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We treat the Feature Selection problem in the Support Vector Machine (SVM) framework by adopting an optimization model based on use of the 0 pseudo-norm. The objective is to control the number of non-zero components of normal vector to the separating hyperplane, while maintaining satisfactory classification accuracy. In our model the polyhedral norm . [k] , intermediate between . 1 and . ∞, plays a significant role, allowing us to come out with a DC (Difference of Convex) optimization problem that is tackled by means of DCA algorithm. The results of several numerical experiments on benchmark classification datasets are reported.

Introduction.

A relevant problem in binary classification is to design good quality classifiers by resorting to a minimal number of sample parameters. One of the main motivations is to gather a more clear interpretation of phenomena underlying the class membership distribution of the samples. In the more general setting of Machine Learning, such problem falls in the area of Feature Selection (FS), which has been the object of intensive research in recent decades (see, e.g., the survey [START_REF] Guyon | An introduction to variable and feature selection[END_REF]).

We focus, in particular, on the Support Vector Machine (SVM) framework [START_REF] Vapnik | The nature of the statistical learning theory[END_REF], [START_REF] Cristianini | 20 0 0. An introduction to support vector machines and other kernel-based learning methods[END_REF], where binary classification is pursued by finding an "optimal" two-class separating hyperplane, either in the original parameter (or "feature") space or upon appropriate kernel transformation.

Numerical optimization algorithms play a relevant role in SVM area and, more specifically, in FS. The problem is to guarantee a reasonable trade-off between classification accuracy and the number of features actually used. Controlling the latter consists basically in minimizing the number of non-zero components of the normal vector to the separating hyperplane.

The literature offers several contributions. In [START_REF] Amaldi | On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems[END_REF] NP-hardness of the problem has been assessed.

In [START_REF] Bradley | Feature selection via mathematical programming[END_REF] the model adopted is based on considering the step function for each component of the normal vector; discontinuity is handled by introducing two different approximations, the standard sigmoid and a concave exponential, respectively. In particular, by adopting the concave approximation, FS problem is tackled by solving a finite sequence of linear programs. Different approximations are given in [START_REF] Weston | Use of the zero-norm with linear models and kernel methods[END_REF] and in [START_REF] Rinaldi | Concave programming for minimizing the zero-norm over polyhedral sets[END_REF], where, in particular, the concave and separable objective functions, derived by the approximations, are handled via variants of Frank-Wolfe method.

It is interesting to note that in [START_REF] Le Thi | A DC programming approach for feature selection in support vector machines learning[END_REF] an approximation scheme of the step function is cast into a DC (Difference of Convex) framework, providing thus the opportunity of resorting to the algorithmic machinery for dealing with such class of nonconvex problems. An early survey on properties and relevance of such class of functions is in [START_REF] Hiriart-Urruty | Generalized differentiability/ duality and optimization for problems dealing with differences of convex functions[END_REF] (see also [START_REF] Strekalovsky | Global optimality conditions for nonconvex optimization[END_REF]).

Parallel to treatment of FS via approximation methods, Mixed Integer Programming formulations have been successfully adopted. The idea is to introduce binary variables, one for each component of the normal vector to the supporting hyperplane, that are switched to "1" if and only if the corresponding component is non-zero. From among the proposed approaches, we recall here [START_REF] Maldonado | Feature selection for Support Vector Machines via Mixed Integer Linear Programming[END_REF], [START_REF] Bertolazzi | Integer programming models for feature selection: New extensions and a randomized solution algorithm[END_REF], [START_REF] Gaudioso | Lagrangian relaxation for SVM feature selection[END_REF].

In a more general setting, FS falls into the wide area of sparse optimization, where one is faced to the (regularized) problem:

min x∈R n f (x) + x 0 (1.1)
where f : R n → R is convex and . 0 is the 0 pseudo-norm, which counts the number of non-zero component of any vector. Sometimes sparsity of the solution, instead of acting on the objective function, is enforced by introducing a constraint on the 0 pseudo-norm of the solution, thus defining a cardinalityconstraint problem [START_REF] Pilanci | Sparse learning via Boolean relaxations[END_REF]. In many applications, the 0 pseudo-norm in (1.1) is replaced by the 1 -norm, which is definitely more tractable from the computational point of view, yet ensuring sparsity, to a certain extent (see [START_REF] Wright | Accelerated block-cordinate relaxation for regularized optimization[END_REF] for a discussion on a general regularization scheme).

In the seminal paper [START_REF] Watson | Linear best approximation using a class of polyhedral norms[END_REF], a class of polyhedral norms (the k-norms), intermediate between . 1 and . ∞ , is introduced to obtain sparse approximation solutions to systems of linear equations. The use of other norms to recover sparsity is described in [START_REF] Gasso | Recovering Sparse Signals With a Certain Family of Nonconvex Penalties and DC Programming[END_REF]. In more recent years the use of k-norms has received much attention and has led to several proposals for dealing with 0 pseudo-norm cardinality constrained problem [START_REF] Hempel | A Novel Method for Modelling Cardinality and Rank Constraints[END_REF], [START_REF] Wu | On the Moreau-Yosida regularization of the vector k-norm related functions[END_REF], [START_REF] Soubies | A Unified View of Exact Continuous Penalties for 2 -0 Minimization[END_REF], [START_REF] Gotoh | DC formulations and algorithms for sparse optimization problems[END_REF].

In this paper we cast the classic SVM approach into the sparse optimization framework (1.1). Our work is inspired by [START_REF] Gotoh | DC formulations and algorithms for sparse optimization problems[END_REF], the main difference being in the explicit (and not parametric) minimization of the 0 pseudo-norm. We formulate our SVM-0 pseudo-norm problem (SV M 0 , for short) and we tackle it by means of a penalization approach which allows us to put the problem in DC form. The algorithm adopted is of DCA type [START_REF] Le Thi | The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems[END_REF].

The paper is organized as follows. In Section 2 we recall first the standard SVM model and introduce the FS problem as a sparse optimization one. Then we discuss the use of the polyhedral k-norm in sparse optimization, coming out with a DC formulation. On such basis we formulate in Section 3 the SV M 0 problem. The results of several numerical experiments on benchmark datasets are in Section 4. Some conclusions are finally drawn in Section 5.

2. Feature Selection and 0 pseudo-norm minimization. The binary classification problem in the SVM setting is usually put in the following form. Given two point-sets A = {a 1 , . . . , a m1 } and B = {b 1 , . . . , b m2 } in R n , we look for linear separation of the two sets, that is for a hyperplane {x|x ∈ R n , x w = γ }, (w ∈ R n , γ ∈ R), strictly separating A and B, thus ensuring a i w < γ , i = 1, . . . , m 1 and b l w > γ , l = 1, . . . , m 2 .

It is easy to verify that such a hyperplane exists if and only if there exists a hyperplane {x|x ∈ R n , x w = γ}, (w ∈ R n , γ ∈ R), such that

a i w ≤ γ -1, i = 1, . . . , m 1 and b l w ≥ γ + 1, l = 1, . . . , m 2 .
Gordan's theorem of the alternative [START_REF] Mangasarian | Nonlinear Programming[END_REF] guarantees linear separation if and only if convA ∩ convB = ∅, a property which is not usually known in advance to hold.

Consequently, an error function of (w, γ), which is convex, piecewise linear and nonnegative, is introduced. It assumes zero value if and only if (w, γ) actually defines a (strictly) separating hyperplane and it has the form:

e(w, γ) = m1 i=1 max{0, a i w -γ + 1} + m2 l=1 max{0, -b l w + γ + 1} (2.1)
The SVM approach consists in solving the following convex problem:

min w,γ w + Ce(w, γ) (2.2)
where the addition of the norm of w to the error function is aimed at obtaining a maximum-margin separation, C being a positive trade-off parameter [START_REF] Cristianini | 20 0 0. An introduction to support vector machines and other kernel-based learning methods[END_REF].

In the standard approach 1 or 2 norms are usually adopted in the definition of problem (2.2), while for feature selection purposes the 0 pseudo-norm, which counts the number of non-zero components of any vector, is introduced.

The usual notation . 0 for indicating the 0 pseudo-norm is motivated by the observation ( . p ) p → . 0 when p → 0.

Relevant properties of function x → x 0 are: i) it is lower-semicontinuous, that is to say

lim inf k→+∞ x k 0 ≥ x 0 whenever x k → x,
a property which is fundamental in view of using descent algorithms; ii) it is homogeneous of degree 0, ( λx 0 = x 0 , for λ = 0); constancy along rays makes difficult the design of minimization algorithms; iii) the convex hull of . 0 on the ball {x| x ∞ ≤ r} is exactly the function 1 r 1 . This is a mathematical justification for frequent substitution of . 0 by . 1 , which in fact ensures, in practical applications, attractive sparsity properties of the solution.

In our approach we fix w 0 in formulation (2.2), thus we consider a sparse optimization problem of the type

f * 0 = min x∈R n f (x) + x 0 , (2.3) 
where f : R n → R, n ≥ 2, is convex, not necessarily differentiable. We observe, in passing, the significant parallelism between sparse optimization and certain problems in matrix optimization [START_REF] Overton | Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices[END_REF], [START_REF] Hiriart-Urruty | Sensitivity analysis of all eigevalues of a symmetric matrix[END_REF]. See, in particular, the recent approach to the rank function minimization described in [START_REF] Gotoh | DC formulations and algorithms for sparse optimization problems[END_REF].

In the sequel, we resort to the use of x [k] , the vector k-norm of x, which is defined as the sum of k largest components (in modulus) of x, k = 1, . . . , n. In fact .

[k] is a polyhedral norm, intermediate between . 1 and . ∞ .

The following properties hold: i)

x ∞ = x [1] ≤ . . . ≤ x [k] ≤ . . . x [n] = x 1 ; ii) x 0 ≤ k ⇒ x 1 -x [s] = 0, k ≤ s ≤ n. Moreover, it is easy to prove the equivalence, valid for 1 ≤ k ≤ n, x 0 ≤ k ⇔ x 1 -x [k] = 0, (2.4) 
which allows to replace any constraint of the type x 0 ≤ k with a difference of norms, that is a DC constraint.

Taking any point x ∈ R n and letting I [k] = {i 1 , . . . , i k } be the index set of k largest in modulus components of x, a subgradient ḡ[k] of the vector k-norm at x can be calculated by setting:

ḡ[k] i =        1 if i ∈ I [k] and xi ≥ 0 -1 if i ∈ I [k] and xi < 0 0 otherwise
To tackle problem 2.3, we start from the observation (see [START_REF] Overton | Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices[END_REF], [START_REF] Wu | On the Moreau-Yosida regularization of the vector k-norm related functions[END_REF]):

x [k] = max y∈ψ k y x,
where ψ k is the subdifferential of . 0 at point 0,

ψ k = {y ∈ R n | y = u -v, 0 ≤ u, v ≤ e, (u + v) e = k},
with e being the vector of n ones. Then we formulate the following problem: 

f * c = min x,u,v,z f (x) + z (2.5) e (u + v) = z (2.6) (u -v) x ≥ x 1 (2.7) 0 ≤ u, v ≤ e, x ∈ R n . ( 2 
         x * j > 0 ⇔ u * j = 1 x * j < 0 ⇔ v * j = 1 x * j = 0 ⇔ u * j = v * j = 0 (2.9)
Proof. Note first that u * j and v * j cannot be both positive. In fact, in such case the solution obtained by replacing u * j and v * j by u * j -δ j and v * j -δ j , with δ j = min{u * j , v * j } > 0, would be still feasible and would reduce the objective function value. Now observe that, while constraint 2.8 ensures

-|x j | ≤ x j (u j -v j ) ≤ |x j |, j = 1, . . . , d, satisfaction of constraint 2.7 guarantees x j (u j -v j ) = |x j |, j = 1, . . . , d. Thus it is proved, in particular, x * j > 0 ⇒ u * j = 1 (x * j < 0 ⇒ v * j = 1). The implication x * j = 0 ⇒ u * j = v * j =
0 can be proved by a simple contradiction argument, taking into account optimality of the solution. The same contradiction argument guarantees that the implications

x * j > 0 ⇐ u * j = 1 (x * j < 0 ⇐ v * j = 1
) hold true, while the last implication x * j = 0 ⇐ u * j = v * j = 0 can be proved by observing that u * j = v * j = 0 and x * j = 0 would lead to violation of constraint 2.7. Remark 2.3. Implications 2.9 ensure z * = x * 0 . Moreover, letting (x * , u * , v * , z * ) be any local minimum of problem 2.5-2.8, then x * is a local minimum for problem 2.3.

By eliminating the scalar variable z in problem 2.5-2.8 we come out with the reformulation

f * c = min x,u,v f (x) + e (u + v) (2.10) (u -v) x ≥ x 1 (2.11) 0 ≤ u, v ≤ e, x ∈ R n , (2.12) 
which we approach by penalizing the nonlinear nonconvex constraint 2.11 through the scalar penalty parameter σ > 0. We obtain

f c (σ) = min x,u,v f (x) + e (u + v) + σ x 1 -(u -v) x (2.13) 0 ≤ u, v ≤ e, x ∈ R n . (2.14)
The objective function 2.13 is suitable for a DC (Difference of Convex) decomposition.

Observe, in fact, that, letting p = (x , u , v ), the function

q(p) = (v -u) x,
can be written in DC form as

q(p) = p Q 1 p -p Q 2 p,
where the symmetric positive semidefinite matrices Q 1 and Q 2 of dimension (3n, 3n) are defined as follows:

Q 1 = 1 4    2I -I I -I I 0 I 0 I    (2.15) 
and

Q 2 = 1 4    2I I -I I I 0 -I 0 I    , (2.16) 
with I and 0 being, respectively, the identity matrix and the zero matrix of dimension (n, n). Summing up, the objective function of problem 2.13-2.14 is decomposed as follows:

f (x) + e (u + v) + σ x 1 -(u -v) x = h 1 (p) -h 2 (p), with h 1 (p) = f (x) + e (u + v) + σ x 1 + p Q 1 p , and 
h 2 (p) = σp Q 2 p.
Before concluding the Section, we state a property related to parametric normalization of a convex function via the 1 norm. It will be useful in explaining the role of parameter σ in the numerical experiments of Section 4.

Proposition 2.4. Let f : R n → R be convex and define, for σ > 0,

f σ (x) = f (x) + σ x 1 . If σ > min g∈∂f (0) g ∞ , then x * = 0 is the unique minimum of f σ .
Proof. Our aim is to prove

f (x) + σ x 1 > f (0) ∀x ∈ R n , x = 0. (2.17)
According to the definition of g ∈ ∂f (0),

f (x) ≥ f (0) + g x, ∀x ∈ R n , whence f (x) + σ x 1 ≥ f (0) + σ x 1 + g x, ∀x ∈ R n .
Since g x ≥ -g ∞ x 1 , we infer from the above

f (x) + σ x 1 ≥ f (0) + (σ -g ∞ ) x 1 , ∀x ∈ R n .
To ensure (2.17), it suffices fo have σ -g ∞ > 0 for one g ∈ ∂f (0). This is secured with the assumption σ > min

g∈∂f (0) g ∞ .
3. The SV M 0 problem. We rewrite first the SVM model (2.2), taking into account the definition (2.1) of the classification error and adopting the 1 norm. We obtain problem SV M 1 .

z * = min w,γ,ξ,ζ w 1 + C( m1 i=1 ξ i + m2 l=1 ζ l ) (3.1)
subject to

a i w -γ + 1 ≤ ξ i , i = 1, . . . , m 1 (3.2) -b l w + γ + 1 ≤ ζ l , l = 1, . . . , m 2 (3.3) 
ξ i ≥ 0, i = 1, . . . , m 1 (3.4) ζ l ≥ 0, l = 1, . . . , m 2 , (3.5) 
where the nonnegative auxiliary variables ξ i , i = 1, . . . , m 1 and ζ l , l = 1, . . . , m 2 have been introduced to eliminate nonsmoothness in the definition (2.1). Moreover, by letting

w = w + -w -, w + , w -≥ 0,
and indicating by e the vector of ones of dimension n, the above problem can be rewritten in a Linear

Programming form as follows

z * = min w + ,w -,γ,ξ,ζ e (w + + w -) + C( m1 i=1 ξ i + m2 l=1 ζ l ) (3.6)
subject to

a i (w + -w -) -γ + 1 ≤ ξ i , i = 1, . . . , m 1 (3.7) -b l (w + -w -) + γ + 1 ≤ ζ l , l = 1, . . . , m 2 (3.8) 
ξ i ≥ 0, i = 1, . . . , m 1 (3.9) ζ l ≥ 0, l = 1, . . . , m 2 , (3.10) 
w + ≥ 0, w -≥ 0 (3.11)
Of course 3.1-3.5 or 3.6-3.11 are equivalent formulations of SV M 1 .

We remark that choice of . 1 in (2.2), instead of . 2 , has a beneficial effect in terms of feature selection (see [START_REF] Bradley | Feature selection via mathematical programming[END_REF]).

To guarantee, however, a better control on the number of features actually entering the classification process, we replace . 1 with . 0 and adapt to SVM the sparse optimization approach described in the previous section. We obtain the SV M 0 problem

z * = min w + ,w -,γ,ξ,ζ,u,v C( m1 i=1 ξ i + m2 l=1 ζ l ) + e (u + v) (3.12) subject to (u -v) (w + -w -) ≥ e (w + + w -) (3.13) a i (w + -w -) -γ + 1 ≤ ξ i , i = 1, . . . , m 1 (3.14) -b l (w + -w -) + γ + 1 ≤ ζ l , l = 1, . . . , m 2 (3.15) ξ i ≥ 0, i = 1, . . . , m 1 (3.16) ζ l ≥ 0, l = 1, . . . , m 2 , (3.17) 
w + ≥ 0, w -≥ 0 (3.18) 0 ≤ u, v ≤ e (3.19)
Penalizing the (nonlinear) constraint (3.13) we obtain

z * = min w + ,w -,γ,ξ,ζ,u,v e (u + v) + C( m1 i=1 ξ i + m2 l=1 ζ l ) + σ e (w + + w -) -(u -v) (w + -w -) (3.20)
subject to 

a i (w + -w -) -γ + 1 ≤ ξ i , i = 1, . . . , m 1 (3.21) -b l (w + -w -) + γ + 1 ≤ ζ l , l = 1, . . . , m 2 (3.22) ξ i ≥ 0, i = 1, . . . , m 1 (3.23) ζ l ≥ 0, l = 1, . . . , m 2 , (3.24) 
w + ≥ 0, w -≥ 0 (3.25) 0 ≤ u, v ≤ e (3.
r(s) = (v -u) (w + -w -)
can be rewritten as

r(s) = s Q1 s -s Q2 s,
where the symmetric positive semidefinite matrices Q1 and Q1 of dimension (4d, 4d) are defined as follows

Q1 = 1 4       2I -2I -I I -2I +2I I -I -I I I 0 I -I 0 I       (3.27) and Q2 = 1 4       2I -2I I -I -2I +2I -I I I -I I 0 -I I 0 I       , (3.28) 
with I and 0 being, respectively, the identity and the zero matrix of dimension (d, d).

The objective function is then decomposed in DC form f 1 (w + , w -, γ, ξ, ζ, u, v)-f 2 (w + , w -, u, v) with

f 1 (w + , w -, γ, ξ, ζ, u, v) = e (u + v) + C( m1 i=1 ξ i + m2 l=1 ζ l ) + σ e (w + + w -) + s Q1 s , and 
f 2 (w + , w -, u, v) = σs Q1 s
We apply to problem above the DCA method [START_REF] Le Thi | The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems[END_REF], which tackles the unconstrained minimization of a function q : R n → R q(x) = q 1 (x) -q 2 (x), with q 1 and q 2 convex, by solving a sequence of linearized convex problems. In particular, letting x (k) be the estimate of a (local) minimum of g at iteration k, the next iterate x (k+1) is calculated as

x (k+1) = arg min x∈R n {q 1 (x) -[q 2 (x (k) ) + g (k) (x -x (k) )]}, with g (k) ∈ ∂q 2 (x (k)
). For other methods to solve DC problems see [START_REF] Joki | A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes[END_REF], [START_REF] Gaudioso | Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations[END_REF] and the references therein. We remark that, in applying the successive linearization method to our case, a convex quadratic minimization problem is solved at each iteration.

Numerical experiments.

We have performed our experiments on two groups of five datasets each. They are the same datasets adopted as benchmark for the feature selection method described in [START_REF] Gaudioso | Lagrangian relaxation for SVM feature selection[END_REF]. In particular in datasets 1-5 (Group 1), available at http://www.tech.plym.ac.uk/spmc/, the number of samples is small with respect to the number of features. The opposite happens for Datasets 6-10 (Group 2), which are available at https://www.csie.ntu.edu.tw/ ~cjlin/libsvmtools/datasets/. Thus for the latter ones a certain class-overlap is expected.

The datasets are listed in Table 4.1, where m = m 1 + m 2 is the total number of samples. 

Description of the datasets

As a possible reference, we report first the results of the SV M 1 problem provided by CPLEX solver. A standard tenfold cross validation has been performed. The results are in Table 4.2, where the columns "Test" and "Train" indicate the average testing and training correctness, respectively, expressed as percentage of samples correctly classified. Columns " w 1 " and"Time" report the average 1 norm of w and the average execution time (in seconds). Finally columns "%ft(0)"-"%ft(-9)" report the average percentage of components of w whose modulus is greater than or equal to 10 0 -10 -9 , respectively. Note that, assuming, conventionally, to be equal to "zero" any component w j of w such that |w j | < 10 -9 , the percentage of zero-components is (100 -%f t(-9)). 

SV M1 -Cplex implementation -Tenfold Cross Validation

Two different values of parameter C, obtained through the so called "Model selection" phase (see [START_REF] Gaudioso | Lagrangian relaxation for SVM feature selection[END_REF]), have been adopted for the two dataset groups.

Before reporting the results of the implementation of our algorithm to solve SV M 0 , we illustrate in Tables 4.3 and 4.4 the results provided by the following mixed binary programming problem M BP [START_REF] Gaudioso | Lagrangian relaxation for SVM feature selection[END_REF] for feature selection, where 0 pseudo-norm minimization is pursued by introducing the set of binary variables y j , j = 1, . . . , n. 

a i w + γ + 1 ≤ ξ i , i = 1, . . . , m 1 -b l w -γ + 1 ≤ ζ l , l = 1, . . . , m 2 -u j y j ≤ w j ≤ u j y j , j = 1, . . . , n ξ i ≥ 0, i = 1, . . . , m 1 ζ l ≥ 0, l = 1, . . . , m 2 y j ∈ {0, 1}, j = 1, . . . , n,
where u j > 0, j = 1, . . . , n, is a given bound on the modulus of the j-th component of w (see [START_REF] Gaudioso | Lagrangian relaxation for SVM feature selection[END_REF] for a discussion on setting the u j 's) . The binary variable y j , j = 1, . . . , n is equal to 1 at the optimum if and only if w j = 0, j = 1, . . . , n. Consequently the term The results are those obtained by CPLEX, with maximum running time of 1000 seconds. Note that on some test problems, the maximum running time has been achieved with no optimality certification. The results we provide in such cases are related to the best solution found. Some comments are in order. We observe first that the average computation time for solving the Linear Program SV M 1 is negligible.

As for classification performance, comparison of Table 4.2 with Tables 4.3 and 4.4 highlights that the use of an explicit feature selection mechanism results in a mild downgrading of the classification correctness. Such phenomenon is compensated by the reduction in the percentage of the numerically significant features (columns"ft(0)"-"ft(-9)").

Coming now to our method (referred to, in the sequel, as the "SV M 0 Algorithm"), we report in Table 4.5 the results on the two groups of datasets.

We have added the two columns "%Viol." and "e (u + v)". In particular, column "%Viol." reports the percentage ratio between the average violation of the relaxed constraint 3.13 and the average norm w 1 . Column "e (u + v)" reports the average value of the scalar product e (u + v), which, for small values of the companion parameter "%Viol.", reasonably approximates w 0 . 

SV M0 Algorithm -Tenfold cross validation

We have run the algorithm on each dataset for different values of the penalty parameter σ, and we indicate in Table 4.5 the specific value of σ the results refer to. Some comments follow.

• In terms of classification correctness, the results of the SV M 0 Algorithm are comparable with those of M BP . • The SV M 0 Algorithm provides better results in terms of number of zero-components of w. In fact, the percentage of components conventionally assumed equal to zero, that is (100-%f t(-9)), is significantly bigger, except that in two cases, in SV M 0 Algorithm than in M BP . • The computation time is, for both algorithms, negligible on the datasets of Group 2 while it is remarkably smaller for SV M 0 Algorithm as far as datasets of Group 1 are concerned. In running the SV M 0 Algorithm, the most relevant issue is the appropriate tuning of the penalty parameter σ > 0, which is, of course, dataset-specific. Two aspects are to be taken into account.

• "Small" values of σ may lead to significant violation of the penalized constraint at the optimum of problem 3.20-3.23. Note that in such case, variables u and v may loose their "marker" role highlighted in Proposition 2.2. • "Large" values of σ may result in trivial solutions (w = 0) to the penalized problem (see Proposition 2.4). . To illustrate in details the impact on the solution of parameter σ, we analyze the results for increasing values of σ. In particular we focus on the datasets CARC and IONO, from the first and second group, respectively. The results are reported in Tables 4 Results on dataset IONO for different values of σ ‡ Symbols "*" and "**" in Dataset column of Table 4.5 indicate that parameter C has been set to 2 and 100, respectively.

We observe that on both datasets increasing values of σ results, as expected, in deterioration of the classification correctness (under such point of view, significant data are those obtained in the training phase). On the other hand, the violation of the relaxed constraint gets smaller and smaller, until, for too large values of σ, the results become meaningless, as w gets close to zero.

Conclusions.

We have tackled the Feature Selection problem within SVM binary classification by using the polyhedral k-norm, in the sparse optimization context. The numerical experiments show that the approach is a promising alternative to continuous approximations of the 0 pseudo-norm and to integer programming-based methods.

26 ) 3 . 1 .

 2631 Remark Definition of an exact nondifferentiable penalty function of the type described in[START_REF] Di Pillo | Exact penalty functions in constrained optimization[END_REF] would require the introduction into the objective function of the termσ max 0, e (w + + w -) -(u -v) (w + -w -) ,which in our case, according to remark (2.1), is simply replaced by σ e (w + + w -) -(u -v) (w + -w -) , giving rise to a differentiable exact penalty function Problem (3.20)-(3.26) can be put in DC form. In fact, letting s = (w +T , w -T , u , v ), the function

y

  j in the objective function represents the 0 pseudo-norm of w. The positive parameter D provides the tradeoff between the 0 pseudo-norm objective and that of the SV M 1 problem (3.6)-(3.11).

Table 4 . 1

 41 

	Datasets of Group 1	m	n	Datasets of Group 2	m	n
	Carcinoma (CARC) 36	7457	Breast Cancer (BC)	683 10
	DLBCL 77	7129	PIMA Indians Diabetes (PIMA)	768	8
	Leukemia (LEK) 72	5327	HEART 270 13
	Tumor1 (TUM1) 60	7129	Ionosphere (IONO)	351 34
	Tumor2 (TUM2) 50 12625	Liver Disorders (LIVER) 145	5

Table 4 . 5
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	C = 1

‡ 

Table 4 . 6

 46 .6 and 4.7. Test Train |w| 1 Time % Viol. e (u + v) %ft(0) %ft(-2) %ft(-4) %ft(-9) Results on dataset CARC for different values of σ

	1 95.00 100,00 2.62 14.45	100	0.00	0.00	0.23	0.25	0.25
	2 94.17 100.00 3.50 73.13	44	0.87	0.01	0.14	0.15	0.15
	4 97.50 100,00 6.90 39,40	3	2.10	0.03	0.05	0.06	0.06
	5 91.67 100.00 6.26 41.41	1	2.07	0.02	0.03	0.03	0.03
	6 85.00 98.33 7.23 68.53	0.1	2.18	0.03	0.03	0.03	0.03
	7 75.83 96.99 6.08 93.80	0	2.20	0.03	0.03	0.03	0.03
	12 65.83 81,40 2.32 81.04	0	0.80	0.01	0.01	0.01	0.01
	16 58.33 57.59 0.0 1.81	0	0.0	0.0	0.0	0.0	0.0
			Dataset : ION O; C = 10			
	σ Test Train	|w| 1 Time % Viol. e (u + v) %ft(0) %ft(-2) %ft(-4) %ft(-9)
	1 87.61 94.23 19.39 0.36	52	4.16	18.82	72.94	73.24	73.24
	2 87.94 93.53 11.21 0.22	50	4.34	9.41	62.06	63.53	63.53
	4 87.96 92.55	7.58 0.26	42	4.31	6.18	47.35	47.35	47.35
	10 87.63 89.38	4.23 0.24	19	2.90	5.88	18.53	19.41	19.41
	17 86.35 89.31	3.14 0.29	15	2.56	5.88	13.82	13.82	13.82
	30 80.80 83.47	1.83 0.23	6	1.77	3.82	7.65	7.94	7.04
	50 74.77 74.68	1.00 0.26	3	0.97	2.94	2.94	2.94	2.94
	64 64.33 64.24 0.0001 1.84	0.0	0.0001	0.0	0.0	0.29	0.29
	93 64.33 64.24	0.0 0.16	0	0.0	0.0	0.0	0.0	0.0

Dataset : CARC; C = 1 σ

Table 4 . 7
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