
HAL Id: hal-01977847
https://hal.science/hal-01977847v1

Submitted on 11 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Source Code Analysis with a Temporal Extension of
First-Order Logic

David Come, Julien Brunel, David Doose

To cite this version:
David Come, Julien Brunel, David Doose. Source Code Analysis with a Temporal Extension of
First-Order Logic. 21st Brazilian Symposium on Formal Methods, Nov 2018, SALVADOR, Brazil.
�hal-01977847�

https://hal.science/hal-01977847v1
https://hal.archives-ouvertes.fr

Source Code Analysis with a Temporal Extension of
First-Order Logic

David Come, Julien Brunel, and David Doose
Email: firstname.name@onera.fr

ONERA, Toulouse, France

Abstract. Formal methods and static analysis are widely used in software devel-
opment, in particular in the context of safety-critical systems. They can be used
to prove that the software behavior complies with its specification: the software
correctness. In this article, we address another usage of these methods: the ver-
ification of the quality of the source code, i.e., the compliance with guidelines,
coding rules, design patterns.
Such rules can refer to the structure of the source code through its Abstract Syn-
tax Tree (AST) or to execution paths in the Control Flow Graph (CFG) of func-
tions. AST and CFGs offer complementary information and current methods are
not able to exploit both of them simultaneously. In this article, we propose an
approach to automatically verifying the compliance of an application with speci-
fications (coding rules) that reason about both the AST of the source code and
the CFG of its functions. To formally express the specification, we introduce
FO++, a logic defined as a temporal extension of many-sorted first-order logic. In
our framework, verifying the compliance of the source code comes down to the
model-checking problem for FO++. We present a correct and complete model
checking algorithm for FO++ and establish that the model checking problem of
FO++ is PSPACE-complete. This approach is implemented into Pangolin, a tool
for analyzing C++ programs. We use Pangolin to analyze two middle-sized open-
source projects, looking for violations of six coding rules and report on several
detected violations.

1 Introduction

In today’s complex systems, software is often a central element. It must be correct (be-
cause any miscalculation can have severe consequences in human or financial terms) but
also meet other criteria in term of quality such as readability, complexity, understand-
ability, uniformity Whereas formal methods and static analysis (such as abstract
interpretation, (software) model checking or deductive methods) are effective means to
ensure software correctness, code quality is often dealt with by manual peer-review,
which is a slow and costly process as it requires to divert one or several programmers
to perform the review. However, formal methods and static analysis can also be used to
improve code quality. They can perform automatic and exhaustive code queries, look-
ing for bug-prone situations that hinder quality [4], enforcing the use of API functions
in Linux code [16] or statically estimating test coverage [3].

It is essential that end-users can specify what they are looking for since each project
has conventions, norms, and specificity that must be taken into account. There are many

existing formalisms to specify queries, and they either use the Abstract Syntax Tree
(AST) as their source of information [10,4,14,12,20] or the Control Flow Graph (CFG)
of functions [6]. However, each one provides additional and complementary informa-
tion. CFGs provide an over-approximation of the possible executions of a function as
some paths may never be taken. Conversely, the AST allows finding additional struc-
tural properties that are not present in the CFG. These structural properties can be about
a function (its name, its declared return type, possible class membership, . . .) but they
can also be related to classes and objects of the software (inheritance relationship, class
attributes, global variables, . . .). However, there is currently no framework for reasoning
simultaneously and adequately over these two sources of information.

This is why we propose an approach to verifying the compliance of source code
with user properties that refer both to the CFG of functions and to structural informa-
tion, which is related to the AST. To formally express the user properties, we introduce
in section 2 the logic FO++. It is a temporal extension of many-sorted first-order logic.
On the one hand, many-sorted first-order logic is used to handle structural information.
The use of a sorted logic makes it easier to manipulate the variety of possible structural
elements that may be found (classes, attributes, types, ...). On the other hand, temporal
logics are used to specify properties on the ordering of statements in the different paths
within the CFGs of functions. Each statement description within a temporal formula,
i.e., each atom of a temporal formula, is a syntactic pattern of a statement (no value
analysis is addressed).

The source code verification procedure is then reduced to the FO++ model-checking
problem on an FO++ interpretation structure extracted from the source code to analyze.

Illustrating example To illustrate our approach, we consider the C++ source code
shown in listing 1.1 which represents a monitoring system.

1 c l a s s A{} ;
2 c l a s s B{
3 p u b l i c :
4 vo id serA (i n t n) {
5 a += n ;
6 s t o r e () ;
7 }
8 vo id serB (
9 s t r i n g s) {

10 s t o r e () ;
11 i f (s == ” r e s e t ”) {
12 b = ” ” ;
13 }
14 }
15 p r i v a t e :
16 vo id s t o r e () {
17 l o g g e r . l o g (a) ;
18 l o g g e r . l o g (b) ;
19 }
20 i n t a ; s t r i n g b ;
21 Log l o g g e r ;
22 }

Listing 1.1: snippet
for monitoring

ClassDecl
name: B

inheritance: none

AttributDecl
type: Logger
name: logger

FctDecl
ReturnType: void
name: serviceB

ArgDecl
type: string

name: s

BlockDecl

CallExpr
callee: store

IfStmt

CallExpr
callee: operator==

AssignExpr

VarAccess
to: b

Litteral
""

VarAcces
to: s

Litteral
"reset"

Fig. 1: Extract of the AST of B

s == "reset"

t
store()

t
b = ""

empty
empty exit node

s1

s2

s3

s4

Fig. 2: CFG of serB

In this source code, the values of the attributes are recorded and formatted through
objects of type Log , which have a log function. We want to make sure that for each

class that has an attribute of type Log , each private attribute is logged in each public
function, and not modified after being logged. Property 1 expresses this requirement
more precisely, in natural language.

Property 1 (Correct usage of logger). For each class C that has an attribute of type Log ,
there is a single function that logs all private attributes. That function must always be
called in each public function, and the attributes must not be modified later on.

In property 1, the text in italics refers to aspects of the property that are related to
the AST whereas aspects related to paths within the CFG of functions are underlined.

Notice that in listing 1.1, class A does not have a Log attribute and thus is not con-
cerned by the property, whereas B does. In B , store fulfills the requirements of logging
all privates attributes (namely a and b), and serA is compliant with the property. How-
ever, serB is not because b can be reset after the call to store . This is clearly visible
on fig. 2, which illustrates serB ’s CFG. Indeed, on the control flow path s1-s2-s3, b
is assigned in s3 whereas store was called in s1. We show in this article that FO++

allows the user to express formally property 1 in a natural way, and Pangolin is then
able to detect automatically that listing 1.1 is not compliant.

Article layout The rest of the article is organized as follows: section 2 defines the syntax
and semantics of FO++. Section 3 presents a model checking algorithm for FO++ and
establishes its correctness and termination. The model checking problem for FO++ is
also proved to be PSPACE-complete. Section 4 details FO++ specialization for C++
and section 5 presents the architecture of our prototype Pangolin. Then section 6 details
the result of some experiments we conducted with Pangolin and section 7 details the
related work.

2 FO++ definition

FO++ is defined as a temporal extension of many-sorted first-order logic. Two temporal
logics are available within FO++: Linear Temporal Logic (LTL) and Computation-Tree
Logic (CTL). LTL considers discrete linear time whereas CTL is a discrete branching
time logic (at each instant, it is possible to quantify over the paths that leave the current
state). Both are well-established logics and tackle different issues. CTL is natural over
graph-like structure as it offers path quantification, whereas LTL offers a path-sensitive
analysis, and its ability to refer to the past of an event is convenient.

The extension is done through a process close to parametrization [8]. Intuitively,
the parametrization of a formal logic L1 by a formal logic L2 consists of using complete
L2 formulas as atoms for L1. When evaluating L1 formulas, L2 atoms are evaluated
according to L2 rules. Here, the process is more complicated since some of the elements
in the first-order domain (intuitively, the functions in the source code) are associated
with interpretation structures for temporal formulas (intuitively, the CFGs of functions).
Syntactically, the temporal extension is done by adding two specific binary predicates
modelsLTLand modelsCTL. If f is a first-order variable and φ is an LTL formula (resp.
a CTL formula) then modelsLTL(f ,φ) (resp. modelsCTL(f ,φ)) is true if f denotes a
function in the source code and if the CFG of f satisfies the formula φ according to

LTL (resp. CTL) semantic rules. This yields a very modular formalism as it is easy to
incorporate new logics for specifying properties over CFGs.

2.1 Syntax

Terms Let Si be a collection of sorts, V a finite set of variables, and F a set of function1

symbols. Each variable and constant belongs to a unique sort and each function symbol
f has a profile S1,× . . .× Sn → Sn+1, where n is the arity of f (a 0-arity function is a
constant) and each Si is a sort.

The set TS of FO++ terms of sort S is defined inductively as follows: if x is a
variable of sort S then x ∈ TS; if f ∈ F has the profile S1,× . . .× Sn→ S, and for each
i ∈ 1..n, ti ∈ TSi then f (t1, . . . , tn) ∈ TS. The set T =

∪
TSi denotes all FO++ terms.

Atoms The set P of predicate symbols consists of (1) classical predicate symbols, each
of which is associated with a profile S1,× . . .×Sn, where n is the arity of the predicate
and each Si is a sort, and (2) two special 2-arity predicates symbols: modelsLTL and
modelsCTL. An atom in FO++ consists of either a usual predicate applied to FO++

terms, or the special predicate modelsLTL (resp. modelsCTL) applied to an FO++ term
and an LTL (resp. CTL) formula. Considering the latter case, i.e., modelsLTL and
modelsCTL, the first argument of both predicates is a term (in practice: a variable repre-
senting a function in the source code under analysis). The second argument of modelsLTL
(resp. modelsCTL) is an LTL (resp. CTL) formula as defined in section 2.2.

Formulas FO++ formulas are defined as follows: ⊤,⊥ are formulas, if a is an atom
then a is also a formula; if S is a sort and Q is a formula, then ¬Q,Q∨Q,Q∧Q,
Q ⇐⇒ Q,Q =⇒ Q,∀x : S Q,∃x : S Q are also formulas.

A sentence is an FO++ formula without free-variable. In the rest of the paper, all
formulas are sentences.

Semantics

Interpretation structure An FO++ formula is interpreted over a structure M = (D,
EK S ,eks,has eks, IF , IP). The domain D is a set in which terms are interpreted. It is
partitioned into disjoint sub-domains DS, one for each sort S; EK S is a set of Enhanced
Kripke Structures (EKS) as defined in section 2.2, which are used to interpret temporal
formulas. has eks(x) : D →{true, false} is a function, which indicates whether a value
in the domain has an associated EKS. eks : D→EK S is a partial function, which maps
some elements of D to an EKS2. IF defines an interpretation for functions in F such
that if f ∈ F has a profile S1,× . . .×Sn→ Sn+1 then IF(f) : DS1 ,× . . .×DSn→DSn+1 . IP
defines an interpretation for predicates in P such that if p ∈ P has a profile S1× . . .×Sn
then Ip(p)⊆DS1× . . .×DSn is the set of all tuples of domain values for which p is true.

IF and IP are specific to the programming language used for the project under anal-
ysis, whereas D and EK S are even specific to the program itself.

1 not to be confused with functions in the software under study
2 for any x ∈D if has eks(x) if and only if eks(x) is defined

Environment An environment is a partial function from the set V of variables to the
domain D . If σ is an environment, x a variable in V and d a value in D , then σ[x← d]
denotes the environment σ1 where σ1(x) = d and for every x ̸= y,σ1(y) = σ(y).

From an environment σ and an interpretation IF for functions, we define an interpre-
tation Kσ : T→D for terms in the following way: for each variable x in V,Kσ(x) = σ(x)
and for an arbitrary term f (t1, . . . , tn), Kσ(f (t1, . . . , tn)) = IF(f)(Kσ(t1), . . . ,Kσ(tn))

Satisfaction rules Let M be an interpretation structure, σ an environment and Kσ an in-
terpretation for terms according to this environment. We define the satisfaction relation
of FO++ as follows3:

M,Kσ |= ¬Q iff M,Kσ ̸|= Q

M,Kσ |= Q1∧Q2 iff M,Kσ |= Q1 and M,Kσ |= Q2

M,Kσ |= ∃x : S Q iff there is an a ∈DS such that M,Kσ[x←a] |= Q

M,Kσ |= p(t1, . . . , t1) iff (Kσ(t1), . . . ,Kσ(tn)) ∈ IP(p)

M,Kσ |= modelsCTL(x,ψ) iff has eks(x) and eks(x),Kσ |=CT L ψ
M,Kσ |= modelsLTL(x,ψ) iff has eks(x) and eks(x),Kσ |=LT L ψ

If Q is a formula without any free variable, we write M |= Q for M,K/0 |= Q where
/0 denotes an empty environment.

2.2 Temporal formulas

Syntax The syntax of LTL and CTL slightly differs from their standard definition, in
which atoms are atomic propositions (see, e.g., [19]). Here, since we are in a first-order
context, an atom is a predicate in a set PREDEKS (disjoint from P) applied to terms.
We call TATOMS the set of atoms of temporal formulas. The predicates in PREDEKS
describe syntactic properties of the statements within a CFG (whereas predicates in P
denotes (static) structural properties about the source code under study). For instance,
in order to reason about the fact the current statement of a CFG contains a call to a
certain function, we can define a predicate call(·) in PREDEKS, such that call(x) is
true if there is a call to the function denoted by the first-order variable x in the current
statement of the CFG.

The syntax of LTL is inductively defined as follows: TATOMS are valid LTL for-
mula. If ψ1,ψ2 are valid LTL formulas, so are ψ1 ◦ψ2,¬ψ1,Xψ1, Gψ1, Fψ1, ψ1 U ψ2,
Yψ1, Oψ1, Hψ1 and ψ1 S ψ2 where ◦ is a binary Boolean connective.

CTL syntax is similar to LTL syntax, except that the temporal operators are A◦−,
E◦−, A[−U−], E[−U−] with ◦ ∈ {X,F ,G}.

Semantics The slight change of formalism is reflected into the interpretation struc-
tures used. Instead of using traditional Kripke structures, FO++ uses Enhanced Kripke
structures. An Enhanced Kripke structure is simply a Kripke structure where the valu-
ation function associates each state with the interpretation of predicates in PREDEKS,
instead of a set of atomic propositions.

3 for conciseness, we only provide the semantics of a minimal set of Boolean connectives

EKS formal definition Let B = (S,→, IEKS ,J K) be an EKS. S is a set of states, →⊆
S× S is the transition relation between states (written ◦ → ◦), IEKS ⊆ S is the set of
initial states and JK : PREDEKS× S→ P(Dn) associates a predicate p of arity n with
its interpretation in a state s, denoted JpKs (i.e., the set of all tuples of concrete values
for which the predicate is true).

Interpretation rules for temporal formulas The satisfaction of LTL and CTL formulas
is defined in the standard way (see, e.g., [19]), except for atoms, which are built from
predicates instead of atomic propositions, as explained above. Given an environment σ,
an interpretation Kσ, a predicate p ∈ PREDEKS, a state s and some terms v1, . . . ,vn, the
satisfaction relation for temporal atoms is defined as follows 4:

s,Kσ |= p(v1, . . . ,vn) iff (Kσ(v1), . . . ,Kσ(vn)) ∈ JpKs (1)

An example of FO++ formula is given in section 4.3.

Remark 1 (Difference with FO-CTL and FO-LTL). Notice that a more classical way
of combining first-order and temporal logics results in FO-LTL [15] and FO-CTL [5].
Intuitively, FO-LTL allows a free combination of LTL and first-order symbols and is
evaluated on a succession of states on which the value of some variables depends. FO-
LTL adds to LTL the possibility to quantify on the values that variables in a given state.
FO-CTL is used to specify property on a single first-order Kripke structures. These
structures have transitions with conditional assignments and FO-CTL offers to quantify
over the variable used in those conditional assignments.

Strictly speaking, we cannot compare their expressive power with respect to FO++

because the interpretation structures are different. The main difference is due to the
mapping of some domain elements to temporal interpretation structures, which is called
eks in FO++ semantics. In FO++, a quantification over the elements that are mapped to
temporal interpretation structures comes to an indirect quantification over these tempo-
ral interpretation structures, which is not possible in the case of FO-LTL and FO-CTL.
On the other hand, for pragmatic reasons, we restrict FO++ syntax not to allow quan-
tifiers in the scope of temporal operators, whereas they are allowed in FO-CTL and
FO-LTL.

3 FO++ model checking

In this section, we investigate the model checking problem for FO++.

3.1 Model checking algorithm

Given an FO++ formula ϕ and an interpretation structure M, the model checking al-
gorithm MC++(M,ϕ) returns true if M satisfies ϕ, and false otherwise. To do so,
we chose to rely on an approach that is similar to rewriting systems. This way, we can
decouple the basic steps of the algorithm (rewriting rules) from the way these steps are

4 it applies to both |=LTL and |=CTL and is thus simply denoted with |=

ordered (the strategy). This offers a flexible and modular presentation of the algorithm.
In our implementation, we also took advantage of this structure to log the different steps
of the algorithm for a potential offline review. Notice, however, that we are not strictly
in the scope of higher-order rewriting systems such as defined in [18] because some of
our rules include conditions that refer to the interpretation structure.

MC++ terms The terms that are handled by the algorithm MC++, called MC++ terms,
are similar to FO++ formulas but include elements of the semantic domain, which are
useful for quantifier unfolding. The FO++ formula ϕ is first translated into an FO++

term, which is then successively rewritten until reaching true or false.
For each sort S, any element d ∈ DS is considered as a constant of sort S. Then, if

p is a predicate symbol of profile S and d ∈ DS is an element of the semantic domain
associated with S in M, then p(d) is a valid MC++ term. Besides, a quantified formula is
represented by a term in which all values that are necessary for the quantifier unfolding
are listed. For example, considering a sort S with an associated semantic domain DS =
{d1, . . . ,dn}, the formula ∀x : s Q is represented by the term allD(x.Q,< d1, . . . ,dn >),
and the formula ∃x : s Q is represented by the term someD(x.Q,< d1, . . . ,dn >).

Rewriting first-order terms The rewriting rules for the first-order part of the logic
are split into three categories: the rules related to the evaluation of FO++ functions and
non temporal predicates, the rules that perform unfolding of quantifiers and the rules
that evaluate Boolean connectives.

Functions and predicates Functions and predicates are evaluated once all their ar-
guments are domain constants. The values are determined by their respective inter-
pretation functions. The rewriting rules are p(t1, . . . tn)⇝ true if (t1, . . . , tn) ∈ P(p),
p(t1, . . . tn)⇝ false if (t1, . . . , tn) /∈ P(p) and f (t1, . . . tn)⇝ I(f)(t1, . . . , tn), where each
ti denotes a value in the domain DSi .

Unfolding quantifiers Unfolding a universal quantifier (respectively an existential one)
transforms the quantified expression x.Q into a conjunction (respectively disjunction)
of an expression where the bounded variable x is replaced by a constant d of the do-
main which has not been considered yet (denoted Q[x/d]), and the original quantified
expression without d1 in the list of values to consider. Quantifiers with an empty list of
values are treated in a classical way. Formally, the following four rules are defined:
allS(x.Q,< d,Y >) ⇝ Q[x/d]∧allS(x.Q,< Y >) allS(x.Q,< >) ⇝ true

someS(x.Q,< d,Y >)⇝ Q[x/d]∨someS(x.Q,< Y >) someS(x.Q,< >)⇝ false

Constant propagation Boolean constants true and false are propagated upward also
in classical manner. And, Or and Imply connectives are evaluated in short-circuit man-
ner from left to right and if short-circuit evaluation is not conclusive, then the term is
rewritten into its right subterm. Rules for equivalence connective only applies if both
subterms are boolean constants and so do rules for negations.

Rewriting temporal predicates Rewriting a temporal predicate modelsLTL(f ,ψ) or
modelsCTL(f ,ψ) into a Boolean value is done in two steps:

1. a reduction algorithm generates a classical temporal model checking problem out
of f and ψ;

2. the application of a model checking algorithm to this new problem.

Reduction algorithm For generating an equivalent model checking problem from
modelsLTL(f ,ψ) or modelsCTL(f ,ψ) (when f has an EKS), the reduction algorithm
operates in three steps:

1. for each call to a predicate in PREDEKS with a unique set of parameters, it gen-
erates an atomic proposition. For instance, for p ∈ PREDEKS, t1 : D, . . . , tn : D , a
call to p(t1, . . . , tn) gives an atomic proposition id(p, t1, . . . , tn). Notice that at this
step, because of previous rewriting rules, the parameters of these predicates are
necessarily constants (corresponding to values in the domain) and not first-order
variables;

2. a classical interpretation structure for temporal logic formulas M f (a transition
system, the states of which are labeled with atomic propositions) is built out of
eks (f), the CFG associated with f . The structure of M f copies the graph from
eks (f), with an extra final state that loops back to itself. For a state s in eks
(f), if (t1, . . . , tn) ∈ JpKs, its dual in M f is labeled with the atomic proposition
id(p, t1, . . . , tn);

3. the new formula ϕ′ to analyze over M f is ϕ where each call p(t1, . . . , tn) is substi-
tuted by id(p, t1, . . . , tn).

Strategy used The algorithm MC++ uses a leftmost-outermost strategy to rewrite the
formula, which can be described as follows. (1) Try to apply some rule to the toplevel
term. (2) If it is not possible then recursively apply the strategy to the leftmost subterm
(considered as the new toplevel term), and then (3) try again to apply a rule to the
toplevel term. If it is still not possible then apply a rule to the right-hand side subterm.

3.2 Correctness and termination

In this section, we establish that the algorithm MC++ is correct and terminates.

Proposition 1 (Correctness). Let M be an interpretation structure and ϕ an FO++

formula. If MC++(M,ϕ) returns true then M |= ϕ, and if MC++(M,ϕ) returns false
then M ⊭ ϕ.

Proof. (sketch) It is straightforward to define a semantics for MC++ terms similarly
to FO++ formulas. Then, we can easily prove that each rewriting rule preserves the
semantics of MC++ terms. ⊓⊔

Proposition 2 (Termination). Let M be an interpretation structure and ϕ an FO++

formula. MC++(M,ϕ) terminates and returns either true or false.

Proof. We show that any application of the first-order logic evaluation rules ends (which
therefore stands for the chosen strategy). To do so, we consider the following function
s as defined in equation (2), the value of which decreases with each application of the
rules.

s(ϕ)

(s(ψ)+1)n+1 if ϕ = ◦(x.ψ, [d1, . . . ,dn]) for ◦ ∈ {allS,someS}
s(ψ1)+ s(ψ2) if ϕ = ψ1 ◦ψ2, for any binary◦operator
s(ψ)+1 if ϕ = ¬ψ
1+∑n

i=1 s(di) if ϕ = f (d1, . . . ,dn), f either a function or predicate
1 otherwise

(2)

Proof (sketch) For conciseness, we only show the demonstration for the evaluation of
functions and predicates (equation (3)), as well as for quantifiers unfolding (equations
(4) and (5)). Other cases are similar and straightforward. First of all, notices that s is
minored by 1.

s(p(d1, . . . ,dn)) = 1+
n

∑
i=1

s(di)> 1 = s(false) = s(true)

s(f (d1, . . . ,dn)) = 1+
n

∑
i=1

s(di)> 1 = s(I(f)(d1, . . . ,d1))

(3)

The second inequality holds because I(f)(d1, . . . ,d1) is a constant for the domain and
its value by s is 1. By similarity between allS and someS for unfolding the quantifiers,
we only consider the case of allS.

s(allS(x.P,< d1,d2, . . . ,dn >)) = (s(P)+1)n+1

= s(P)(s(P)+1)+(s(P)+1)n

> s(P[x/d1])+(s(P)+1)n

= s(P[x/d1]∧allS(x.P,< d2, . . . ,dn >))

(4)

s(allS(x.P,< >)) = (s(P)+1)1 > 1 = s(true) (5)

Moreover, generating the equivalent classical temporal model checking problem ends,
just as its evaluation with a classical temporal model checking algorithm. This proves
that the algorithm ends. Besides, since for every MC++ term different from true and
false, some rewriting rule is applicable (this can be proved by induction on MC++

terms) then MC++ terminates either with true or with false. ⊓⊔

The completeness directly follows from proposition 1 and proposition 2.

Corollary 1 (Completeness). Let M be an interpretation structure and ϕ an FO++

formula. If M |= ϕ then MC++(M,ϕ) = true and if M ⊭ ϕ then MC++(M,ϕ) = false

3.3 Complexity

Proposition 3. The model checking problem of FO++ is PSPACE-complete.

Proof. Hardness: FO++ subsumes first-order logic, whose model-checking problem
(also called query evaluation) is PSPACE-complete [22]. Hence FO++ model-checking
is at least as hard as FO model-checking FO++ model (i.e FO++ model-checking is
PSPACE-hard).
Membership: Let us consider the algorithm MC++ presented above with inputs M (an
interpretation structure) and ϕ (an FO++ formula). We consider n as the size of the
problem input, i.e., the size of ϕ (number of connectives, FO++ terms and atoms) plus
the size of M (size of the domain, of predicate and function interpretation, plus the
number of nodes of the different EKS).

The size of the initial MC++ term is in O(n). An application of an unfolding rule
to an MC++ term introduces a larger MC++ term and increases the memory space by
at most n. Indeed, at most n new memory is required for the new expression (Q[x/d] in
the unfolding rules). All other rules decrease the memory consumption as they reduce
the number of MC++ terms. By using the leftmost-outermost strategy and our two
unfolding rules the algorithm unfolds the quantifiers in depth-first manner. Let k be the
maximum number of nested quantifiers. The algorithm uses at most (k+ 1) ∗ n space
to represent “unfolded” terms before reaching a term where all the first-order variables
are substituted by a domain constant. For such a term, the only possible applicable
rewriting rules are either the rules for Boolean connectives (which decrease the space
needed to represent the term) or the rule for functions and predicates. Functions and
non temporal predicates required a constant space to be evaluated. Evaluating temporal
predicates is a two steps process. The first step is the reduction algorithm that produces
a classical temporal model-checking problem. Its overall size m is smaller than n as both
the Kripke structure and the temporal formula mimics the inputs of reduction algorithm
and as their respective sizes are components of n. Evaluating this problem is done with a
polynomial amount of memory with respect to m (and therefore with respect to n) since
model checking for CTL (resp. LTL) is PTIME-complete (resp. PSPACE-complete).
Therefore, the space needed for the whole algorithm is polynomial in n, hence the result.

⊓⊔

4 Application to C++ source code analysis

FO++ construction remains generic as it does not mention any particular programming
language. To be used as a specification language, it must be instantiated for a specific
programming language. This means defining appropriate sets for sorts, functions and
predicate symbols, as well as a method for extracting an interpretation structure (includ-
ing interpretation for functions and predicates) from the source code. In this section, we
detail the instantiation of FO++ for C++.

4.1 FO++ for C++

Sort The sorts indicate the nature of the different structural elements we can reason
about. In a C++ program, the different structural elements are declarations such as

functions, classes, variables or types. Both classes and types have their own sort. Within
functions, we distinguish between free functions and member functions, and operate a
further distinction for constructors and destructors. We also operate a distinction on
variables between attributes, local variables, and global variables. Hence, FO++ for
C++ has a total of 9 sorts.

Functions and non temporal predicates FO++ functions are used to designate an el-
ement in the code from another related element, such as the unqualified version of a
const-qualified type or the class in which an attribute was defined. Non-temporal pred-
icates are used to query information about the structural elements. This includes for in-
stance parenthood relationship between elements (i.e an attribute a belongs to class c),
visibility, inheritance relationship between classes, types and their qualification (const
or volatile for instance). The semantics of functions and non-temporal predicates com-
plies with the C++ standard [1]. Table 1 lists some functions and predicates with their
informal semantics. The full list of functions and predicates is available on the Pangolin
repository5.

Predicate Informal semantics
isAttributeOf (a,c) true iff a refers to a field of c
isMemFctOf (f ,c) true iff f is a member function within c

isPrivate(f), isPublic(f) true iff f is private (resp. public) within its class
type(a,T) true iff the type of a is T

Table 1: Small subset of structural predicates in the FO++ instantiation for C++

4.2 Extracting an interpretation structure

Domain Extracting the domain D from an AST consists of traversing the AST and
collecting the various declarations in order to know the sort of each domain element.
Fig. 3a shows domain D obtained from the source code shown in listing 1.1, partitioned
into four sub-domains (one for each relevant sort).

Generating EK S If the full definition of a C++ function f is present in the AST of
the C++ source code, then has eks(f) is true and eks(f) is defined in the following
manner. We consider the CFG of f , where each node only contain a single statement (a
basic block is not included into a node, but is split into a succession of nodes instead).
The EKS states and transitions of eks(f) are then directly taken from the nodes and
edges of the CFG of f , except that the state corresponding to the exit node of the CFG
has an infinite loop on itself to ensure infinite traces and comply with LTL and CTL
semantics. Function calls are considered like any other statement, hence there is neither

5 https://gitlab.com/Davidbrcz/Pangolin

https://gitlab.com/Davidbrcz/Pangolin

interprocedural analysis nor specific recursive calls handling. In each state of the EKS,
the valuation of the predicates in PREDEKS directly follows from the syntax of the
statement that is in this state. Notice that some paths of the EKS may never be taken
by the program execution, because, e.g., a condition of a while loop is always evaluated
to false during execution. Since we do not perform value analysis, our method still
considers such paths. This is in accordance with our objective to analyze the quality of
the code, instead of checking its semantic correctness.

Fig. 3b shows the EKS for serB with two elements from PREDEKS: call, and
assign. The predicate call(x) is true on states such that there is a call to function x (the
arguments do not matter) and assign(x) is true on states such that there is an assignment
to x (i.e. x = . . .).

A, B

a,b,logger

serviceA
serviceB
store

CLASS

ATTR

MEMFCT

n,s

 int
 std::string
 class A
 class B

LOCALVAR

TYPE

(a) Domain D for listing 1.1. Elements in
the partitions are typeseted , sorts are cap-
italized. Empty partitions are not shown.

[assign] = {(b)}

 [call] = {(store)}

(b) Enhanced Kripke structure for serB
with two predicates call and assign. The
valuation are shown only when non empty.
The bold arrow denotes the initial state

Fig. 3: Semantic domain partially illustrated

4.3 Example: formalizing log correct usage

To illustrate concretely FO++ for C++, we formalize property 1 in eq. (6). The universal
quantification on c indicates that the property applies to all classes. We then look for a
private attribute l whose type is Log. (The symbol Log is here an FO++ constant.) We
then look at all attributes of class c, and if there is one whose type is Log, then we look
for a function s such that

– Each private attribute a from class c (whose type is not Log) is logged in s (i.e.
there is a call to log on l with a as argument in s). The formalization of this re-
lies on the predicate call log of PREDEKS such that call log(x,y) is true on a
CFG state if there is call of the shape x.log(y) in this state. The CTL formula
AFcall log(l,a) states that in all paths within the CFG of s, there is finally a state
in which call log(l,a) is true.

– For all public functions f , in all paths in the CFG of f , there is at some point a call
to s, and the attribute a is no longer assigned after this call.

∀c : CLASS ∀l : ATTR
(
isAttributeOf (l,c)∧ type(l,Log) =⇒

∃s : MEMFCT (isMemFctOf (s,c)∧name(s,store)∧
∀a : ATTR (isAttributeOf (a,c)∧ isPrivate(a)∧¬type(a,Log) =⇒

modelsCTL(s,AFcall log(l,a))∧
∀ f : MEMFCT (isMemFctOf (f ,c)∧ isPublic(f) =⇒

modelsCTL(f ,AFcall(s)∧AG(call(s) =⇒ AXAG¬assign(a))))))
)

(6)

5 Pangolin

Pangolin6 is a verification engine for C++ programs based on the ideas developed in
sections 2 to 4. Given a rule as a formula in FO++ for C++, Pangolin checks whether
the specification holds on the program. Fig. 4 illustrates this process as well as some of
the internal aspects of Pangolin.

Fig. 4: Pangolin overview

From the user point of view, the specification is written in a concrete syntax of
FO++ for C++ as it is presented in section 4.1. The code to analyze must compile in
order to be examined as Pangolin needs to traverse the code AST to extract an FO++

interpretation structure. This implies that a simple extract of code taken out of its context
cannot be analyzed. For each formula and each file, Pangolin returns true if the formula
holds on the file and false otherwise. It also prints a complete trace of the evaluation
process that can be reviewed. If the formula does not hold, it is possible to find with
this trace the values of the quantified variables that explain algorithm output, hence
providing a counter-example. It also increases the user’s confidence in the correctness
of the implementation.

From an internal point of view, Pangolin consists of two parts: an interpretation
structure extractor and a model checking engine. The extractor follows the specifica-
tion given section 4.2, and is based on Clang and its API libtooling [17]. Clang pro-
vides an up-to-date and complete support for C++, direct access to the code AST and
facilitates the computation of the CFG of a function. Pangolin implements the model

6 Pangolin is available at https://gitlab.com/Davidbrcz/Pangolin

https://gitlab.com/Davidbrcz/Pangolin

checking algorithm presented in section 3, and it relies on nuXmv [9] for evaluating
model checking problems resulting from the reduction algorithm. However, because of
short-circuit evaluation of logical connectives, the model-checking algorithm stops at
the first counter-example found. With this algorithm, to find the next counter-example,
it is necessary either to change the formula to exclude the counter-example that was
found, or to correct the code and then start over the analysis. To find all the possible
counter-examples, Pangolin also implements an alternative algorithm where quantifiers
are unfolded less efficiently, so that all the values for the different quantifiers are ex-
plored, which makes it possible to find all the counter-examples at once.

6 Experiments

We study the conformity of two open-source projects with respect to six generic prop-
erties that address good programming practices accepted for C++. The first project
is ZeroMQ, a high-performance asynchronous messaging framework. The second is
MiniZinc [21], a solver agnostic modeling language for combinatorial satisfaction and
optimization problems. We picked these two projects because they are active popular
C++ projects with a middle size code base (around 50k SLOC each).

6.1 Properties to test

Table 2 lists the six properties we want to verify on ZeroMQ and Minizinc. P1 mainly
ensures that the version of a function that can be executed from anywhere in a class hi-
erarchy is unambiguous, hence bringing clarity for maintainers and reviewers. Rule P2
forbids to mix into a single class virtual functions and overloaded arithmetic operators.
Indeed, a class with virtual functions is meant to be used in polymorphic context. But it
is difficult to write foolproof and useful arithmetic operators that behave coherently in
a polymorphic context.

P3 ensures that there no unused private elements (function and attributes) within
a class. Indeed, they are only accessible from within the class, and unused private ele-
ments are either superfluous (and hindering code quality) or symptom of a bug. P4 must
be enforced because the C++ programming language specifies that virtual function res-
olution is not performed within constructors and destructors. Hence, when there is a
call to a virtual function in either the constructors or destructors, the callee is likely not
to be the intended function.

The last two rules are to enforce const-correctness. The driving idea behind the
const correctness is to prevent the developer from modifying by accident a variable or
an object because it would result in a compilation error. Variables marked as const are
immutable whereas const member functions cannot alter the internal state of an object.
Thus, any non-constant element must be justified: a variable assigned at most once must
be constant (P5), and objects with only calls to constant member functions must also be
constant as well (P6).

For the sake of conciseness, we only show (in equation (7)) the formal translation of
property P57. The rule uses the word modified, whose meaning must be specified by the

7 but all rules are available in Pangolin repository

formalization. Here, we say that a variable x is modified when it is to the left of a binary
operator (i.e x $= where $ is (eventually) one operator among ˆ ,+ ,- ,/ ,* ,& ,| ,<< ,>>) or
is the argument of an unary operator among increment, decrement or addressof (i.e
x++ ,++x ,x-- ,--x ,&x). For clarity, in equation (7), modified(x) is an abbreviation for a
disjunction of 15 predicates (one for each operator). Also, the formalization is done in a
“negative” way: we look for a function f in which a not constant variable v is modified
at least once (the first AF . . . part) and never again afterwards AG · · · =⇒ AXAG¬. . ..

Name Definition
P1 A virtual function shall not be defined more than once in an inheritance hierarchy
P2 A class should not have virtual functions and overloaded arithmetic operators
P3 In all classes, there are neither unused private attributes nor private functions
P4 In all classes, no virtual functions shall be invoked from any destructor or constructors
P5 In all functions, all local variables modified at most once must be marked as constant
P6 In all functions, any locally declared object on which only const member functions are

called must also be marked as constant

Table 2: Properties to verify

∃ f : FREEFCT
(
∃v : LOCALVAR

(
locallyDeclared(v, f)∧¬isConst(v)∧

modelsCTL(f ,AFmodified(v)∧AG(modified(v) =⇒ AXAG¬modified(v)))
))

(7)

6.2 Results and analysis

Table 3 summarizes the experiments on ZeroMQ and MiniZinc. For each rule and each
project, columns CE shows the total number of counter-examples found and column
Timing the average time over 10 runs with its standard deviation, both in seconds.

Defects found For property P1, all counter-examples found are real violations of the
rule. Pangolin found no counter-example for property P2. Regarding P3, Pangolin found
for ZeroMQ 3 unused attributes and 1 for MiniZinc. Many of the functions that Pangolin
found, many were, in fact, called. Two were virtual and inherited from a parent class
but with reduced visibility as it is allowed by C++. They were therefore called from a
function of the parent class. The rest of the functions were used but not as specified.
For instance, they were used as callbacks or called on an object of the same type as
the class (this is allowed in C++ because between 2 objects of the same type, there is
no encapsulation). Concerning P4, Pangolin found one counter-example on MiniZinc,
which was a true violation. Many of the results for rules P5 and P6 are real counter-
examples for the specification but are legitimate code. Indeed, for P5 does not take into
account that a variable may change through a pointer or a reference, while rule P6 does
not take into account public attributes of a class that may change.

Property Project CE Timing Property Project CE Timing (s)

P1
ZeroMQ 7 36 (2.30)

P4
ZeroMQ 0 821 (210.2)

MiniZinc 8 44 (1.31) MiniZinc 1 104 (12.39)

P2
ZeroMQ 0 90 (6.4)

P5
ZeroMQ 59 225 (2.9)

MiniZinc 0 64 (1.5) MiniZinc 170 13136 (321.4)
P3 ZeroMQ 3 2015 (110.2)

P6
ZeroMQ 2 176 (5.9)

(attributes) MiniZinc 1 910 (10.2) MiniZinc 12 942 (16.31)
P3 ZeroMQ 105 2778 (138)

(functions) MiniZinc 2 780 (19.2)

Table 3: Summary of the defects found in ZeroMQ and MiniZinc with the average
required time to perform the analysis

With hindsight, these false alarms could have been removed with a more precise
rule. For instance, for property P6, there two approaches to design a more precise rule.
On the one hand, one could exclude classes with public attributes from the property (i.e
in all functions, any locally declared object whose class does not have public attributes
and on which only const member functions are called must also be marked as constant).
On the other hand, one could into account the public attributes for determining if an
object should be constant (In all functions, any locally declared object on which only
const member functions are called and no public attributes are changed must also be
marked as constant).

Performance The tests were performed on Intel(R) Xeon(R) CPU E5-1607 v3 @ 3.10GHz
with 32GB of memory. Properties involving temporal properties are slower than sheer
structural properties. Indeed, there is an overhead to evaluate temporal predicates. This
overhead is the sum of the time spent to evaluate of the classical model-checking prob-
lem on the one hand and of communication time on the other hand. The former varies
with the complexity of the formula and of the EKS, whereas the latter is constant. The
execution time of P5 and P6 is radically different between the 2 projects (despite a com-
parable size) because a particular Minizinc function contains more than 3000 lines and
temporal predicates are long to evaluate over it. This shows that Pangolin can scale and
find defects in real code bases.

7 Related work

There are many existing code representations and associated formalisms to specify
queries. A more detailed comparison of existing code query technologies can be found
in [2] or in [11]. ASTLOG [10] is a project for examining directly a program AST with
a Prolog-based language. Thus, it allows to directly examine the very structure of the
AST, whereas our approach exploits the AST to gain information and does not directly
analyze it. In [20], the authors generate UML models from the AST of the code and use
Object Constraint Language [7] to perform queries. HERCULES/PL [14] is a pattern
specification language for C and Fortran programs on top of the HERCULES frame-
work. It uses the target language and HERCULES specific compiler annotations (such

as pragma in C) for specifying the code to match. In [12], the authors define TGraphs, a
graph representation of the whole AST of the program, and they define GReQL, a graph
querying language for performing queries. QL [4] uses a special relational database that
contains a representation of the program extracted from its AST. Queries are expressed
in a programming language similar to SQL, and are compiled to Datalog. Like all these
methods (expect ASTLOG), our method works with a code representation that is built
from the AST outside the functions. However, unlike all the above-mentioned methods,
in addition to the AST, our approach also examines the body of functions through paths
within their CFG, and allows for sophisticated reasoning about these paths through
temporal logics.

On the other hand, Coccinelle [6] focuses on the CFG of a C function instead of
its AST. It uses CTL-VW (a variant of FO-CTL) to describe and retrieve a sequence of
statements within a CFG. This reasoning about execution paths within a CFG was an
inspiration for the temporal aspect of FO++. But, unlike Coccinelle, FO++ can specify
a property about several functions through the first-order reasoning over the code AST.
However, Coccinelle has a code transformation feature, which FO++ does not offer.

In [13], the authors detect design patterns described in formalism based on a com-
bination of predicate logic and Allens interval-based temporal logic. The complete for-
malism is latter translated into Prolog to effectively search the design pattern. However,
its semantic model is not provided (especially how functions are handled). FO++ offers
a more modular combination mechanism for logics and integrates two discrete temporal
logics (CTL and LTL), which we think are more natural to use than the Allen’s temporal
logic, given that the statements are discrete events.

8 Conclusion

This paper presents a formal approach to source code verification in which the require-
ments can simultaneously refer to execution paths in the CFG of functions and to struc-
tural information that comes from the source code AST. To formalize the requirements,
we introduce the logic FO++, which is a temporal extension of many-sorted first-order
logic. We propose a model checking algorithm for FO++ and prove its correctness, ter-
mination and that FO++ model checking problem is PSPACE complete. This approach
has been implemented in Pangolin, a tool for analyzing C++ programs. With it, we
analyzed two middle-sized open-source projects (ZeroMQ and MiniZinc), looking for
violations of 6 good-practice coding-rules and found several occurrences of them.

As future works, there are two directions: user interaction, and expressive power.
An input language closer to real code and better user feedback would improve user in-
teraction. The expressive power of the method would be increased with interprocedural
and multi-file analysis and the adequate specification formalism to handle it.

References
1. ISO International Standard ISO/IEC 14882:2014(E) Programming Language C++
2. Alves, T.L., Hage, J., Rademaker, P.: A comparative study of code query technologies. Pro-

ceedings - 11th IEEE International Working Conference on Source Code Analysis and Ma-
nipulation, SCAM 2011 pp. 145–154 (2011)

3. Alves, T.L., Visser, J.: Static Estimation of Test Coverage. In: 2009 Ninth IEEE International
Working Conference on Source Code Analysis and Manipulation. pp. 55–64 (sep 2009)

4. Avgustinov, P., De Moor, O., Jones, M.P., Schäfer, M.: QL: Object-oriented Queries on Re-
lational Data. Ecoop 2016 pp. 1–25 (2016)

5. Bohn, J., Damm, W., Grumberg, O., Hungar, H., Laster, K.: First-order-CTL model checking.
Lecture Notes in Computer Science 1530 LNCS, 283–295 (1998)

6. Brunel, J., Doligez, D., Hansen, R.R., Lawall, J.L., Muller, G.: A foundation for flow-based
program matching. ACM SIGPLAN Notices 44(1), 114 (2009)

7. Cabot, J., Gogolla, M.: Object Constraint Language (OCL): A Definitive Guide. In:
Bernardo, M., Cortellessa, V., Pierantonio, A. (eds.) Formal Methods for Model-Driven En-
gineering: 12th International School on Formal Methods for the Design of Computer, Com-
munication, and Software Systems, SFM 2012, Bertinoro, Italy, June 18-23, 2012. Advanced
Lectures, pp. 58–90. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

8. Caleiro, C., Sernadas, C., Sernadas, A.: Parameterisation of Logics. In: Fiadeiro, J.L. (ed.)
Recent Trends in Algebraic Development Techniques. pp. 48–63. Springer Berlin Heidel-
berg, Berlin, Heidelberg (1999)

9. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A., Mover, S.,
Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: International Conference
on Computer Aided Verification. pp. 334–342. Springer (2014)

10. Crew, R.F.: ASTLOG: A Language for Examining Abstract Syntax Trees. In: Proceedings
of the Conference on Domain-Specific Languages on Conference on Domain-Specific Lan-
guages (DSL), 1997. p. 18. DSL’97, USENIX Association, Berkeley, CA, USA (1997)

11. Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Feature location in source code: a taxon-
omy and survey. Journal of software: Evolution and Process 25(1), 53–95 (2013)

12. Ebert, J., Bildhauer, D.: Reverse Engineering Using Graph Queries. In: Engels, G., Lewer-
entz, C., Schäfer, W., Schürr, A., Westfechtel, B. (eds.) Graph Transformations and Model-
Driven Engineering: Essays Dedicated to Manfred Nagl on the Occasion of his 65th Birthday,
pp. 335–362. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

13. Huang, H., Zhang, S., Cao, J., Duan, Y.: A practical pattern recovery approach based on both
structural and behavioral analysis. Journal of Systems and Software 75(1-2), 69–87 (2005)

14. Kartsaklis, C., Hernandez, O.R.: HERCULES/PL: The Pattern Language of HERCULES.
Proceedings of the 1st Workshop on Programming Language Evolution pp. 5–10 (2014)

15. Kuperberg, D., Brunel, J., Chemouil, D.: On finite domains in first-order linear temporal
logic. Lecture Notes in Computer Science 9938 LNCS, 211–226 (2016)

16. Lawall, J.L., Muller, G., Palix, N.: Enforcing the use of API functions in linux code. Proceed-
ings of the 8th workshop on Aspects, components, and patterns for infrastructure software -
ACP4IS ’09 p. 7 (2009)

17. Lopes, B.C., Rafael, A.: Getting Started with LLVM Core Libraries (2014)
18. van Raamsdonk, F., Raamsdonk, F.V.: Higher-Order Rewriting. In: Narendran, P., Rusinow-

itch, M. (eds.) Rewriting Techniques and Applications. pp. 220–239. Springer Berlin Hei-
delberg, Berlin, Heidelberg (1999)

19. Ryan, M.H., Mark: Logic in Computer Science (2004)
20. Seifert, M., Samlaus, R.: Static source code analysis using ocl. Electronic Communications

of the EASST 15(0) (2008)
21. Stuckey, P.J., Feydy, T., Schutt, A., Tack, G., Fischer, J.: The MiniZinc Challenge 20082013.

AI Magazine 35(2), 55–60 (2014)
22. Vardi, M.Y.: The Complexity of Relational Query Languages (Extended Abstract). In: Pro-

ceedings of the Fourteenth Annual ACM Symposium on Theory of Computing. pp. 137–146.
STOC ’82, ACM, New York, NY, USA (1982)

	Source Code Analysis with a Temporal Extension of First-Order Logic

