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ABSTRACT: 1 

The paper presents laboratory measurements of mobilized local friction along piles submitted 2 

to very large numbers of axial loading cycles. The experimental approach used is of the physical 3 

modelling type and consists in testing an instrumented prototype pile-probe installed and loaded 4 

in specimens of saturated clay reconstituted in a calibration chamber. The procedure developed 5 

for evaluating the local friction mobilized upon monotonic loading and further evolution during 6 

the application of displacement-controlled cycles, is described. After installation of the probe, 7 

a succession of monotonic and cyclic displacement-controlled loading phases, carried out on a 8 

reference kaolinite is presented and analysed. During the cyclic sequence, carried out up to 105 9 

cycles, an initial phase of friction degradation is observed, followed by a reinforcement phase, 10 

which keeps going until the end of the test. A coefficient of evolution is defined allowing to 11 

quantify, during application of the cycles, the evolution of mobilized friction in terms of 12 

degradation or reinforcement of friction. The evolution of the friction mobilized during the 13 

application of the cycles is interpreted in terms of the combination of excess pore water pressure 14 

generation and dissipation. A comparison is made between maximum static shear mobilized 15 

before the cycles and after the cycles, showing the influence of the cyclic sequence on this 16 

quantity. Elements are finally given on the repeatability of the test, showing a fairly good level 17 

of repeatability.  18 

 19 
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1 – INTRODUCTION 23 

The study of the local friction behaviour of pile-soil interface constitutes an important issue in 24 

geotechnical engineering, related to the improvement of the design of foundations of railway 25 

bridges and offshore structures with an emphasis on wind turbines and oil and gas platforms. 26 

In particular, in the case of piles submitted to cyclic axial loadings due to environmental or 27 

industrial actions, this frictional behaviour is particularly complex and further experimental and 28 

theoretical research is still needed. 29 

As far as experimental research is concerned, physical modelling approach based on calibration 30 

chamber testing appears to be a good way to better understand, under well-controlled laboratory 31 

conditions, the local behaviour of the soil-pile interface under cyclic axial loading.  32 

Since the beginning of the years 80’, experimental research has been developed on this subject, 33 

very often in relation with the offshore oil production industry and results have been presented, 34 

of the physical modelling approach type, using various types of probes representing sections of 35 

model piles, tested in soil specimens under various boundary and confinement conditions. Both 36 

sands and clays have been studied, most of the time for small to medium numbers of cycles, 37 

say less than 104 cycles. 38 

As far as sands are concerned, one may cite the studies published by Chan and Hanna (1980), 39 

Lee and Poulos (1990), Al-Douri and Poulos (1995), Chin and Poulos (1996), Le Kouby et al. 40 

(2004), Lehane and White (2004), Tsuha et al. (2012). In most studies, the authors find a 41 

significant degradation of the mobilized friction during application of the cycles. 42 

As far as clays are concerned, more specifically related to the subject of this paper, one may 43 

cite the results published by Poulos (1981a), Matlock et al. (1982), Goulois et al. (1985) or 44 

Procter and Khaffaf (1987). In particular, Poulos (1981a) conducted a number of small-scale 45 

laboratory tests on a model pile section (20 mm in diameter) in reconstituted saturated clay 46 

specimens (152 mm in diameter), up to maximum number of 1000 cycles, showing that two-47 
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way displacement-controlled cycles cause significant reduction in pile-shaft skin friction which 48 

may result in failure of the model pile section. In particular, this author noted the strong 49 

influence of the amplitude of the cyclic displacement on the importance of the friction 50 

degradation. 51 

Matlock et al. (1982) have conducted axial cyclic displacement-controlled load tests on a model 52 

pile section (2.5 cm in diameter) inserted into a confined reconstituted soft clay in a calibration 53 

chamber (76.2 cm diameter specimens). These authors have pointed out a significant reduction 54 

in mobilized friction during the application of the cycles (maximum number of 300 cycles 55 

applied). 56 

As far as the behaviour of piles under very large numbers of cycles is concerned (several 104 to 57 

106 cycles) corresponding to fatigue type of behaviour, it appears that very few if no 58 

publications are available. In the case of sands, Bekki et al. (2013) have presented results 59 

concerning the evolution of local friction along an instrumented pile-probe jacked into a sand 60 

specimen reconstituted in a calibration chamber, for large numbers of displacement-controlled 61 

cycles (105 cycles). The results obtained show that after an initial degradation phase of the local 62 

skin friction (cyclic strain-softening), a reinforcement phase (cyclic strain-hardening) develops 63 

up to very high number of cycles (105). However, for the case of fine-grained soils, typically 64 

saturated clays, no publication has been found on the subject in the literature. 65 

Within this context, the objective of this paper is to present a complete laboratory prototype 66 

setup associated to a specific experimental procedure (physical modelling approach) which 67 

have been developed in order to study the local friction behaviour of soil-pile interface 68 

submitted to very large numbers of axial loading cycles, in the case of reconstituted saturated 69 

clay. After a description of the testing setup and of the experimental procedure developed, a 70 

typical test is presented and analysed, showing the interest of this prototype setup for better 71 
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understanding the mechanisms of local friction evolution along piles submitted to large to very 72 

large numbers of axial loading cycles. 73 

 74 

2 – TESTING SETUP 75 

2.1 The calibration chamber testing setup 76 

The calibration chamber used in this research allows to reconstitute uniform soil specimens, 77 

524 mm in diameter and 700 mm high. Independent vertical and horizontal stresses may be 78 

applied to the specimens, allowing to generate isotropic or anisotropic initial states of stress, K0 79 

conditions, etc. The vertical stress is applied to the specimen through a large diameter bottom 80 

piston, the horizontal stress being applied through a water pressure confining the specimen 81 

contained in a neoprene membrane. Figure 1 presents a functional scheme of the calibration 82 

chamber showing the different parts of the setup. This calibration chamber is based on the same 83 

working principle as the ones described by Huang et al. (1988), Tumay and de Lima (1992) and 84 

Voyiadjis et al. (1993). The chamber itself is incorporated in a guiding and loading mechanical 85 

framework shown in figure 2. This framework allows the chamber to be moved and adjusted in 86 

translation and rotation on the rail track system, as shown in the figure. The four columns 87 

loading frame is equipped with two hydraulic jacks: a long stroke (1 m) 100 kN standard jack, 88 

allowing to perform displacement-controlled (0.1 to 100 mm/s adjustable displacement rate) 89 

push down operations, typically installation of probes, penetrometer testing, etc.; and a 90 

servocontrolled hydraulic actuator allowing to perform precise force or displacement-controlled 91 

loading operations, within the monotonic and cyclic ranges. Figure 3 presents a general view 92 

of the experimental setup. 93 

This system has first been developed and used for sand testing, with development of a specific 94 

procedure for reconstitution of well-controlled sand specimens (dry and saturated) for carrying 95 
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out research on cyclic pressuremeter testing (Dupla and Canou 2003), on micropiles behaviour 96 

(Le Kouby et al. 2004) and on the behaviour of piles under cyclic loading (Bekki et al. 2013). 97 

 In order to study the behaviour of piles installed in saturated clay, complementary pieces of 98 

equipment as well as a specific experimental procedure have been recently developed and are 99 

presented in this paper. The main piece of equipment developed is a large size consolidometer 100 

described below. 101 

 102 

2.2 New consolidometer developed for testing saturated fine-grained soils 103 

The consolidometer developed is a rigid wall reservoir composed of two adjustable halves 104 

(Plexiglas tube reinforced with metallic annular parts), equipped with a top and bottom draining 105 

plates, which allows to reconstitute 524 mm diameter and 600 to 800 mm high specimens of 106 

saturated clay under K0 conditions (no lateral deformation during the consolidation process) 107 

starting from a soil slurry. This reservoir is equipped with a loading frame and a double-action 108 

hydraulic jack which allows to consolidate the specimen by application of constant force 109 

increments to the top plate (Figure 4(a) and Figure 4(b)). The hydraulic jack is powered by a 110 

hydro-pneumatic pump which allows to apply controlled pressure steps to the jack and therefore 111 

controlled force increments. The jack piston is equipped with a force transducer and a long 112 

stroke “wire” displacement transducer which allow to monitor force and displacement during 113 

the consolidation process. Vertical as well as radial drainage circuits are available and may or 114 

may not be both activated during the consolidation process. 115 

 116 

2.3 The instrumented pile-probe 117 

This prototype probe has been developed, within the framework of physical modelling research 118 

on piles, in order to make direct and independent measurements of tip resistance and local shaft 119 

friction representative of values occurring along a pile shaft. Figure 5 shows a simplified cross 120 
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section together with a view of the probe. The probe has a cross section of 10 cm2 121 

(diameter of 36 mm), similar to standard penetrometers. The conical tip is equipped with a 122 

20 kN precision force transducer which measures the tip resistance upon loading. A friction 123 

sleeve is located on the shaft, far enough from the tip (240 mm above the tip), in order to 124 

minimize interactions between tip resistance and sleeve friction. The sleeve is 11 cm long 125 

(sleeve surface of 124.4 cm2) equipped with a ± 5kN load sensor. The surface of the friction 126 

sleeve, as well as a significant part of the probe body, have been specially threaded in order to 127 

ensure a perfectly rough interface with respect to friction mobilization. 128 

 129 

2.4 – Experimental procedure  130 

In order to prepare the initial clay slurry to be consolidated, dry clay powder is progressively 131 

added and thoroughly mixed with water, using a portable adjustable speed mixer, in order to 132 

prepare, in a large plastic container (200 l) a homogeneous clay slurry at a water content of 133 

about 1.5 times the liquid limit of the clay. This initial water content agrees fairly well with the 134 

recommendations suggested by Sheeran and Krizek (1971) as well as with the work of different 135 

authors (Anderson et al. 1991; Anderson et al. 2006; Cardoso and Nogueira 2013). 136 

Once the preliminary mixing has been completed, the slurry is covered with a plastic film to 137 

prevent water from evaporating and left to soak for 48 hours to insure complete homogenization 138 

of the water content within the mixture. Finally, the slurry is mixed a second time for about 30 139 

minutes in order to obtain a better homogenization.  140 

The slurry is then poured from the preparation reservoir into the consolidometer using a long 141 

tube which avoids air entrapment into the slurry during the process (Figure 6 (a)). A thin layer 142 

of silicon grease has first been applied on the inner wall of the consolidometer with addition of 143 

a thin plastic film in order to minimize parasite side friction during the consolidation process 144 

and ease the “unmolding” process” of the specimen after transportation onto the calibration 145 



 8 

chamber base. The loading frame is then adjusted and fixed on top of the consolidometer 146 

reservoir. The consolidation process is then initiated by applying successive increasing load 147 

increments up to the maximum value selected (Figure 6 (b)). For each load increment applied, 148 

the consolidation process takes place and the next force increment is only applied when the 149 

major part of the primary consolidation has been obtained under the given load. 150 

During the application of each load increment, the applied force and top plate displacement are 151 

monitored, which allows to obtain the consolidation curve in terms of settlement versus time. 152 

After the consolidation process has been completed, the loading frame is removed. The 153 

reservoir is transported and adjusted on the bottom piston of the calibration chamber with a 154 

travelling crane (Figure 6 (c)). The two parts of the consolidation reservoir are then untighten, 155 

separated and carefully removed, not to disturb the clay specimen (Figure 6 (d)). The top end 156 

plate is then adjusted on top of the specimen as well as the lateral confinement rubber membrane, 157 

using a specially designed PVC tube internally equipped with the membrane “stuck” against it 158 

and slowly lowered around the specimen (Figure 6 (e)).  159 

The lateral confinement cell and the top cover of the calibration chamber are then adjusted and 160 

tightened. Then lateral and vertical chamber pressures are progressively increased in order to 161 

decrease the negative excess pore water pressures existing inside the specimen and finally 162 

retrieve the state of effective stress initially generated in the consolidometer, with no residual 163 

excess pore water pressure (Figure 6 (f)). This final state is obtained after full stabilization of 164 

the vertical piston of the calibration chamber base. The specimen of saturated clay is then ready 165 

for further use.   166 
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3 – DESCRIPTION AND ANALYSIS OF A TYPICAL TEST 167 

3.1 - Material used  168 

This typical test, called Test 1, has been carried out on a specimen of pure saturated kaolinite. 169 

The reference clay used, called Speswhite, is an industrial clay, that has been chosen in France 170 

as a reference clay for physical modelling purposes in geotechnics (in particular centrifuge and 171 

calibration chamber testing). Some of the geotechnical properties of this clay, as determined by 172 

the authors, are given in table 1. The grain size distribution curve of the deflocculated Speswhite 173 

clay has been determined using the sedimentometry method. It is shown in Figure 7, together 174 

with the curve given by the supplier. 175 

 176 

3.2 Clay specimen characteristics  177 

For this test, the clay specimen has been consolidated in the calibration chamber to a final 178 

vertical effective stress σ’v0 of 125 kPa and a final effective horizontal stress σ’h0 of 72 kPa 179 

corresponding to an estimated value of K0 equal to 0.58. In the consolidometer, the initial 180 

consolidation of the specimen has been achieved in four steps, corresponding to successive 181 

vertical stresses of 5, 15, 45 and 125 kPa. Figure 8 shows the corresponding settlement and 182 

vertical deformation versus time curves corresponding to the four successive load increments 183 

applied. The permeability and consolidation coefficient of the clay under this state of stress 184 

have been determined based on oedometer tests, giving k = 2.10-9 m/s and cv = 2.10-7 m2/s 185 

 186 

3.3 Installation of the pile-probe 187 

After final consolidation of the specimen in the chamber, the pile-probe was first installed into 188 

the clay using the displacement-controlled long stroke hydraulic jack which allows to push the 189 

probe at a constant displacement rate (Figure 6 (g)). This installation process is representative 190 

of full displacement piles. The displacement rate used in this test was 1 mm/s. The probe was 191 
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pushed into the clay specimen until the friction sleeve was vertically centred within the 192 

specimen, corresponding to a penetration length of 460 mm of the tip into the specimen. 193 

Figure 9 presents the penetration curves obtained in terms of tip resistance, local friction and 194 

total force applied on top of the probe versus tip penetration depth during the installation 195 

process. It must be noted here that during the installation process as well as all subsequent 196 

loading operations, the boundary drainage of the specimen remains open. 197 

The tip resistance increases rapidly during the initial phase of the penetration process 198 

(Figure 9(a)), down to a penetration depth of about 100 mm where a plateau is reached (about 199 

0.25 MPa), corresponding to steady state conditions, accounting for a fairly good uniformity of 200 

the clay specimen. 201 

The local friction starts to be mobilized when the friction sleeve gets into the specimen 202 

(Figure 9(b)), for a penetration depth of about 250 mm of the tip. The friction then increases to 203 

progressively reach an almost stabilized value close to 10 kPa when the final tip penetration 204 

depth of 460 mm has been reached. 205 

The total load measured on top of the probe is shown in figure 9(c). This curve accounts for the 206 

global mobilization of both tip resistance and friction along the probe shaft. The rapid initial 207 

mobilization of total load corresponds to the initial mobilization of the tip resistance. The 208 

following almost linear increase of the total load observed then corresponds to the progressive 209 

increase of friction surface of the probe getting into the clay specimen. 210 

 211 

3.4 Initial monotonic or « static » loading of the probe 212 

After the installation process has been completed, the probe is left alone without further loading 213 

for about 12 hours. This excess pore pressure dissipation time has been evaluated based on 214 

publications related to piezocone testing (Almeida and Parry, 1985; Kurup et al., 1994). It is 215 

also possible to use a theoretical solution proposed by Parez and Fauriel (1988), considering 216 
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the horizontal permeability of Speswhite (kh=10-9 m/s (Feddema and Breedeveld (2010)) to 217 

evaluate an approximate value of t50 (t50 equals to about 1500 seconds). Therefore, one may 218 

consider that 12 hours is largely enough to allow for practically complete dissipation of excess 219 

pore water pressures generated around the probe during the installation phase. Then, two 220 

successive displacement-controlled quasi-static monotonic compression loadings are applied to 221 

the probe up to failure (4mm total vertical displacement corresponding to about 11% of the 222 

probe diameter) with the servohydraulic actuator (Figure 6 (h)). The first loading is performed 223 

at a displacement rate of 30 μm/min, the second one being performed at a rate of 300 μm/min, 224 

after waiting 2 hours after the first loading. Contrary to the installation phase, for subsequent 225 

static loadings, the pore water pressure variation is mainly restricted to the interface zone for 226 

which only a thin layer of soil around the probe is involved (only a few millimeters thickness) 227 

with high values of local hydraulic gradient. The dissipation time is then significantly lower 228 

(Potts and Martins (1982)). Therefore, a duration of 2 hours is estimated to be enough to 229 

practically obtain full dissipation of EPWP. After each displacement-controlled loading, force-230 

controlled unloading is applied. This procedure allows to evaluate the effect of loading rate on 231 

the results obtained, in terms of the drainage conditions around the probe during loading. 232 

Figure 10 shows the results obtained for the typical test presented. 233 

In terms of tip resistance (Figure 10(a)), for the first static test (30 μm/min displacement rate), 234 

after a rapid initial mobilization of tip resistance for small displacements, the tip resistance still 235 

progressively increases until an almost stable value is reached for the final 4mm vertical 236 

displacement. Concerning the second static test (300 μm/min displacement rate), a stiffer initial 237 

mobilization of tip resistance is observed until a plateau is relatively rapidly reached. It is, 238 

though, interesting to observe that the final values of tip resistance reached in both tests, equal 239 

to about 0.45 MPa, are very close to each other. It is also interesting to note that this value is 240 
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higher than the value of 0.25 MPa reached upon the installation process, carried out at a much 241 

higher penetration rate (1 mm/s). 242 

In terms of local friction mobilization (Figure 10(b)), the responses observed for the two 243 

loadings are very close to each other, with a very rapid mobilization of local friction, followed 244 

by a plateau equal to about 17 kPa obtained in both cases. The only difference concerns a peak 245 

followed by a slight strain softening, observed at a very small displacement for the second 246 

loading. 247 

The results are also shown in terms of the total force measured on top of the probe during 248 

loading (Figure 10(c)), which accounts for the local measurements made in terms of tip 249 

resistance and local friction. 250 

As a conclusion, it is interesting to note that the failure characteristics obtained in terms of local 251 

friction and tip resistance are very similar for the two pre-cyclic static tests and that the second 252 

loading is not significantly affected by the first one. Also, in terms of drainage conditions 253 

around the probe during loading, these conditions should be very similar for the two loadings 254 

(similar levels of excess pore water pressure reached) since the results are very close in terms 255 

of friction and tip resistance. 256 

 257 

3.5 Cyclic loading phase 258 

In order to investigate the influence of large numbers of loading cycles on the mobilization of 259 

local friction and tip resistance, cyclic displacement-controlled loading tests have been carried 260 

out on the probe after the initial static loadings. The main parameters involved in this type of 261 

cyclic tests are the displacement amplitude (alternated or non-alternated signal), the signal 262 

shape, the frequency of the signal and the number of cycles. In the test presented below, 263 

105 cycles have been applied with a cyclic displacement amplitude ρc equal to ±250 μm 264 

(alternated signal) and a frequency of 1 Hz. The shape of the signal is sinusoidal. The local 265 
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displacement amplitude is known to be one of the key factors controlling the evolution of 266 

interface behaviour and the experimental setup developed allows to precisely investigate the 267 

influence of this parameter on the behaviours observed. 268 

Figure 11 shows the corresponding results. Figure 11(a) shows the loading signal applied in 269 

terms of probe head displacement versus number of cycles (the probe is considered to be 270 

perfectly rigid and the probe head displacement is assumed to be the same as the local 271 

displacement at the friction sleeve level). 272 

Figure 11(c) shows the probe response in terms of local friction mobilized versus number of 273 

cycles. A clear degradation process is observed from the very first cycle, which keeps going for 274 

about 50 cycles, corresponding to cyclic strain-softening of the probe-soil interface. Then, a 275 

progressive re-increase of mobilized friction is observed (cyclic strain-hardening) and keeps 276 

going, on an average, up to the end of the cyclic sequence (cycle n° 105) with a slight “re-277 

decrease” observed between cycles 300 and 900. The degradation phenomenon, as observed in 278 

the initial part of the cyclic sequence, has already been observed by different authors on both 279 

model tests and field tests (Chan and Hanna 1980; Poulos 1981b; Poulos 1982; Matlock et al. 280 

1982), but the following cyclic strain-hardening phenomenon (friction reinforcement), has not, 281 

to our knowledge, been previously described for fine-grained soils. In the case of dry sand, a 282 

similar friction reinforcement has been described by Bekki et al. (2013) for large numbers of 283 

cycles (105 cycles). 284 

In terms of tip resistance (figure 11 (b)), a similar trend is observed as for the friction evolution, 285 

with a degradation up to about cycle n° 40, followed by a progressive reinforcement of the tip 286 

resistance mobilization until the end of the test. The total head load response, as measured on 287 

top of the probe, is shown in figure 11(d). The evolution observed for the total head load 288 

globally accounts for the evolutions of both local friction and tip resistance measured 289 

independently. Figure 12 shows typical loading cycles in terms of local friction versus local 290 



 14 

displacement. Figure 12(a) shows cycles corresponding to the degradation phase. A substantial 291 

reduction is observed on the maximum and minimum friction mobilized on each cycle, which 292 

begins at cycle n° 1 and continues up to cycle n° 50. Upon push in phases, the maximum friction 293 

mobilized, which was 17 kPa on the first cycle, drops to 5 kPa on the 50th cycle. Upon pull out 294 

phases, the evolution is similar with a maximum value of about 17 kPa (absolute value) and a 295 

minimum value of about 6 kPa. Figure 12(b) shows typical cycles corresponding to the cyclic 296 

strain-hardening phase which develops from cycle n° 50 to the last cycle (end of the test). It 297 

may be noted that the maximum value of friction obtained, upon push in and pull out phases at 298 

the end of the test (±12 kPa) is still lower than the one reached on the first cycle.  299 

 300 

3.6 Final phase of static loading 301 

After completion of the cyclic sequence, it is important to perform new static compression load 302 

tests in order to quantify the influence of the cycles on the static failure parameters, in terms of 303 

tip resistance and local friction. In a way similar to the two static load tests carried out before 304 

the cyclic sequence, two static compression tests have been performed after the cycles in order 305 

to evaluate the post-cyclic response of the model. For the test presented in this paper, the two 306 

final static tests were performed at the same displacement rate of 300 μm/min up to failure (4 307 

mm vertical displacement). The first post-cyclic static test was performed directly after the end 308 

of the cyclic sequence while the second one was performed after a resting period of 2 hours 309 

after the first static test allowing for full drainage of the soil around the probe.  310 

Figure 13 presents the results obtained in terms of mobilization of local friction and tip 311 

resistance versus vertical displacement. 312 

In terms of local friction (Figure 13(b)), a significant difference may be observed between the 313 

two loadings. For the first post-cyclic loading, a sharp peak of friction (of about 23 kPa) is 314 

obtained for a low displacement (about 800 μm), followed by a significant strain softening 315 
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which keeps going with progressive stabilization for large displacements at an ultimate value 316 

of about 14 kPa. For the second post-cyclic loading, no peak is observed and full mobilization 317 

of friction is obtained for a very small displacement (about 100 μm) followed by a remarkably 318 

constant friction plateau of about 11 kPa, which is maintained up to large displacements. This 319 

second post-cyclic loading response is qualitatively very similar to the initial static response 320 

observed before the cyclic sequence. It is also interesting to note that the ultimate value of 321 

friction obtained at large displacements is very similar for both post-cyclic static loadings, 322 

accounting for a good consistency between the two successive loadings.  323 

The comparison between pre-cyclic and post-cyclic static loading response shows that the 324 

cyclic sequence induces a significant “reinforcing” effect on the static friction that can be 325 

mobilized after cycling, which appears to be significantly higher than the friction mobilized 326 

before cycling. Also, it is interesting to note that the “memory” of the interface, due to the 327 

cycles may be easily erased by a first loading to failure. In terms of tip resistance, less 328 

differences are observed between the two successive loadings. The second loading appears 329 

more regular than the first one, with a progressive stabilization at about 0.35 MPa. The first 330 

loading appears less regular on its initial part with, however, a stabilization at about the same 331 

value as for the second loading (0.35 MPa), which is consistent.  332 

For both local friction and tip resistance, the characteristic shape of the curves observed 333 

between 50 and 300 microns upon the first post-cyclic static loading, showing an upward 334 

concavity. This concave shape is typical of undrained shear with generation of negative excess 335 

pore water pressure, as usually observed in the triaxial apparatus upon shear. The interpretation 336 

of the differences observed between the pre-cyclic and post-cyclic static load tests in terms of 337 

mobilization of local friction is based on the following “well-known” principles: upon 338 

monotonic undrained shear test (triaxial test or interface shear test), normally consolidated clay 339 

exhibits positive excess pore water pressures (EPWP), due to contractive behavior whereas 340 
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overconsolidated clay exhibits negative EPWP due to dilative behavior (analogy with loose and 341 

dense sand behavior). When applied to our case, these principles result in the following 342 

interpretation: After installation and EPWP dissipation, the clay in the interface is in a normally 343 

consolidated state (σ’n has increased in the process). Upon static undrained loading, positive 344 

EPWP will therefore certainly be generated, resulting in the loading curve presented in figure 345 

14 (2nd initial static test). This interpretation is in full agreement with the results published by 346 

Potts and Martins (1982). Then the cyclic sequence occurs, which results in an initial increase 347 

of EPWP followed by a progressive decrease due to EPWP dissipation (this aspect has been 348 

analysed in detail in part 4.2 of the paper). It is believed that after full dissipation, the cyclic 349 

shear should result in a strongly densified and overconsolidated state of the clay within the 350 

interface zone, which should therefore lead, upon subsequent undrained shear (1st post-cyclic 351 

static test) in the generation of negative EPWP. This generation of negative EPWP will strongly 352 

increase the local shear measured during loading (peak value of 23 kPa, before softening), due 353 

to an overall increase of σ’n. This hypothesis, generation of negative EPWP, is in good 354 

agreement with the statement reported by Randolph (2003) and is confirmed by the very typical 355 

shape of the shear curve, showing an upward concavity, accounting for a strong strain-356 

hardening, typical of undrained shear with development of negative EPWP in triaxial testing 357 

(Henkel (1956); Koutsoftas (1981); Hattab & Hicher (2004); Henni et al. (2012); Berre (2014)). 358 

The following rapid decrease of friction (post pick softening) is attributed to strain localization 359 

within the interface.  360 

Figure 14 finally shows a comparison between the static tests carried out before and after the 361 

cyclic sequence, in terms of local friction, showing that the ultimate friction mobilized after the 362 

cyclic sequence remains lower, in terms of ultimate value, than the friction mobilized before 363 

the cyclic sequence (about 11 kPa instead of 17 kPa). This decrease in terms of ultimate value 364 

accounts for an overall weakening of the interface due to the cyclic sequence. 365 
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The second post-cyclic static test is consistent with the first one in the sense that the 366 

overconsolidation effect has been erased by the first post-cyclic loading and the shape of the 367 

shear curve looks very much like the pre-cyclic static test.  368 

 369 

4 – ANALYSIS OF THE CYCLIC SEQUENCE 370 

4.1 – Coefficient of friction evolution 371 

In order to quantify the evolution of local friction mobilization during cyclic loading, a 372 

coefficient called coefficient of friction evolution Ce,fs , has been defined as follows : 373 

(1)                                       
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−

−
=  374 

where )1max(,sf  and )max(, isf  are the maximum skin friction measured on first cycle and cycle i 375 

respectively (push-in phases), )1min(,sf  and )min(, isf  being the values of minimum skin friction 376 

measured on first cycle and on cycle i respectively (pull-out phases). 377 

This coefficient allows to clearly visualize the evolution of local friction mobilization during 378 

the application of the cycles and to easily make a distinction between degradation phases, 379 

corresponding to a decrease of Ce,fs and reinforcement phases, corresponding to an increase of 380 

this coefficient, and to quantify the importance of the degradation or reinforcement with respect 381 

to the initial mobilization observed on the first cycle. 382 

Figure 15 shows a plot of this coefficient versus number of cycles for the test presented above, 383 

which clearly accounts for the initial degradation phase observed up to cycle n° 50, followed 384 

by the reinforcement phase toward the end of the cyclic sequence (with a slight decrease 385 

between cycle 300 to cycle 900). The minimum value reached is about 0.32 which is a fairly 386 

low value corresponding to a significant degradation. It may also be noted that even if re-387 

increasing, the maximum value of Ce,fs reached at the end of the test is about 0.68, still 388 

significantly lower than 1. 389 
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 390 

4.2 – Analysis of the friction behaviour observed during the cyclic sequence 391 

The analysis of the friction behaviour observed during the application of the cycles may be 392 

done in terms of the evolution of the effective normal stress acting on the probe shaft, σ’n , the 393 

local friction mobilized being equal to fs = σ’n tg δmob , δmob being the mobilized friction 394 

coefficient. The evolution of σ’n is directly related to the evolution of the excess pore water 395 

pressure Δus around the friction sleeve: when Δus increases, σ’n decreases, resulting in a 396 

decrease of mobilized friction ; when Δus decreases, σ’n increases, which results in an increase 397 

of mobilized friction. 398 

It is believed that, in this low permeability clay, and by analogy with undrained cyclic triaxial 399 

testing on clays, cyclic shear at 1 Hz frequency will result in the development of excess pore 400 

water pressure (EPWP) close to the soil-probe interface. In fact, an heterogeneous field of 401 

EPWP will be created of small thickness, resulting in high hydraulic gradients and initiation of 402 

EPWP dissipation. The problem is therefore coupled with superposition of EPWP generation 403 

and dissipation.  404 

 There is, indeed, a competition between the excess pore water pressure generation mechanism 405 

due to “undrained” cyclic deformation of the clay around the sleeve, and the pore pressure 406 

dissipation phenomenon which starts taking place from the very beginning of the cyclic 407 

sequence due to the radial hydraulic gradient created by the excess pore pressure field. During 408 

the initial phase of the sequence (small numbers of cycles), the generation mechanism should 409 

be predominant with respect to dissipation, which should result in a relatively rapid increase of 410 

the resulting excess pore pressure, a corresponding decrease in the normal effective stress and 411 

corresponding decrease of mobilized friction (cyclic strain-softening). Then, the dissipation 412 

process should become predominant, resulting in a progressive decrease of the EPWP, re-413 

increase of σ’n and corresponding re-increase of mobilized friction (cyclic strain-hardening). 414 
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This decrease of excess pore water pressure should slow down with the number of cycles, which 415 

would explain the shape of the Ce,fs versus N curve for large numbers of cycles, when the 416 

conditions become practically fully drained. Figure 16 presents a conceptual scheme illustrating 417 

the above point. It appears that for the coupled case (generation coupled to dissipation of excess 418 

pore water pressure), the excess pore water pressure around the sleeve will first increase and 419 

then decrease after passing through a maximum value. This conceptual scheme is consistent 420 

with results presented by Procter & Khaffaf (1987) showing this type of evolution of the excess 421 

pore water pressure around a model pile cyclically loaded in a specimen of clay. The study 422 

presented by these authors is very interesting, with objectives close to ours, the main idea being 423 

to evaluate the influence of EPWP generation around a model pile element on the mobilization 424 

of friction. Even if the testing setup is slightly different from ours, the testing conditions are 425 

similar, with clay characteristics similar to ours. The loading conditions are also similar 426 

(displacement-controlled loading with similar range of displacement amplitudes and 427 

frequencies) and their results should, at least qualitatively, match ours. Figure 17 shows the 428 

evolution of cyclic EPWP close to their model pile element during cyclic loading (ΔU1), clearly 429 

showing an initial increase followed by a decrease after a certain number of cycles (13 in this 430 

case). It is believed that the point corresponding to the maximum of excess pore water pressure 431 

should correspond to the minimum of mobilized friction and minimum value of Ce, fs. It will be 432 

very interesting in the future to try to make direct measurements of the pore water pressure 433 

around the probe in order to further check this hypothesis. For the test presented, the maximum 434 

excess pore water pressure would therefore be obtained at cycle n° 50. The slight re-decrease 435 

phase observed between cycles 300 and 900, before final reinforcement could be due to excess 436 

pore water pressure redistribution between the tip and the sleeve of the probe. 437 

 438 

 439 
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4.3 - Repeatability of the cyclic sequence 440 

In order to evaluate the repeatability of the test and, in particular, the repeatability of the cyclic 441 

sequence, two more tests (Test 2 and Test 3) with same testing conditions and parameters as 442 

the ones implemented for Test 1 have been carried out. Figure 18 shows a comparison of the 443 

results obtained in terms of friction evolution coefficient. It may be observed that the trends 444 

obtained are qualitatively and quantitatively fairly similar for the three tests, accounting for a 445 

good level of repeatability of the test in terms of friction evolution. It is interesting to note that 446 

the relative decrease of Ce,fs observable between about cycle n° 300 and cycle n°900 is obtained 447 

in the three tests. This relative decrease has been interpreted above in terms of excess pore water 448 

pressure redistribution between the tip and the sleeve of the probe but this will need further 449 

validation. 450 

It must also be noted here that the repeatability of the specimen preparation has also been 451 

checked by measuring the water content of the reconstituted specimens at different points on a 452 

given specimen (9 points) and by comparing the values obtained for different specimens (test 453 

1, test 2 and test 3 in table 2). For those three specimens, an average value of 49.6% was found 454 

for the water content with a standard deviation of ±0.9 %, which accounts for a fairly good 455 

repeatability of reconstitution of the specimens of saturated clay. 456 

 457 

5 – CONCLUSIONS 458 

In this paper, based on an original testing setup associated to a specific experimental procedure, 459 

corresponding to a physical model type of approach, the response of a pile-probe, in terms of 460 

local friction and tip resistance evolution, submitted to large numbers of cycles in a saturated 461 

clay (fatigue type of problems), have been presented.  462 

A series of monotonic and cyclic displacement-controlled loading phases, carried out on a 463 

reference kaolinite, called Speswhite, have been presented, with description of the successive 464 
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phases of the tests and corresponding results. This type of tests allow, in particular, to quantify 465 

the evolution of local friction mobilization during the cyclic sequence as a function of the cyclic 466 

displacement amplitude and to quantify the effect of the cyclic sequence on the maximum static 467 

friction that can be mobilized at failure after the cycles, with respect to the initial value (before 468 

the cycles).  469 

As far as the cyclic loading sequence is concerned, the test presented shows, after an initial 470 

phase of local friction degradation (cyclic strain-softening), a phase of friction reinforcement 471 

(cyclic strain-hardening) which keeps going up to very large numbers of cycles. The coefficient 472 

of friction evolution Ce,fs introduced allows to quantify the evolution of friction mobilization 473 

during the cycles, showing that even if this coefficient re-increase after an initial phase of 474 

decrease, its value remains below one (maximum value reached of about 0.70 for large numbers 475 

of cycles). As far as the static maximum friction is concerned, the application of the cycles 476 

results, with respect to the value obtained before the cycles, in a significant increase of static 477 

friction (peak value), however followed by rapid strain-softening. 478 

Also, repeatability tests have been carried out, accounting for a good level of repeatability of 479 

the results obtained, thus validating the testing setup and the experimental procedure developed. 480 

Finally, this testing setup associated with the experimental procedure developed should help to 481 

better understand the behaviour of piles submitted to large numbers of axial loading cycles and 482 

therefore help to improve the design of such piles. 483 

 484 
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Local soil-pile friction evaluation in saturated clays under cyclic loading  

 

 

FIGURES 

 

 

 

Fig. 1. Functional scheme of the calibration chamber setup 

  



 

 

 

 

 

 

 

Fig. 2. Functional scheme of the complete setup, including guiding and loading framework 

  



 

 

 

Fig. 3. Overall view of the experimental setup including the control and  

data acquisition booth  

  



 

 

 

                                               

Fig. 4. Consolidometer set up and ancillary equipment: (a) 3-D drawing showing one half of 

the consolidometer, (b) Overall view of the consolidometer set up and ancillary equipment 

  

(a) 
(b) 



 

 

Fig. 5. Simplified cross-section and view of the instrumented pile-probe 

  



Fig. 6. Experimental procedure : (a) pouring the kaolinite slurry into the consolidometer, 
(b) application of increasing load increments (consolidation process), (c) adjustment of the 
clay specimen on the piston of the calibration chamber, (d) removing the consolidometer 

reservoir, (e) adjustment on top of the specimen the lateral confinement rubber membrane, 
(f) application of the initial state of stress to the specimen, (g) installation of the pile-probe, 

(h) ongoing test (after installation of the pile-probe) 
 
 
 
 
 

 
 

(a) (b) (c)  (d) 

(e) (f) (g) (h) 



 

Fig. 7. Grain size distribution curves of Speswhite kaolinite 

  



 

Fig. 8. Settlement and vertical strain versus time consolidation curves  



 

 

 
Fig. 9. Installation phase: (a) tip resistance versus penetration depth, (b) local friction versus 

penetration depth, (c) total load applied versus penetration depth 

(a) 

(b) 

(c) 



 

 

 
Fig. 10. Initial static loading tests: (a) tip resistance versus vertical displacement, (b) local 

friction versus vertical displacement, (c) total load applied versus vertical displacement 

(a) 

(b) 

(c) 
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Fig. 11. Cyclic loading phase: (a) displacement-controlled loading signal versus number of 

cycles, (b) tip resistance versus number of cycles, (c) local friction versus number of cycles, 

(d) total load applied versus number of cycles 

  

(d) 



 

 

Fig. 12.  Representation of selected cycles of friction mobilization for the typical test 

presented: (a) corresponding to the cyclic degradation phase, (b) corresponding to the cyclic 

reinforcement phase 

  

(a) 

(b) 



 

 
Fig. 13. Final static loading phase: (a) tip resistance versus vertical displacement, (b) local 

friction versus vertical displacement 
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Fig. 14. Comparison between the initial and final static load tests in terms of local friction 

 

  



 

Fig. 15. Coefficient of evolution Ce,fs  versus number of cycles for the test presented 

  



 

Fig. 16. Conceptual scheme of excess pore water pressure generation and dissipation around 

the pile-probe sleeve friction 



 
Fig. 17. Excess pore water pressure evolution during a displacement controlled cyclic test on 

a model pile element (Procter and Khaffaf, 1987) 
  



 
 

 

Fig. 18. Evaluation of test repeatability in terms of Ce,fs  coefficient versus 

 number of cycles 



 
 

Local soil-pile friction evaluation in saturated clays under cyclic loading  

TABLES 
 
 
 
 

Mineralogy Liquid Limit  
(%) 

Plastic limit 
 (%) 

Plasticity index 
(%) 

Soil particle 
density (t/m3) 

Percent. finer 
than 10 µm (%) 

kaolinite 58 28 30 2,64 98 
 

Table 1. Physical properties of Speswhite kaolinite 
 
 

Test 
identification 

σ'v0 
(kPa) 

σ'h0 
(kPa) 

Frequency ƒ 
(Hz) 

ρc 
(µm) 

Number 
of cycles Observations 

Test 1 125 72 1 ±250 100 000 Reference test 

Test 2 125 62 1 ±250 7 000 Repeatability 
test 

Test 3 125 62 1 ±250 100 000 Repeatability 
test 

 
Table 2. Main characteristics of tests performed 
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