frozen, and iterations are
resumed with a new set of half-transforms which will be composed with the pre-
vious ones. Subsequent iterations may also break the diffeomorphism condition,
hence several transformations can be created for a single resolution level. As
a result, for a given level, each half-transform is the concatenation of several
transformations with limited displacements, which guarantees diffeomorphism.
In our experiments on VISCERAL group A, with 3 levels of resolution, the
number of concatenated transformations for each level was respectively 5, 8 and
14. Hence, instead of three grids (one for each level), our approach used a total
of 27 grids per image. In our experiments, using a single grid for each resolution
level yields half-transforms with a few percentage of voxels with negative Ja-
cobian determinant, while using grid compositions yields no negative Jacobian
determinant.

5. Results

5.1. Data sets and evaluation

We evaluate our approach with the VISCERAL database (Langs et al., 2013)
which is composed of three groups of images (dimensions around 512×512×400,
spacing around 0.7× 0.7× 1.5mm, 32 bits floats):

• A: 20 volumes (thorax and abdomen) of contrast enhanced (via con-
trast agent injection) CT scans. For these volumes, experts have located
anatomical landmarks (up to 45 per volume, between 41 and 42 on aver-
age).

• B: 20 volumes (whole body) of CT scans. For these volumes, experts have
located anatomical landmarks (up to 53 per volume, between 52 and 53
on average).

• C: 63 volumes (thorax and abdomen) of contrast enhanced CT scans, not
annotated. The VISCERAL consortium refers to these volumes as the
silver corpus.

With these three different groups (A, B and C), we are able to carry out
several groupwise registrations with different scenarios: only A, only B, A and
C or the three groups together, while observing the effects of these cases on the
landmarks registration accuracy. To measure the quality of a given groupwise
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registration, we first project all reference landmarks in the common space using
the transforms τ i. Then, for each landmark category (Clavicle L., Clavicle R.
etc...), we compute a mean position p. The quality criterion for this category
is then defined as the average distance to p. We also compute the global max-
imum individual distance to p as a robustness criterion. Note that reference
landmarks are only present for images in groups A and B. As a consequence,
when registering groups A and C together, the criterion is restricted to images
of group A. Note that landmarks are never used by any of the tested algorithm
during registration. Experiments were carried out with a 24-core computer (48
logical cores with hyperthreading) with 128 GB of RAM.

We have compared our FROG approach with star-groupwise voxel-based
methods NiftyReg (Modat et al., 2008, 2014) and ANTs (Avants et al., 2008).
As the test data contains high resolution images, other dense methods could
not be applied. As an example, Elastix (Klein et al., 2010) and GLIRT (Wu
et al., 2012) require to store all images in-core, and GRAM (Hamm et al., 2010)
exhibits a computational complexity which is too high for our data sets (see
section 2.1).

5.2. Implementation and settings

We have implementation FROG in C++, and its code source is publicly
available at https://github.com/valette/frog.

In the complexity analysis, the dominant terms are |I|v log v for keypoint
extraction, |P|2 for match computation and |I||P|c log c for optimization, where
|I| is the number of volumes, v is the number of voxels for each volume, |P| is
the total number of extracted keypoints, and c is the number of control points
at the highest resolution.

Our pyramid of splines contains three levels, with a grid step of 200mm,
100mm, 50mm respectively. For each volume, we keep up to 20000 keypoints
(see Agier et al. (2016)). For each resolution level, we compute 200 gradient
descent iterations, with α set to 0.02.

5.3. Comparison with NiftyReg and ANTs

With NiftyReg, we have used the groupwise niftyreg run.sh script. This
script computes a star-groupwise registration (see Figure 1(a)) and generates a
template model from all input volumes. It alternates between mean reference
computation and pairwise registration of all images with this reference. By
default, 15 iterations of groupwise registration are applied: the first 5 iterations
use rigid registration, the 10 last iterations use nonrigid registration.

With ANTs; we have used the antsMultivariateTemplateConstruction2.sh
script. This script computes a star-groupwise registration (see Figure 1(a)) and
generates a template model from all input volumes. It alternates between mean
reference computation and pairwise registration of all images with this reference.
By default, 5 iterations of groupwise registration are applied: the first is a rigid
registration, the 4 others being nonrigid. The best results with ANTs have been
obtained using mutual information as registration criterion.
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Figure 6: Convergence of the minimized criterion and mean distance when registering group
A. Distances are in mm. The blue curve is the square root of the criterion given by Equation
(8) which reflects the average distance between matched keypoints. The black curve repre-
sents the global mean landmark distances. For the first 50 iterations, we use an anisotropic
scale+translation model. For the next iterations, we use B-splines over 3 different resolution
levels, 200 iterations for each level.

5.3.1. Group A

Detailed results are given by Tables 1 and 2.
ANTs processes the 20 volumes in 62.5 hours, with a mean registration

distance of 15.5 mm. To further increase the speed of ANTs, we switched the
registration subsampling factor sf from 1 to 2 and 4 (i.e. setting the shrinking
factor parameter to 12x6x4x2 and 20x12x6x4, respectively). Setting sf = 2
increases both speed and registration quality: the 20 volumes are registered
in 13.8 hours with a mean distance of 11.3 mm. In that case, there is no
wrongly registered volume. Setting sf = 4 further increases computing speed
but decreases output quality: the 20 volumes are registered in 9.4 hours with
a mean distance of 14.0 mm. These results are presented in Table 2, where
ANTS-S2 and and ANTS-S4 refer to setting sf to 2 and 4, respectively.

NiftyReg registered group A in 67 hours on our test machine, yielding an
average landmark distance of 9.6± 7.5mm.

FROG was able to successfully register all volumes of group A, while being
much faster than NiftyReg and ANTs. Registration took 10mn on our test
machine, and less than 30mn on a 4-core laptop. The two-tailed Welch’s t-test
shows that our approach (Table 1 third column) achieves an average landmark
distance (8.7 ± 7.2mm) significantly lower to that of NiftyReg (9.6 ± 9.6mm,
p− value = 0.006) and ANTs (11.3± 7.9mm, p− value = 3.3.10−18). We have
also added experiments to table 2, varying the number of kept keypoints for
each image to respectively 40k, 30k, 10k, 5k and 2.5k. Note that as expected,
accuracy increases with the number of extracted keypoints, but saturates above
30k points per volume. Hence we have fixed the number of kept points to 20k.
Figure 6 shows the convergence curve for

√
E (see equation 8) in blue and the

mean landmarks distance during optimization in black. All distances are in mm.
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Table 1 Registering Group A : comparison of landmark average distances (in
mm) between our approach (FROG), NiftyReg and ANTs.

Landmark ANTs NiftyReg FROG

Clavicle L 9.7± 4.6 6.8± 5.1 8.6± 2.4
Clavicle R 9.3± 4.4 7.1± 3.5 7.6± 3.4
Tubercul. L 11.2± 5.4 11.6± 6.1 9.3± 2.4
Tubercul. R 10.9± 5.5 11.7± 5.7 9.6± 5.2
C6 3.5± 2.6 4.1± 1.7 5.3± 2.3
C7 5.0± 3.3 7.6± 3.8 6.7± 4.3
Th1 4.5± 3.0 7.6± 4.2 6.7± 5.6
Th2 4.9± 3.4 6.6± 3.7 6.0± 4.9
Th3 6.1± 4.2 6.9± 3.8 5.7± 4.4
Th4 7.6± 4.3 7.9± 3.4 5.9± 4.6
Th5 8.6± 3.6 8.4± 3.0 6.8± 4.6
Th6 9.6± 3.4 9.9± 3.5 7.8± 5.1
Th7 10.2± 3.4 10.2± 3.8 8.4± 6.1
Th8 10.3± 3.9 11.0± 4.7 8.9± 8.2
Th9 10.8± 4.9 10.8± 3.8 10.8± 9.8
Th10 11.3± 5.4 11.3± 3.6 11.7± 11.1
Th11 12.2± 5.9 11.8± 5.9 13.0± 10.3
Th12 13.4± 6.2 11.8± 7.3 13.5± 9.6
L1 13.3± 6.6 11.9± 7.6 12.7± 9.5
L2 12.8± 6.6 11.6± 8.3 10.6± 7.8
L3 13.1± 7.1 11.0± 8.3 11.6± 6.5
L4 12.8± 7.2 10.0± 7.2 10.1± 6.0
L5 11.4± 6.7 8.4± 6.7 7.8± 6.4
Sternoclav. L 7.9± 5.5 8.5± 5.7 5.4± 4.7
Sternoclav. R 6.6± 3.9 5.0± 4.4 4.9± 3.3
Aortic arch 8.4± 3.2 9.3± 3.7 9.1± 3.9
Trachea bif. 4.5± 3.8 4.5± 4.0 4.6± 2.0
Bronchus L 7.5± 5.5 8.2± 8.6 6.8± 3.6
Bronchus R 5.9± 4.0 6.4± 7.8 4.5± 2.0
Coronaria 9.1± 6.4 10.1± 10.3 7.5± 2.6
Aortic valve 11.8± 7.2 13.7± 10.1 9.4± 3.8
Xyphoideus 16.6± 7.8 15.5± 9.6 13.5± 9.8
Renal pelvis L 17.9± 9.2 10.9± 10.6 7.3± 3.3
Renal pelvis R 20.6± 15.1 16.0± 13.4 11.9± 13.3
Crista iliaca L 9.9± 6.0 9.4± 6.1 9.7± 6.0
Crista iliaca R 10.4± 8.8 10.4± 8.7 9.5± 7.3
Aorta bif. 15.6± 10.5 11.2± 7.3 9.4± 5.4
VCI bif. 12.6± 6.5 9.1± 5.2 8.2± 4.3
Troch. maj. L 19.3± 10.8 15.8± 9.1 15.9± 8.8
Troch. maj. R 18.5± 9.1 16.5± 9.7 14.9± 8.4
Ischiadicum L 11.8± 6.4 4.3± 3.5 4.6± 3.2
Ischiadicum R 10.9± 6.3 4.8± 2.9 5.7± 3.0
Symphysis 15.8± 9.9 10.7± 8.5 10.2± 8.0
Troch. min. L 15.2± 7.7 3.7± 2.0 5.3± 1.9
Troch. min. R 16.6± 5.8 4.1± 2.7 6.1± 3.0
Mean 11.3± 7.9 9.6± 7.5 8.7± 7.2
Maximum 70.6 57.5 65.4

Time (h) 13.8 67.0 0.2

18



(a) Niftyreg (b) FROG

Figure 7: Comparison between our FROG approach and NiftyReg on VISCERAL group A:
landmarks transformed in the common space.

Figure 7 compares reference landmarks transformed in the common space,
for NiftyReg and our approach. Figure 8 summarizes the statistics with boxplots
of landmark errors obtained with ANTs (group A), NiftyReg (group A), FROG
(group A) and FROG (groups A+C). On each plot, the central mark is the
median, the edges of the box are the 25th (Q1) and 75th percentiles (Q3), the
whiskers (W = 1.5) extend to the most extreme data points not considered
to be outliers, and the outliers are plotted individually if they are larger than
Q3 + W (Q3 − Q1). W = 1.5 corresponds approximately to +/- 2.7 standard
deviation and 99.3 coverage if the data is normally distributed. Notches draw
comparison intervals. Two medians are significantly different at the 5% level if
their intervals do not overlap. The interval endpoints are the extremes of the
notches. If the notches in the box plot do not overlap, we can conclude with
95% confidence that the true medians do differ.

5.3.2. Group B

Figure 9 compares groupwise registration of group B. We have extracted
bone structures from each volume and superposed them in the common space,
using (a) ANTs, (b) NiftyReg and (c) FROG. NiftyReg yields a better result on
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Figure 8: Landmark distances on the set of reference landmarks transformed into the common
space. From left to Right : ANTs (group A), NiftyReg (group A), FROG (group A), FROG
(groups A+C). Distances are in mm.

the torso and hip regions, but still lacks robustness for the legs. Our approach
is much more robust to variability, as most of its error is concentrated around
the patient arms, which are very challenging regions due to different shoulder
poses. The average landmark distance (reported in the second block of Table 2)
obtained with our approach is 9.2 ± 8.3mm, significantly lower than NiftyReg
(12.8±11.6mm) and ANTs (17.9±27.3mm). Note that landmark distances are
larger than the ones obtained on group A, for all algorithms (Ours, NiftyReg,
ANTs). One reason is that the images of group B were obtained without any
contrast agent. As a consequence, soft tissue is much less visible on group B,
which could explain lower accuracy.

5.3.3. Groups A and C

When registering groups A and C together, ANTs yields a mean distance
of 44.7 mm. One explanation is that computing the average image from 83
full body scans with a high variability can lead to a very blurred image when
registration is not perfect (top right image in Figure 10). As a consequence,
registration against a blurry reference image degenerates.

Registering groups A and C together took 324 hours with NiftyReg and has
resulted in an average landmark distance of 9.3± 9.3mm.

Our algorithm registers groups A and C within 1.3 hours and yields an av-
erage distance of 8.5± 6.9mm, statistically better than NiftyReg (9.3± 9.3mm,
p − value = 0.0045) and significantly better than ANTs (44.7 ± 31.6mm). We
have estimated a rate of outliers of 70% when registering groups A and C to-
gether. Note that our previous work based on rigid groupwise registration (Agier
et al., 2016) yields an average error of 31.7mm.
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Table 2 Comparison between our approach, ANTs and NiftyReg on the VIS-
CERAL data set. Our approach extracts 20k points per volume, except for lines
2 to 6 where the number of points vary between 40k and 2.5k

.
Groups N Algorithm Max d (mm) d (mm) Time (h)

A 20 FROG 65.4 8.7± 7.2 0.2
A 20 FROG (40k) 67.5 8.7± 7.1 0.4
A 20 FROG (30k) 65.9 8.7± 7.1 0.2
A 20 FROG (10k) 71.6 9.2± 7.6 0.1
A 20 FROG (5k) 63.9 9.9± 8.1 0.1
A 20 FROG (2.5k) 68.9 10.9± 8.7 0.1
A 20 FROG (SIFT) 70.9 11.6± 9.7 4.2
A 20 ANTs-S4 152.7 14.0± 17.0 9.4
A 20 ANTs-S2 70.6 11.3± 7.9 13.8
A 20 ANTs 150.2 15.5± 16.7 62.5
A 20 NiftyReg 57.5 9.6± 7.5 67.0

B 20 FROG 64.9 9.2± 8.3 0.5
B 20 ANTs-S2 231.0 17.9± 27.3 36.0
B 20 NiftyReg 105.0 12.8± 11.6 135.0

AC 83 FROG 60.4 8.5± 6.9 1.3
AC 83 ANTs-S2 198.0 44.7± 31.6 82.8
AC 83 NiftyReg 64.0 9.3± 9.3 324.0

ABC 103 FROG 61.7 8.7± 7.0 1.9

5.3.4. Overall

Table 3 shows timings for our algorithm as well as the average number of
matches per volume for several scenarios. Note that even if the number of key-
points per volume, is constant (20k), the average number of matches increases
with the number of volumes. As an example, when registering group A, each
keypoint is matched with 190k/20k = 9.5 points on average. But when regis-
tering groups A and C together, each keypoint is matched with 820k/20k = 41
points on average. In terms of memory footprint, our approach and NiftyReg
never needed more than 10 GB, while we observed a peak memory consump-
tion greater than 65 GB with ANTs at full resolution, and 34 GB when setting
sf = 2.

Finally, figure 10 shows the average of the registered images. From top to
bottom: ANTs, NiftyReg and our algorithm, when registering Group A (left)
and groups A and C (right). NiftyReg and ANTs provide a sharper image than
our approach when registering group A. When registering groups A and C (83
images), the resulting average image is blurred for ANTs, whereas our approach
remains robust to the number of images. NiftyReg still yields an average image
sharper than ours. Hence, our approach is not very effective for template con-
struction (average image). But, in contrast with NiftyReg and ANTs, our hub-
less approach does not need any average image during registration. Our average
image is only a byproduct used for comparison, computed after the registration.
Moreover, image-based criteria have been shown unreliable to evaluate registra-
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(a) ANTs (b) NiftyReg (c) FROG

Figure 9: Bone structures extracted from a registered group of 20 whole-body CT volumes
of the VISCERAL group B. Groupwise registration has been carried out with (a) ANTs,
(b) NiftyReg and (c) our algorithm. Our algorithm exhibits a better overall robustness to
variability.

Group A Groups A + C

(a) ANTS

(b) NiftyReg

(c) Ours

Figure 10: Average images obtained with (a) ANTS, (b) NiftyReg, (c) Ours. Left : when
registering group A. Right : when registering groups A+C.
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(a) NiftyReg (10000100) (b) FROG (10000100)

(c) NiftyReg (10000105) (d) FROG (10000105)

Figure 11: Comparison of transformed images for two individuals (10000100 and 10000105 in
VISCERAL Group A): Despite providing a sharper mean image (see figure 10) NiftyReg some-
times yields transformations that are less realistic than FROG. This can be easily observed
on some oversized lumbar vertebrae in 10000100. FROG also sometimes yields unrealistic
deformation, such as the chest boundary in 10000105.

tion accuracy (Rohlfing, 2012). We observed that even though NiftyReg yields
a sharp mean image, individual transforms can be unrealistic. As an example,
figure 11 compares the images 1000100 and 1000105 from VISCERAL group A
transformed by NiftyReg and FROG. The overlay grid reflects the deformation
for all transforms. Some lumbar vertebrae are clearly oversized with NiftyReg
on image 1000100. On the other hand, FROG sometimes also deforms images in
an unrealistic way, as shown on the chest boundary in image 1000105. Finally,
although our average image is not the sharpest, landmark distances (table 1)
are on average lower with our approach.

We have also registered all three groups A, B, and C in less than 2 hours,
with a reasonable error, which illustrates the ability of our approach to register
more than 100 images, mixing images obtained with or without constrast agent.

5.4. Using 3D-SIFT

We have carried out an experiment with points defined with 3D-SIFT (Rister
et al., 2017), visible on line 7 in table 2. Keypoint extraction is much slower
than our 3D-SURF approach, which results in a registration time of 4.2 hours,
while yielding larger landmark distances (11.6mm for 3D-SIFT vs 9.0mm for
3D-SURF). This shows that our approach is able to exploit various keypoint
types, and also illustrates the relevance of choosing 3D-SURF over 3D-SIFT, as
reported initially by Bay et al. (2006).
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Table 3 Number of matches per volume and processing times for our algorithm.
n is the number of registered volumes, |M|/n the number of matches per vol-
ume. Columns I, II and III indicate the time spent (in minutes) for keypoint
extraction, matching and optimization, respectively.

Data n |M|/n I (mn) II (mn) III (mn) Total (mn)

A 20 190k 6.3 1.5 2.2 10.0
B 20 190k 24.4 1.5 2.6 28.5

AC 83 820k 30.2 28.5 20.6 79.3
ABC 103 1019k 52.8 31.3 32.8 116.9

5.5. Limitation

The limitation of our proposal is related to the requirement of a sufficient
number of inlier keypoints in each cell of the grid at the highest resolution. In
other words the size of the finest grid used is locally limited by the keypoint
density. This results in a limit in registration accuracy. We observed this limita-
tion in processing the MRI LONI Probabilistic Brain Atlas (LPBA40) (Shattuck
et al., 2008), containing 40 human brain images of resolution 256 × 124 × 256.
Processing time for the whole dataset is less than 10 minutes. The resulting
average image is displayed in Figure 12. The accuracy of our generic approach
is not sufficient to correctly handle small structures inside the brain. Hence, our
approach is not as accurate as algorithms dedicated to brain processing such as
GLIRT(Wu et al., 2012), which reports an average overlap ratio of 67% (about
20% higher than ours). Yet our algorithm converges in a short time, which
illustrates the versatility of our approach. In practice, our approach is able to
extract about 10k keypoints for each brain volume of LPBA40, while more that
100k points have been extracted from each volume of the VISCERAL database.
Thus, for the VISCERAL dataset, we retained only the most significant points,
discarding weak points. This was not possible for the LPBA40 database. This
comes from the fact that brain MRI images are less sharp and contain fewer
voxels than full boddy CT scans. Hence, a possible improvement could be to
develop a keypoint extractor more adapted to brain MRI, which could yield
much more keypoints and therefore increase registration accuracy.

6. Conclusion

Our algorithm is able to register CT and MRI volumes in reasonable time
and low memory consumption. Experimental results illustrate its robustness to
variability, and comparisons with NiftyReg and ANTs show that our algorithm
yields lower mean landmark distances within a much shorter computation time.
Our approach is currently suited for large databases of relatively high resolution
images. As an example, brain databases generally contain images with 256 ×
256× 256 voxels, but our approach is not as accurate as state-of-the-art voxel-
based approaches for these resolutions. A possible improvement could be a
keypoint extractor dedicated to MRI images with fewer voxels and fewer sharp
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Figure 12: Average brain when registering the LPBA40 MRI brain dataset with our approach.

features. But many applications could already benefit from our approach. As an
example, the low complexity and memory requirement of our algorithm allows
to use a full groupwise nonrigid registration algorithm as a preliminary task for
applications such as atlas based segmentation, machine learning classification
and longitudinal studies. A preliminary application using FROG is proposed
in Franchi et al. (2019), where we predict patient gender from 3D CT images
using groupwise registration.

As depicted in figure 1, we use a full graph approach. As a consequence,
the number of matches grows faster than the number of images. Hence, the
number of matches per images increases with the number of images (see Table
3). While adding more images has the potential to produce more matching
keypoints to improve registration accuracy, our results did not demonstrate
statistically significant improvement.

Our method is oblivious to point cloud sources and is not restricted to SURF
keypoints and splines. Hence, investigating keypoint descriptors tailored to
medical images and richer transform models are two very interesting research
perspectives for our work. Computing features with machine learning seems a
promising option in this context.

As our algorithm provides a robust approach able to handle keypoints be-
tween different patients without needing dense voxel information during opti-
mization, it paves the way towards fast algorithms able to deal with large data
sets. We showed that although our approach exhibits quadratic complexity and
memory footprint, it is able to register more than one hundred images in a short
time (less than 2 hours). With our current hardware (128GB RAM), we project
to be able to register as many as 1000 volumes with FROG, in about 125 hours.
Note that this would still be less than the time taken by NiftyReg to register
83 volumes. Scaling the algorithm to even larger data sets (more than 10000
patients) is still a challenging problem.
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