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Member, IEEE and Laurent Najman, Senior Member, IEEE

Abstract—Watershed technique from mathematical morphol-
ogy (MM) is one of the most widely used operators for image
segmentation. Recently watersheds are adapted to edge weighted
graphs, allowing for wider applicability. However, a few questions
remain to be answered - (a) How do the boundaries of the
watershed operator behave? (b) Which loss function does the
watershed operator optimize? (c) How does watershed operator
relate with existing ideas from machine learning. In this article,
a framework is developed, which allows one to answer these
questions. This is achieved by generalizing the maximum margin
principle to maximum margin partition and proposing a generic
solution, MORPHMEDIAN, resulting in the maximum margin
principle. It is then shown that watersheds form a particular class
of MORPHMEDIAN classifiers. Using the ensemble technique,
watersheds are also extended to ensemble watersheds. These
techniques are compared with relevant methods from literature
and it is shown that watersheds perform better than SVM
on some datasets, and ensemble watersheds usually outperform
random forest classifiers.

Index Terms—Classification, Machine Learning, Mathematical
Morphology, Maximum Margin Principle, Watersheds

I. INTRODUCTION

THE problem of supervised classification is stated as -
Given a labelled dataset {(xi, yi)}, find the labels for

unlabelled data points {x̂i}. There exists several possible
approaches to solve the problem [1]. One of the classic
approaches is that of using Support Vector Machines (SVM)
which relies on maximum margin classifier [2]. Several of
these techniques depend on vector space structure of the
underlying space. An alternate view can be proposed, based on
lattices, by using ideas from Mathematical Morphology (MM).
In this article, we analyze the use of watersheds from MM for
supervised classification.

Mathematical Morphology is a theory of non-linear opera-
tors using lattices, developed by G. Matheron and J. Serra in
1960s [3], [4]. One of the main operators in MM is that of wa-
tersheds. Originally developed for image segmentation, water-
sheds rely on either the drop of water principle or the principle
of flooding to develop the algorithms for image segmentation
(See watershed related chapters in [4] for detailed history).
In [5], the authors extended the watershed principle to edge
weighted graphs, and have established its links to the minimum
spanning tree. The following algorithm describes a variant of
the watershed algorithm proposed in [5] with arbitrary seeds,
referred to as Minimum Spanning Forest (MSF)-Watershed in
the rest of the article.
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Input: A finite edge weighted graph G = (V,E,W ), labelled
seeds S ⊂ V .

Output: Partition of V
1: Set E′ = ∅
2: for e = (ex, ey) in sorted edge set E do
3: if both ex and ey are labelled then
4: pass
5: else
6: E′ ← E′ ∪ (ex, ey)
7: Assign the same label to both ex and ey .
8: end if
9: end for

10: return Partition generated by E′.

Although the above algorithm is developed for the purposes
of image segmentation, it can clearly be used for supervised
learning as well. This is achieved by taking the vertex set
V = {xi} ∪ {x̂i}. Then, taking the seeds to be the set S =
{xi}, and defining edge weights appropriately, one can use the
watershed algorithm above for classification.

Watersheds have been used as a part of classification in
images [6] and related algorithms have been used for data
analysis as well. In [7], [8] the authors use the related
image foresting transform [9] for supervised classification.
In [10], the authors used watershed along with convolution
neural networks (CNN) to obtain state-of-art results in CREMI
challenge. Watersheds are also a part of the state of art image
segmentation technique COB [11].

However, a few fundamental questions remain - (a) How do
the boundaries of the watersheds behave when used as a clas-
sifier? (b) Which loss function does watershed optimize? (c)
How does watershed relate with existing ideas from machine
learning? To truly understand the applicability of watersheds
for learning, it is important to understand the answers to above
questions.

The aim of this article is to understand the behavior of
watersheds when used as classifiers, and not to obtain state-
of-art results. The main contributions are - (i) We develop
the framework generalizing maximum margin principle to
sets equipped with dissimilarity measure. This leads to max-
imum margin partitions (ii) We propose a simple classifier,
MORPHMEDIAN, and prove that it always returns a maximum
margin partition. (iii) It is then shown that watershed is a
specific case of MORPHMEDIAN, and hence identifies the
optimization problem solved by watersheds as classifier. (iv)
Using the technique of ensembles, we extend the watersheds
to Ensemble Watersheds. (v) MSF-Watershed, Ensemble Wa-
tersheds and related methods are compared on datasets from
[12].
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Fig. 1. Example explaining the the maximum margin principle. (see text)

II. MAXIMUM MARGIN PARTITION AND MORPHMEDIAN

Recall that the technique of SVM is developed based on the
principle of maximum margin. See [2] for details. From Fig.
1, SVM identifies the boundary such that the minimum margin
for all points is maximized. We now generalize this principle.
Assume that the set of points is given by V and there exists
a measure ρ on V such that ρ(x, y) indicates the dissimilarity
between x and y. Note that ρ need not be a metric, in particular
the constraint of triangle inequality need not hold. One can
extend this to subsets X,Y ⊆ V as well by

ρ(X,Y ) = min
x∈X,y∈Y

ρ(x, y) (1)

With this framework, the classification problem can be restated
as - Given (V, ρ) and labelled sets X0, X1 ⊂ V labelled 0 and
1 respectively, identify the partition V = M0 ∪M1 such that
X0 ⊂ M0 and X1 ⊂ M1. Clearly X0 ∩X1 = ∅. For ease of
exposition only two classes are considered, although all the
definitions can be extended to a generic k class problem as
well.

In this case, drawing parallels from Fig. 1, one can define
the margin between a point x ∈ X0 and the boundary using
ρ(x,M1). For the entire set X0, the margin is then defined
as ρ(X0,M1). Similarly, the margin for X1 is defined as
ρ(X1,M0). Hence, one can use the principle of maximum
margin in generic spaces (V, ρ) as well. This is defined below.

Definition 1 (Maximum Margin Partition). Let (V, ρ) be a set
of points equipped with a dissimilarity measure. Let X0, X1 ⊂
V denote the labelled subset of points with labels 0 and 1
respectively. A partition V = M0∪M1 with Xi ⊂Mi for i =
0, 1, is called the maximum margin partition if it maximizes

min {ρ(X0,M1), ρ(X1,M0)} (2)

A natural question which arises from the above definition
is - Can we characterize the maximum margin partitions?
Consider the following definition of MORPHMEDIAN.

Definition 2 (MORPHMEDIAN). Given the notation as above,
a partition V = M0∪M1 is called a MORPHMEDIAN partition
if

1) x ∈M0 if ρ(X0, x) < ρ(X1, x).
2) x ∈M1 if ρ(X1, x) < ρ(X0, x).

In simple words, a MORPHMEDIAN partition ensures that
all points labelled 0 are closer to X0 than X1 and vice versa.

Note that on the boundary, where ρ(X0, x) = ρ(X1, x), the
points can be labelled arbitrarily. The term MORPHMEDIAN
is used since this definition is inspired from the definition
of morphological median defined in [13]. See [14] for more
details about morphological median. These definitions result
in the following theorem, central to this section.

Theorem 1. Every MORPHMEDIAN partition is a maximum
margin partition.

Proof. Firstly note that all MORPHMEDIAN partitions have
the same value for margin, since the labelling of two
MORPHMEDIAN partitions only differ in terms which are
equal. Hence, if one can show that for any maximum margin
partition, it is possible to construct a MORPHMEDIAN partition
with greater or equal margin, then the proof is done.

Let M = M0 ∪M1 be any maximum margin partition. If
for all x ∈ V , the conditions in definition 2 hold, then M is
a MORPHMEDIAN partition and there is nothing to prove.

Otherwise, there exists a z ∈ M0 such that ρ(X0, z) >
ρ(X1, z) or there exists a z ∈ M1 such that ρ(X1, z) >
ρ(X0, z). If there exists a z ∈ M0 such that ρ(X0, z) >
ρ(X1, z), then consider the following partition M = M0∪M1

where

M0 = M0 \ z
M1 = M1 ∪ z

Then, we have that M has a margin greater than or equal to
M , as shown below.

min
{
ρ(X0,M1), ρ(X1,M0)

}
= min

{
ρ(X0,M1), ρ(X0, z), ρ(X1,M0)

}
≥ min

{
ρ(X0,M1), ρ(X1, z), ρ(X1,M0)

}
= min {ρ(X0,M1), ρ(X1,M0)}

Similarly, it follows that if there exists a z ∈ M1 such
that ρ(X1, z) > ρ(X0, z), then, once again it is possible to
construct a partition with greater or equal margin.

Repeat the above procedure until there does not exist z
which violates conditions in definition 2. The end of this pro-
cedure results in a MORPHMEDIAN partition. Hence proved.

Note the similarity between MORPHMEDIAN and 1-Nearest
Neighbor (1-NN) method for classification. The main differ-
ence between these two methods is that while 1-NN method
classically considers a distance, MORPHMEDIAN generalizes
this to any dissimilarity measure.

III. WATERSHEDS AS CLASSIFIERS

Definitions 1, 2 and theorem 1 allow us to characterize the
behavior of watersheds as classifiers. Let G = (V,E,W ) be
an edge weighted graph. V is a set of vertices consists of both
labelled and unlabelled points. E ⊂ V × V denotes the set of
edges and W : E → R+ denotes the weight (dissimilarity
measure) assigned to each edge. Given the edge weighted
graph, recall that watershed returns the partition given by
algorithm described in section I.
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Fig. 2. Figure illustrating boundaries obtained by MSF-watershed. (a) Two
blobs dataset (b) Two circles dataset (c) Two moons dataset. All datasets are
generated using sklearn [17]. The boundaries are sketched using the 1-Nearest
Neighbor classifier as discussed in the text.

Define, for x, y ∈ V ,

ρmax(x, y) = min
π∈Π(x,y)

max
e∈π

W (e) (3)

where Π(x, y) indicates the set of all paths between x and y in
G. ρmax(., .) is also referred to as pass value [15]. Intuitively,
it reflects the minimum height one has to reach to move from
x to y. We then have the following theorem.

Theorem 2. Given an edge weighted graph G = (V,E,W ),
MSF-watershed returns a MORPHMEDIAN partition with re-
spect to (V, ρmax). And hence, it gives a maximum margin
partition in the space (V, ρmax).

The proof of the above theorem follows from noting links
between MSF-watershed and minimum spanning tree. For
more details do refer to [16]. Theorem 2 characterizes the
behavior of watersheds as a classifier.

Fig. 2 denotes the boundaries obtained when considering a
few toy datasets. Intuitively, the watershed partitions the graph
by removing edges between points which are farthest apart.
This implies that the boundary will be in between two classes
with the least density of points. This is reflected in Fig. 2 as
well.

One seeming shortcoming of the watershed classifiers is
that both the train and test datasets are assumed to be known.
However, one can easily mitigate this thanks to the properties
of MSF-watershed. To classify a new data point, not in the
vertex set of the graph, one can simply use 1-Nearest Neighbor
method without compromise. This is because, for any new data
point, its 1-Nearest Neighbor is known to be on the Minimum
Spanning Tree. This implies that, labelling a new data point
after the initial labelling of the vertex set and labelling the
data point along with the existing dataset would result in the
same labels. This is summarized in the following proposition.

Proposition 1. Using 1-Nearest Neighbor to classify ‘new’
data points is consistent with MSF-watershed classifier.

A. Other Classifiers in the Framework of Maximum Margin
Partition

The maximum margin partition framework discussed above
also encompasses several known classifiers as well.

1) IFT-SUM: Instead of using ρmax(., .) as in (3), one can
use the following measure

ρsum(x, y) = min
π∈Π(x,y)

∑
e∈π

W (e) (4)

This is the classic shortest path distance, which can be
efficiently calculated using the Image Foresting Trans-
form (IFT) as described in [9]. This too can be used as
a classifier as described in [7].

2) Random Walk (RW): An alternate approach to extend-
ing the local edge weights to V × V is by using the
distances given by the Laplacian, one of which is the
random walk distance as described in [18]. This induces
a measure on V × V . This is also referred to as label
propagation [19].

3) Power-Watershed (PW): In [20], [21] the authors ex-
tend the MSF-watershed to use watersheds along with
random walk giving good results for seeded image
segmentation. It is shown in [20] that it is indeed a
special case of MSF-watershed and hence also fits into
the maximum margin framework.

B. Ensemble Watersheds

Observe that watersheds rely on the edge weights of the
graph. In fact, once the graph G has been chosen, apart from
edge weights there are no parameters for the watershed clas-
sifier. Thus, in situations where there exist a lot of redundant
features, it is possible that a simple L2 norm between the
features would not reflect the dissimilarities well. This can be
improved by considering watershed using subset of features
and ensemble the results. Ensemble is a technique used widely
in machine learning, in particular for random forests. See [1]
for more details and references about ensemble techniques.
We now adapt this to MSF-watersheds as well.

The algorithm for using ensemble watersheds is described
below.
Input: Edge weighted graph G = (V,E,W ), labelled seeds

S ⊂ V , τS := Sampling percentage of seeds, τF :=
Sampling percentage of features.

Output: Labelling of V
1: for i ∈ {1, 2, · · ·number_iterations} do
2: Considering random subset of feature (τF percent),

construct the new weight function W ′.
3: Using τS percent of labelled data points, compute the

watershed using the graph G′ = (V,E,W ′).
4: Compute estimate of accuracy using out-of-box sam-

ples, that is samples which are not used for labelling.
5: end for
6: Using estimates of accuracy as weights, compute the

weighted average of the labels obtained by watersheds.
7: return Labels computed by taking the maximum of the

average accuracies.
Note that the adjacency relation E does not change across

different estimators. This is because - either (a) adjacency
relation is dictated by the domain, as is the case for images, in
which case one need not change E or (b) the adjacency relation
is computed using k−nearest neighbor graphs, in which case,
intuitively, the data spans a lower dimensional manifold in
a higher dimensional space. The k−nearest neighbor graph
constructed is expected to reflect the structure of this manifold.
Hence, it makes sense to use the same graph with weights
dictated by a subset of features. Also, in general, constructing
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TABLE I
RESULTS OBTAINED USING DIFFERENT METHODS ON DATASETS FROM [12]

Method Digit1 USPS COIL(binary) BCI g241c COIL g241n
MSF-Watershed 96.26±1.06 95.70±0.80 99.76±0.24 51.14±2.98 55.03±1.88 95.59±0.83 56.16±1.82

IFT-SUM 96.55±0.61 95.33±0.68 96.18±1.18 53.73±2.09 61.40±1.41 89.77±1.41 64.75±1.01
RW 98.12±0.57 91.70±1.17 95.86±1.17 53.45±2.58 70.27±5.18 91.42±0.95 76.32±3.47
PW 97.94±0.54 89.66±1.10 95.86±1.17 51.98±2.46 70.27±5.18 91.42±0.95 76.32±3.47

SVM 93.10±0.97 90.60±0.86 56.25±0.65 59.44±3.67 84.38±0.97 22.23±1.18 84.79±1.29
1-NN 96.55±0.61 95.33±0.68 96.18±1.18 53.73±2.09 61.40±1.41 89.77±1.41 64.78±1.01
RFC 95.99±0.56 88.53±0.70 92.63±1.17 58.89±2.41 75.92±0.60 91.09±1.32 73.45±1.00

Ensemblewatershed 98.00±0.52 92.69±1.25 99.92±0.16 52.23±2.20 65.20±3.27 94.88±0.76 68.39±2.62

the graph is a computationally expensive operation and using
the same adjacency relation helps in implementing ensemble
watersheds efficiently.
Remark: Although the technique of ensemble can be used
with other techniques as well, the aim in this article is
to understand MSF-watersheds and hence only ensemble of
MSF-watersheds is considered.

IV. COMPARISON WITH OTHER CLASSIFIERS

In this section, we compare the results of the classifiers with
the relevant classifiers - (i) Support Vector Machines (SVM)
since the concept of maximum margin partitions developed
here is an extension of the maximum margin principle on
which SVM is based. In these experiments SVM is used
with rbf kernel. (ii) 1-Nearest Neighbor (1-NN) due to the
similarity between MORPHMEDIAN and 1-NN methods. (iii)
Random Forest Classifier (RFC) since we consider the en-
semble technique. All implementations of these classifiers are
taken from [17].

The collection datasets are taken from chapter 21 of [12],
since these datasets were designed to reflect several properties
of real datasets. The k−nearest neighbor graphs are then
constructed on these datasets which then are used as input
to the classifiers. The k is chosen to be the least multiple of
10 so that the graph is connected. Also, each method is run
20 times for each datasets, taking random 20% of the data
as train data. The results are shown in table I. The code to
generate the results are available at [22].

In general, MSF-watershed performs better than SVM on a
some datasets and worse on a few. Intuitively, MSF-watershed
relies heavily on the manifold structure of the data - The
data is assumed to be lower dimensional manifold in a higher
dimensional space. Datasets g241c and g241n belong to this
category. SVM on the other hand cannot predict highly non-
linear boundaries which is the case with COIL dataset.

Ensemble watersheds in general work better than watersheds
thanks to feature sampling. Ensemble watersheds also outper-
form random forest classifier in most cases. However, in cases
where the entire feature set is a requirement for identification
of the class, other methods work better. Thus, both random
forest and ensemble watershed do not perform well on the
USPS dataset, while the simple MSF-watershed and 1-NN
achieves the best result.

Intuitively, the classifiers based on edge weighted graphs
do not perform well on datasets, where local distances do not
reflect the dissimilarities, for instance, in high dimensional

scenarios. This can however be mitigated by using other
machine learning architectures for estimating the weights.

V. CONCLUSION AND FUTURE PERSPECTIVES

To summarize, a framework for using watersheds as
classifiers is developed. This is achieved by extending
the maximum margin principle to maximum margin parti-
tions. MORPHMEDIAN is proposed, and it is proved that
MORPHMEDIAN always returns a maximum margin parti-
tion. It is also proved that watersheds are a specific case
of MORPHMEDIAN, and hence returns a maximum margin
partition. The technique is illustrated using toy datasets to un-
derstand the behavior of the boundaries. We also illustrate how
watersheds can be combined with other ideas from machine
learning, by considering the ensemble technique. Adapting
the ensemble technique to watersheds is discussed in detail.
Further, these techniques are compared with other relevant
methods from literature on datasets from [12], showing that
ensemble watersheds generally outperform random forests.

The aim of this article is not to present state-of-art results,
but to understand the behavior of watersheds as classifiers bet-
ter. It is expected that this understanding would result in better
classifiers. For instance, one can infer from the framework that
obtaining good measures of local edge weights E would result
in better classifiers. Hence, one can use techniques such as
neural networks to estimate the edge weights, which further
can improve the accuracy of the classifiers. This is a topic of
further research.
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