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The problem considered in this paper is to find when the non-central Wishart distribution, defined on the cone P d of positive semidefinite matrices of order d and with a real-valued shape parameter p, does exist. This can be reduced to the study of the measures m(n, k, d) defined on P d and with Laplace transform (det s) -n/2 exp tr (s -1 w), where n is an integer and w = diag(0, . . . , 0, 1, . . . , 1) has order d and rank k. Our two main results are the following: we compute m(d -1, d, d) and we show that neither m(d -2, d, d) nor m(d -2, d -1, d) exists. These facts solve the problems of the existence and computation of these non-central Wishart distributions.

Introduction

The non-central Wishart distribution is traditionally defined as the distribution of the random symmetric real matrix (

X = Y 1 Y 1 + • • • + Y n Y n ,
It is important to note that in this formula, the rank k of w is such that k ≤ min(n, d).

In the same way that the familiar chi-square distribution with n degrees of freedom can be extended to the gamma distribution with a continuous shape parameter p by replacing the half integer n/2 by p ∈ (0, ∞), it is tempting to extend the values that the power of det(I d + 2Σs) can take in [START_REF] Casalis | Characterization of the Jorgensen set in generalized linear models[END_REF]. The question is then: given Σ ∈ P d and w ∈ P d , for which values of p > 0 does there exist a probability distribution on P d for X such that, for all s ∈ P d , we have E(e -tr (sX) ) = 1 det(I d + 2Σs) p e -tr {2s(I d +2Σs) -1 w} .

(2)

The hypothetical distribution for X satisfying (2) can be called a non-central Wishart distribution with parameters (2p, w, Σ), or NCW(2p, w, Σ) for short. The first question is to determine what are the possible values of p. For w = 0, ı.e., for the extension of the ordinary Wishart distributions, the problem is solved by Gindikin's theorem [START_REF] Gindikin | Invariant generalized functions in homogeneous spaces[END_REF], which says that NCW(2p, 0, Σ) exists if and only if

In Proposition 8 below, we give a proof of Gindikin's Theorem, which we borrow from [START_REF] Peddada | Proof of a conjecture of M.L. Eaton on the characteristic function of the Wishart distribution[END_REF] because it is the most adapted to the zonal polynomial techniques used in this paper. The Wishart distributions with w = 0 and when 2p not necessarily an integer and satisfying 2p > d -1 have densities proportional to e -tr (Σ -1 x) (det x) p-(d+1)/2 concentrated on P d . A simple argument (see Proposition 1 below) shows that if NCW(2p, w, Σ) exists, then for all ≥ 0 the distribution NCW(2p, w, Σ) also exists. By a limiting argument, this observation implies that if NCW(2p, w, Σ) exists, then NCW(2p, 0, Σ) exists. Hence p ∈ Λ d and the difficulty concerning the possible values of p is overcome.

The second question is a more difficult one. In the ordinary non-central Wishart [START_REF] Casalis | Characterization of the Jorgensen set in generalized linear models[END_REF], we have seen that the rank k of w must be such that k ≤ n = 2p. Do we have a similar constraint for the NCW(2p, w, Σ) distribution? In other words, does the NCW(2p, w, Σ) defined by [START_REF] Constantine | Some non-central distribution problems in multivariate analysis[END_REF] fail to exist if k > 2p? We have a counterexample when (d -1)/2 < p < d/2 and k = d. Indeed, similarly to the case w = 0, it has been proved (see, e.g., [START_REF] Letac | The non-central Wishart as an exponential family and its moments[END_REF]) that, for any w, the distribution NCW(2p, w, Σ) exists and has a density if (d -1)/2 < p.

The main objective of the present paper is to answer this question. We will see that: NCW(2p, w, Σ).

Reduction of the problem: The measures m(2p, k, d)

Let k be an integer such that 0 ≤ k ≤ d. We consider the diagonal matrix I(k, d) with its first dk diagonal terms equal to 0 and the last k equal to 1, viz.

I(k, d) = 0 d-k 0 0 I k .
For p ∈ Λ d we define the positive measure m(2p, k, d) on P d such that, for all s ∈ P d , we have

P d e -tr (sx) m(2p, k, d)(dx) = 1 (det s) p e tr {s -1 I(k,d)} . (4) 
Note that m(2p, k, d) may or may not exist. For example, formula (23) below shows that the density of m(1, 1, 1) on (0, ∞) is cosh(2 √ x)/ √ πx. More generally with p > 0, we have The following proposition links this unbounded measure m(2p, k, d) defined by (4) with our initial existence problem. Proposition 1 is important for the solution to the problem of existence or non existence of the non-central Wishart with continuous shape parameter p: it focuses the problem at its core by ignoring the normalization constant and the parameter Σ, and by reducing the parameter w to its most important characteristic, namely its rank k. Proof. Assume that m(2p, k, d) exists and let us show that NCW(2p, w, Σ) exists. The proof is based on the following principle. Let µ be a positive measure on a finite-dimensional real linear space E such that its Laplace transform L µ (s) = E e -s,x µ(dx) is finite on some convex subset D(µ) of the dual space E with a non-empty interior. Let a be a linear automorphism of E and let b ∈ E such that L µ {a(b)} < ∞. Then there exists a probability P(a, b) on E with Laplace transform L P(a,b) (s) = L µ {a(s + b)}/L µ {a(b)}. This probability P(a, b) is obtained in two steps: first take the image ν(dy) of µ(dx) by the map x → a (x) = y, where a is the adjoint of a. Its Laplace transform is L ν (s) = L µ {a(s)}. The second step constructs P(a, b)(dy) as the probability e -b,y ν(dy)/L µ {a(b)}: it is a member of the exponential family generated by ν.

m(0, 0, 1) = δ 0 , m(0, 1, 1) = δ 0 +        ∞ n=1 x n-1 n!(n -1)!        1 (0,∞) (x)dx, m(p, 0, 1) = x p-1 Γ(p) 1 (0,∞) (x)dx, m(p, 1, 1) =        ∞ n=0 x n+p-1 n!Γ(n + p)        1 (0,∞) (x)
Let us apply this to the case where E is the Euclidean space of real symmetric matrices of order d with scalar product x, y = tr (xy) and where µ is m(2p, k, d). Here D(µ) = P d . We take b = (2Σ) -1 and a to be the linear transformation s → a(s) = qsq , where q is an invertible matrix of order d such that

2(2Σ) -1 w(2Σ) -1 = q -1 I(k, d)(q ) -1 .
(

) 5 
We have a (x) = q xq. The distribution P(a, b) is the non-central Wishart NCW(2p, w, Σ) distribution since

L µ {a(s + b)} L µ {a(b)} = 1 det(I d + 2Σs) p e -tr (2s(I d +2Σs) -1 w) . (6) 
Using ( 5), we show (6) as follows:

tr

[[(q ) -1 {s + (2Σ) -1 } -1 q -1 -(q ) -1 (2Σ)q -1 ]I(k, d)] = tr [[{s + (2Σ) -1 } -1 -2Σ]q -1 I(k, d)(q ) -1 ] = -tr (2s{I d + 2Σs} -1 w).
The only thing left to prove is the existence of q satisfying (5). To see this, since the matrix 2(2Σ) -1 w(2Σ) -1 of P d has rank k, we write 2(2Σ) -1 w(2Σ) -1 = u∆u , where ∆ = diag(0, . . . , 0, λ 2 1 , . . . , λ 2 k ) with λ i > 0 and where u is an orthogonal matrix of order d. Taking q = diag(1, . . . , 1, λ -1 1 , . . . , λ -1 k ) u provides a solution of (5). The proof of the converse follows similar lines. Suppose now that m(2p, k, d) exists and let w ∈ P d of rank k. Then, from the first statement of the proposition, NCW(2p, w, Σ) exists for all > 0. The characteristic functions of NCW(2p, w, Σ) and of NCW(2p, 0, Σ) are easily deduced from (2) and [START_REF] Casalis | Characterization of the Jorgensen set in generalized linear models[END_REF]. Using these characteristic functions and Paul Lévy's continuity theorem, we deduce that NCW(2p, w, Σ) converges weakly to NCW(2p, 0, Σ) when → 0. Therefore we can claim that NCW(2p, 0, Σ) also exists. From Gindikin's theorem, p must be in Λ d defined by (3). We take q = I d and b = I d /2. Since a is the identity, we have

m(n, k, d)(dx) = 2 dn/2 e 2k e tr x/2 NCW[n, 2I(k, d), I d ](dx). ( 7 
)
The next three propositions reformulate known facts in the language of the measures m(2p, k, d). Proof. Suppose that m(n, k, d) exists for some pair (n, k) such that 0 ≤ n < k < d. We define m (dx) as the measure on P d with Laplace transform

P d e -tr (sx) m (dx) = 1 (det s) (d-n-2)/2 e tr [s -1 {I(d-1,d)-I(k,d)}] .
Since the rank of An important result which is a consequence of [START_REF] Mayerhofer | On the existence of non-central Wishart distributions[END_REF] is the following. The proof will be given in Section 6. In the remainder of the paper we develop the tools that lead us to this proof. They will also enable us to give another proof of Proposition 4. Let us emphasize the fact that Propositions 1-5 lead to a necessary and sufficient condition of existence of the distribution NCW(2p, w, Σ). It is worthwhile to make the following synthesis of Propositions 1-5 about the existence of NCW(2p, w, Σ) in the following proposition. 

I(d -1, d) -I(k, d) is equal to d -1 -k

Computation of m(1, 2, 2)

In this section, we compute m(1, 2, 2), which exists, as we know from Proposition 2. We will use only elementary tools. We parameterize the cone P 2 by the cone of revolution

C = (x, y, z) ∈ R 3 : x ≥ y 2 + z 2 using the mapping ϕ from C to P 2 defined by (x, y, z) → ϕ(x, y, z) = x + y z z x -y . ( 8 
)
Note that tr {ϕ(a, b, c)ϕ(x, y, z)} = 2ax + 2by + 2cz.

Proposition 7. Consider the positive measure µ on C such that, for a >

√ b 2 + c 2 , we have 1 √ a 2 -b 2 -c 2 e 2a a 2 -b 2 -c 2 = C e -2ax-2by-2cz µ(dx, dy, dz),
i.e., such that the image of µ by ϕ is m(1, 2, 2). Then µ(dx, dy, dz) = r(dx, dy, dz) + f (x, y, z)1 C (x, y, z)dxdydz, where the singular part r is the image of the measure g(2

y 2 + z 2 )dydz on R 2 by the map (y, z) → (x, y, z) = ( y 2 + z 2 , y, z) with g(t) = {2 cosh(2 √ t)}/(πt) and where, for (x, y, z) ∈ C, f (x, y, z) = 2 √ π ∞ k=0 (x 2 -y 2 -z 2 ) k k!(k + 1)! ∞ m=0 1 Γ(m + 2k + 5/2) (2x) m m! .
Proof. Using the notation D = ∂/∂x, the Faà di Bruno differentiation formula states that, if f (t) and g(x) are functions with enough derivatives, then

D n f {g(x)} = n! k 1 ! • • • k n ! (D k f ){g(x)} Dg(x) 1! k 1 • • • D n g(x) n! k n , (9) 
where k = k 1 + • • • + k n and where the sum is taken on all integers k j ≥ 0 such that

k 1 + 2k 2 + • • • + nk n = n.
For a reference, see, e.g., [START_REF] Roman | The formula of Faà di Bruno[END_REF]. We apply (9) to g defined by x → x 2y 2z 2 for fixed y, z and to f (t) = t n . Noting that D 3 g = 0, we obtain

∂ n ∂x n (x 2 -y 2 -z 2 ) n = n! 2 [n/2] k 2 =0 1 k 2 ! × (x 2 -y 2 -z 2 ) k 2 k 2 ! × (2x) n-2k 2 (n -2k 2 )! . ( 10 
)
For simplification in the sequel we write E = e -2ax-2by-2cz and F = e -2a √ y 2 +z 2 -2by-2cz . We now recall (see Formula 3.24 in [START_REF] Letac | Laplace transforms which are negative powers of quadratic polynomials[END_REF]) that when p > 1/2 we have for a >

√ b 2 + c 2 1 (a 2 -b 2 -c 2 ) p = 2 √ π × 1 Γ(p)Γ(p -1/2) C (x 2 -y 2 -z 2 ) p-3/2 Edxdydz. (11) 
Define

I k (n) = (2a) k C (x 2 -y 2 -z 2 ) n Edxdydz = √ π 2 n! Γ(n + 3/2) × (2a) k (a 2 -b 2 -c 2 ) n+3/2 ,
where we apply [START_REF] Letac | Laplace transforms which are negative powers of quadratic polynomials[END_REF] for p = n + 3/2. The idea of the proof is to write the Laplace transform of µ as follows:

e 2a a 2 -b 2 -c 2 √ a 2 -b 2 -c 2 = 1 √ a 2 -b 2 -c 2 + ∞ n=0 (2a) n+1 (n + 1)! 1 (a 2 -b 2 -c 2 ) n+3/2 = 1 √ a 2 -b 2 -c 2 + 2 √ π ∞ n=0 1 (n + 1)!n!Γ(n + 3/2) I n+1 (n) . (12) 
A first step is to observe that for k ∈ {0, . . . , n}, we have

I k (n) = C ∂ k ∂x k (x 2 -y 2 -z 2 ) n Edxdydz. (13) 
Let us prove it by induction on k. It is true for k = 0. Suppose that it is true for k < n and let us show that ( 13) is true for k + 1. Observe that for fixed (y, z), the root y 2 + z 2 of the polynomial x → (x 2y 2z 2 ) n has order n and this implies that ∂ k (x 2y 2z 2 ) n /∂x k is zero for x = y 2 + z 2 . Using this remark and integrating by parts with V(x) = e -2ax and U(x) = ∂ k (x 2y 2z 2 ) n /∂x k , we compute the following integral:

∞ √ y 2 +z 2 2ae -2ax ∂ k ∂x k (x 2 -y 2 -z 2 ) n dx = ∞ √ y 2 +z 2 e -2ax ∂ k+1 ∂x k+1 (x 2 -y 2 -z 2 ) n dx. (14) 
With [START_REF] Olkin | A characterization of the Wishart distribution[END_REF] we are in position to prove [START_REF] Muirhead | Aspects of Multivariate Analysis[END_REF]. We have

I k+1 (n) = 2a C ∂ k ∂x k (x 2 -y 2 -z 2 ) n Edxdydz = R 2 e -2by-2cz       ∞ √ y 2 +z 2 2ae -2ax ∂ k ∂x k (x 2 -y 2 -z 2 ) n dx       dydz = R 2 e -2by-2cz       ∞ √ y 2 +z 2 e -2ax ∂ k+1 ∂x k+1 (x 2 -y 2 -z 2 ) n dx       dydz = C ∂ k+1 ∂x k+1 (x 2 -y 2 -z 2 ) n Edxdydz,
which proves [START_REF] Muirhead | Aspects of Multivariate Analysis[END_REF]. We will need [START_REF] Muirhead | Aspects of Multivariate Analysis[END_REF] only for k = n. The second step is to express I n+1 (n) as the Laplace transform of a positive measure. We compute I n (n) as expressed (13) by using again an integration by parts. The new fact for k = n is that the integrated part will not disappear and will provide a term for the singular measure s given in the statement of the theorem. This calculation of the integrated part will use [START_REF] Letac | Existence and non-existence of the non-central Wishart distribution[END_REF]. Taking V(x) = -e -2ax and U(x) = ∂ n (x 2y 2z 2 ) n /∂x n , we write

I n+1 (n) = 2aI n (n) = R 2 e -2by-2cz       ∞ √ y 2 +z 2 2ae -2ax ∂ n ∂x n (x 2 -y 2 -z 2 ) n dx       dydz = A n + S n (15) 
with

A n = C ∂ n+1 ∂x n+1 (x 2 -y 2 -z 2 ) n Edxdydz, (16) 
S n = n! R 2 e -2by-2cz -e -2ax (2x) n ∞ √ y 2 +z 2 dydz = n! R 2 2 y 2 + z 2 n Fdydz, (17) 
where [START_REF] Shanbhag | The Davidson-Kendall problem and related results on the structure of the Wishart distribution[END_REF] comes from [START_REF] Letac | Existence and non-existence of the non-central Wishart distribution[END_REF] by keeping only the term k 2 = 0. We will carry this value of I n+1 (n) = A n + S n in [START_REF] Mayerhofer | On the existence of non-central Wishart distributions[END_REF]. Doing this, we can guess that S n will contribute to the singular part of m(1, 2, 2). But the term 1/ √ a 2b 2c 2 in (12) will also contribute to it.

More specifically, the third step of the proof is to represent the function on

C \ ∂C defined by (a, b, c) → 1/ √ a 2 -b 2 -c 2 as a Laplace transform. Exploiting the Gaussian integral below, we obtain 1 √ a 2 -b 2 -c 2 = 2 π R 2 e -2a(u 2 +v 2 )-2b(u 2 -v 2 )-4cuv dudv = 2 π R 2 2 y 2 + z 2 -1 Fdydz.
To obtain the second identity, observe that the map on {(u, v) : u > 0} defined by y = u 2v 2 , z = 2uv is a bijection with R 2 ; the same is true with {(u, v) : u < 0}. Furthermore dydz = 4(u 2 + v 2 )dudv = 4 y 2 + z 2 dudv and therefore dudv = dydz/(4 y 2 + z 2 ). This leads to the conclusion. Now comes the fourth and final step. We use Γ(n + 1/2) = (2n)! √ π/(4 n n!) and we consider the function

g(t) = 2 πt + 2 √ π ∞ n=0 1 (n + 1)!Γ(n + 3/2) t n = 2 πt cosh(2 √ t).
We then define the measure r(dx, dy, dz) concentrated on the boundary

∂C = (x, y, z) : x = y 2 + z 2
of the cone C to be the image of the measure on R 2

g 2 y 2 + z 2 dydz = 1 π y 2 + z 2 cosh{2 3/2 (y 2 + z 2 ) 1/4 }dydz
by the map (y, z) → (x, y, z) = ( y 2 + z 2 , y, z). This measure r will be the singular part of the image µ of m(1, 2, 2) by the reciprocal of ϕ defined by ( 8):

C Eds = R 2 g 2 y 2 + z 2 Fdydz = R 2 F dydz π y 2 + z 2 + 2 √ π ∞ n=0 R 2 2 n ( y 2 + z 2 ) n (n + 1)!Γ(n + 3/2) Fdydz = 1 √ a 2 -b 2 -c 2 + 2 √ π ∞ n=0 S n (n + 1)!n!Γ(n + 3/2) . ( 18 
)
Finally we focus on the absolutely continuous part of µ. We will need the following formula, similar to (10) and also obtained using ( 9):

∂ n ∂x n (x 2 -y 2 -z 2 ) n-1 = n! (n -1)! [n/2] k 2 =1 1 (k 2 -1)! × (x 2 -y 2 -z 2 ) k 2 -1 k 2 ! × (2x) n-2k 2 (n -2k 2 )! .
The absolutely continuous part of µ is given by ( 16) and [START_REF] Mayerhofer | On the existence of non-central Wishart distributions[END_REF]. Its density is

f (x, y, z) = 2 √ π ∞ n=0 1 (n + 1)! n! Γ(n + 3/2) ∂ n+1 ∂x n+1 (x 2 -y 2 -z 2 ) n (19) = 2 √ π ∞ n=2 1 (n -1)! n! Γ(n + 1/2) ∂ n ∂x n (x 2 -y 2 -z 2 ) n-1 = 2 √ π ∞ n=2 1 Γ(n + 1/2) [n/2] k 2 =1 1 (k 2 -1)! × (x 2 -y 2 -z 2 ) k 2 -1 k 2 ! × (2x) n-2k 2 (n -2k 2 )! = 2 √ π ∞ k=0 (x 2 -y 2 -z 2 ) k k! (k + 1)! ∞ m=0 1 Γ(m + 2k + 5/2) (2x) m m! .
From ( 19), ( 12) and ( 16) the Laplace transform of f is

C E f dxdydz = 2 √ π ∞ n=0 A n (n + 1)! n! Γ(n + 3/2) . ( 20 
)
Let us add [START_REF] Takemura | Zonal Polynomials[END_REF] and (20) and use [START_REF] Mayerhofer | On the existence of non-central Wishart distributions[END_REF]. What we get shows that the parameterization µ of m(1, 2, 2) by ϕ is the sum of r and of the absolutely continuous part with density f . Formula (20) shows that f is as given in Proposition 7.

Remark 2. The following point is essential for understanding Section 4. Remark first that the image by ϕ of the measure r(dx, dy, dz) is concentrated on the set S 1 ⊂ P 2 of matrices of rank 1. Any element of S 1 can be written as

u λ 1 0 0 0 u ,
where u is an orthogonal matrix of O(2) and λ 1 > 0. We can compute the image of r(dx, dy, dz) by the map

x + y z z x -y =       y 2 + z 2 + y z z y 2 + z 2 -y       → λ 1 = 2 y 2 + z 2 . ( 21 
)
If A t = {(x, y, z) : 2 y 2 + z 2 < t}, then using polar coordinates y = λ 1 cos α, z = λ 1 sin α with Jacobian equal to λ 1 /2, we have

r(A t ) = A t r(dx, dy, dz) = 2 √ y 2 +z 2 <t g 2 y 2 + z 2 dydz = π 2 t 0 g(λ 1 )λ 1 dλ 1 .
Since g(λ 1 ) = 2(πλ 1 ) -1 cosh 2 √ λ 1 , the image of the measure r by the map (21

) is cosh(2 λ 1 )1 (0,∞) (λ 1 )dλ 1 . (22) 
Now an important observation is the following: consider the measure m(1, 1, 1)(dλ) on (0, ∞) whose Laplace transform is, for s > 0,

1 √ s e 1/s = ∞ n=0 1 n!s n+1/2 = ∞ 0 e -sλ ∞ n=0 λ n-1/2 n!Γ(n + 1/2) dλ = 1 √ π ∞ 0 e -sλ 1 √ λ cosh(2 √ λ)dλ.
This last line implies d,d) we set some notations, we recall some facts about zonal functions and polynomials and we prove three lemmas. The Lebesgue measure dx on the space of real symmetric matrices of order d has the normalization associated to the Euclidean structure given by x, y = tr (xy). Note that Muirhead [START_REF] Muirhead | Aspects of Multivariate Analysis[END_REF] has a different normalization. As mentioned on page ix of the Introduction of [START_REF] Muirhead | Aspects of Multivariate Analysis[END_REF], zonal functions are the essential tool of non-central distribution theory. Our reference will be Faraut and Koranyi [START_REF] Faraut | Analysis on Symmetric Cones[END_REF], abbreviated from now on as FK.

m(1, 1, 1)(dλ) = 1 √ π 1 √ λ cosh(2 √ λ)1 (0,∞) (λ)dλ (23) 

Zonal functions

Let E d be the set of sequences κ = (m 1 , . . . ,

m d ) of d integers such that m 1 ≥ • • • ≥ m d ≥ 0. For κ ∈ E d , we consider the two zonal polynomials Φ (d) κ (x) = Φ (d) m 1 ,...,m d (x), C (d) κ (x) = C (d) κ (I d )Φ (d) κ (x),
where C (d) κ (I d ) is defined below in (25). In FK p. 228, the Φ κ are called spherical rather than zonal polynomials, and on p. 234 the notation Z κ is used instead of our notation C (d) κ . We use the definitions given in FK, while [START_REF] Muirhead | Aspects of Multivariate Analysis[END_REF] and [START_REF] Takemura | Zonal Polynomials[END_REF] have other ways to introduce the zonal polynomials. To define Φ (d) κ we consider

∆ κ (x) = ∆ 1 (x) m 1 -m 2 ∆ 2 (x) m 2 -m 3 • • • ∆ d-1 (x) m d-1 -m d ∆ d (x) m d ,
where for the real symmetric matrix x = (x i j ) 1≤i, j≤d , the function ∆ k (x) = det(x i j ) 1≤i, j≤k is the principal determinant of x of order k. The function Φ (d) κ is then defined by

Φ (d) κ (x) = O(d) ∆ κ (uxu )du, ( 24 
)
where du is the Haar probability on the orthogonal group O(d). When x ∈ P d definition (24) makes sense even when m 1 , . . . , m d are complex numbers. In that case Φ (d) m 1 ,...,m d (x) is no longer a polynomial and is called a zonal function. From (24) one obtains easily the following formula for any x and y in S d :

O(d) Φ (d) κ (xuyu )du = Φ (d) κ (x)Φ (d) κ (y).
To give the value of the constant C (d) κ (I d ), we need the notations (κ) = max{ j :

m j > 0}, |κ| = m 1 + • • • + m d and Γ d (z 1 , . . . , z d ) = d j=1 Γ z j - j -1 2
defined whenever z j -( j -1)/2 > 0 for all j ∈ {1, . . . , d}. If p is a real number, we use the notational convention

Γ d (z + p) = Γ d (z 1 + p, . . . , z d + p).
If κ ∈ E d and p > (d -1)/2, we define the Pochhammer symbol as (p) κ = Γ d (κ + p)/Γ d (p). Since p → (p) κ is a polynomial, we extend its definition to the whole line.

If κ ∈ E d , the constant C (d) κ (I d ) is C (d) κ (I d ) = C (d) m 1 ,...,m d (I d ) = 2 2|κ| |κ|! d 2 κ 1≤i< j≤ (κ) (2m i -2m j -i + j) (κ) i=1 {2m i + (κ) -i}! (25) = |κ|! ((d + 1)/2) κ × 1≤i≤ j≤d B[( j -i + 1)/2, 1/2] B[m i -m j + ( j -i + 1)/2, 1/2] . (26) 
Form (25) of the spherical polynomials is given in [START_REF] Muirhead | Aspects of Multivariate Analysis[END_REF] p. 237 formula (38), where there is a reference to [START_REF] Constantine | Some non-central distribution problems in multivariate analysis[END_REF] for a proof. Form (26) can be proved from FK by combining Propositions XI. 4.2 (i), p. 230, and XI.4.4, p. 232, and the definition of Z κ (x) = C (d) κ (x) on the last line of p. 234. We never consider

C (d) κ (x) if κ E d .
The exact value of C (d) κ (I d ) will be crucial in the proof of Proposition 9 when we need the following formula which is Formula (3), p. 259, of Muirhead [START_REF] Muirhead | Aspects of Multivariate Analysis[END_REF]:

e tr x = κ∈E d 1 |κ|! C (d κ (x) . (27) 
Since we have introduced the zonal polynomials, we use them here to recall the result of [START_REF] Peddada | Proof of a conjecture of M.L. Eaton on the characteristic function of the Wishart distribution[END_REF] leading to the elegant proof by Peddada and Richards of Gindikin's Theorem. Proof. Consider the scalar product for polynomials on S d defined in FK, p. 220, as

p, q = p ∂ ∂x q(x) x=0 .
Then (see FK, p. 234) the spherical polynomials are an orthogonal family. In particular

E{Φ (d) κ (W)} = Φ (d) κ ∂ ∂s E(e tr sW ) s=0 = Φ (d) κ ∂ ∂s {det(I d -s)} -p s=0 = Φ (d) κ ∂ ∂s κ ∈E d (p) κ |κ |! C (d) κ (s) s=0 (28) = (p) κ Φ (d) κ 2 C (d) κ (I d ) = (p) κ (29) 
where (28) comes from ( 27), (29) comes from the orthogonality of the spherical functions, and the norm of Φ (d) κ is given in FK, p. 234. Since Φ (d) κ (W) ≥ 0 we have (p) κ ≥ 0 for all κ ∈ E d and this implies that p ∈ Λ d .

It is interesting to compute the zonal polynomials for d = 2. This is given as Exercise 5, p. 237, in FK. Define the Legendre polynomials (P k ) ∞ k=0 by their generating function

∞ k=0 P k (x)z k = 1 √ 1 -2zx + z 2 .
Further let

x = a + b c c a -b in P 2 . Then for (m 1 , m 2 ) ∈ E 2 we have Φ m 1 ,m 2 (x) = (a 2 -b 2 -c 2 ) (m 1 +m 2 )/2 P m 1 -m 2 a √ a 2 -b 2 -c 2 . ( 30 
)
We now detail the proof of (30). The Legendre polynomial P k satisfies

P k (cosh t) = 1 π π 0 (cosh t + cos u sinh t) k du. ( 31 
)
To check this, call Q k the right-hand side of (31). The computation of ∞ k=0 Q k z k gives (1 -2zx + z 2 ) -1/2 for |z| small enough. This proves (31). Let

R(θ) = cos θ -sin θ sin θ cos θ , J = -1 0 0 1 and observe that SO(2) = {R(θ) : θ ∈ R} and O(2) \ SO(2) = JSO(2). Writing B C = R(2θ) b c , a small calculation yields R(θ) a + b c c a -b R(-θ) = a + B C C a -B , ( 32 
)
JR(θ) a + b c c a -b R(-θ)J = a + B -C -C a -B . ( 33 
)
The two formulas (32) and (33) enable us to compute the zonal polynomial

Φ m 1 ,m 2 (x) = O(2) ∆ m 1 ,m 2 (uxu )du = 1 2 SO(2) ∆ m 1 ,m 2 (uxu )du + 1 2 O(2)\SO(2) ∆ m 1 ,m 2 (uxu )du = 1 4π 2π 0 [∆ m 1 ,m 2 {R(θ)xR(-θ)} + ∆ m 1 ,m 2 {JR(θ)xR(-θ)J}]dθ = (a 2 -b 2 -c 2 ) m 2 1 2π 2π 0 (a + B) m 1 -m 2 dθ = (a 2 -b 2 -c 2 ) m 2 1 π π 0 (a + √ b 2 + c 2 cos θ) m 1 -m 2 dθ = (a 2 -b 2 -c 2 ) m 1 +m 2 2 1 π π 0        a √ a 2 -b 2 -c 2 + √ b 2 + c 2 √ a 2 -b 2 -c 2 cos θ        m 1 -m 2 dθ .
Using form (31) of the Legendre polynomial yields (30). Using (26) we also obtain

C (2) m 1 ,m 2 (I 2 ) = (m 1 + m 2 )! (m 1 -m 2 )! m 2 ! × 1 (3/2 + m 1 -m 2 ) m 2 . ( 34 
)

Three properties of zonal functions

Lemma 1. Let x = x 1 x 12 x 21 x 2 ∈ P d and [x] 1 = x 1 ∈ P d-1 .
Then for all complex numbers m 1 , . . . , m d we have

Φ (d) m 1 ,...,m d (x) = (det x) m d O(d) Φ (d-1) m 1 ,...,m d-1 ([uxu ] 1 )du. Proof. Consider v = v 1 0 0 1 ∈ O(d), where v 1 ∈ O(d -1)
. Observe that for any y ∈ P d we have

[vyv ] 1 = v 1 [y] 1 v 1 . ( 35 
)
We write

Φ (d) m 1 ,...,m d (x) = O(d) ∆ m 1 ,...,m d-1 ,m d (uxu )du (36) = (det x) m d O(d) ∆ m 1 ,...,m d-1 ([uxu ] 1 )du (37) = (det x) m d O(d) ∆ m 1 ,...,m d-1 ([vuxu v ] 1 )du (38) = (det x) m d O(d) ∆ m 1 ,...,m d-1 (v 1 [uxu v ] 1 v 1 )du (39) = (det x) m d O(d) O(d-1) ∆ m 1 ,...,m d-1 {v 1 [uxu v ] 1 v 1 }dv 1 du (40) = (det x) m d O(d) Φ (d-1) m 1 ,...,m d-1 ([uxu ] 1 )du. ( 41 
)
In the equations above, (36) comes from the definition of Φ (d) κ (x), (37) separates the roles of [uxu ] 1 and det(uxu ) = det x in the definition of ∆ κ (uxu ), (38) uses the fact that du is the Haar probability, (39) follows from (35) applied to y = uxu , (40) uses the fact that the Haar measure dv 1 of O(d -1) has mass 1 and (41) comes from the definition of 

Φ (d-1) m 1 ,...,m d-1 (x). Lemma 2. If x ∈ P d , then Φ (d) m 1 ,...,m d (x -1 ) = Φ (d) -m d ,...,-m 1 (x). Proof. Define p ∈ O(d) by p =                  0 0 . . . 0 1 0 0 . . . 1 0 . . . . . . . . . . . . . . . 1 0 . . . 0 0                  and define ∆ m 1 ,...,m d-1 ,m d (x) = ∆ m 1 ,...,m d-1 ,m d (pxp ). We can write Φ (d) κ (x -1 ) as O(d) ∆ m 1 ,...,m d-1 ,m d (ux -1 u )du = O(d) ∆ -m d ,...,-m 1 (uxu )du (42) = O(d) ∆ -m d ,...,-m 1 (uxu )du ( 
(π det x) 1/2 Γ(d/2) m(d -1, d -1, d -1)(dx) ⊗ du by the map from P d-1 × O(d) to P d defined by (x, u) → t = u x 0 0 0 u = u xu . Define f d (t) = (det t) -1         κ∈E d C (d) κ (t) |κ|! Γ d {κ + (d -1)/2}         , (44) 
where

E d = {κ ∈ E d ; m d > 0}. Then m(d -1, d, d)(dt) = r(dt) + f d (t)1 P d (t)dt.
Proof. The function f d (t) is an analytic function around t = 0 because, from the definition (24) of Φ (d) κ , the polynomial 

C (d) m 1 ,...,m d (t) is divisible by (det t) m d . Therefore (det t) -1 C (d) κ (t)
P d e -tr (sx) (det x) p-(d+1)/2 Φ (d) κ (x) Γ d (κ + p) dx = Φ (d) κ (s -1 )(det s) -p . (45) 
Note that the choice of the suitable Lebesgue measure dx is crucial in (45). Formula (45) holds true for p + m d > (d -1)/2. For m d = 0, this was proven in the references [START_REF] Muirhead | Aspects of Multivariate Analysis[END_REF] and FK. When m d > 0 we observe that

Φ (d) κ (x) = Φ (d) m 1 ,...,m d (x) = (det x) m d Φ (d) m 1 -m d ,...,m d-1 -m d ,0 (x) = (det x) m d Φ (d) κ-m d (x). (46) 
As a consequence

P d e -tr (sx) (det x) p-(d+1)/2 Φ (d) κ (x) Γ d (κ + p) dx = P d e -tr (sx) (det x) p+m d -(d+1)/2 Φ (d) κ-m d (x) Γ d (κ + p) dx (47) = Φ (d) κ-m d (s -1 )(det s) -p-m d (48) = Φ (d) κ (s -1 )(det s) -p , (49) 
where (47) and (49) come from (46), and (48) from (45), where p is replaced by p + m d .

From (27) we know that, for 2p ≥ d -1, the Laplace transform of m(2p, d, d) is

P d e -tr (sx) m(2p, d, d)(dx) = (det s) -p κ∈E d C (d) κ (s -1 ) |κ|! . (50) 
Observe that the Laplace transform of f d (t)1 P d (t)dt as defined by ( 44) is easily deduced from (45) and is equal to

P d e -tr (st) f d (t)dt = (det s) -(d-1)/2          κ∈E d C (d) κ (s -1 ) |κ|!          . (51) 
In (50), take 2p = d -1. Using the Laplace transform (51), we now want to prove that the Laplace transform of r(dt) is

P d e -tr (st) r(dt) = (det s) -(d-1)/2          κ∈E d \E d C (d) κ (s -1 ) |κ|!          = (det s) -(d-1)/2          κ∈E d-1 C (d) (κ,0) (s -1 ) |κ|!          . ( 52 
)
To prove (52) we start from the definition of r(dt). Observe first that, for 2p > d -1, (45) and (50) imply

m(2p, d, d)(dx) = (det x) p-(d+1)/2          κ∈E d C (d) κ (x) |κ|! Γ d (κ + p)          1 P d (x)dx. ( 53 
)
In particular, in (53) let us replace d by d -1 and let 2p = d -1. We obtain

(det x) 1/2 m(d -1, d -1, d -1)(dx) =         κ∈E d-1 C (d-1) κ (x) |κ|! Γ d-1 {κ + (d -1)/2}         1 P d-1 (x)dx. ( 54 
)
We can now write

P d e -tr (st) r(dt) = π 1/2 Γ(d/2) O(d)         P d-1 e -tr (su xu ) κ∈E d-1 C (d-1) κ (x) |κ|! Γ d-1 {κ + (d -1)/2} dx         du (55) 
= π 1/2 Γ(d/2) κ∈E d-1 C (d-1) κ (I d-1 ) |κ|! O(d)       P d-1 e -tr ([u su] 1 x) Φ (d-1) κ (x) Γ d-1 {κ + (d -1)/2} dx       du.
Equality (55) comes from (54) and the definition of r. Now we compute the last double integral as follows

O(d)       P d-1 e -tr ([u su] 1 x) Φ (d-1) κ (x) Γ d-1 {κ + (d -1)/2} dx       du = O(d) (det[usu ] -1 1 ) d/2 Φ (d-1) κ ([usu ] -1 1 )du (56) = O(d) Φ (d-1) κ+d/2 ([usu ] -1 1 )du (57) = O(d) Φ (d-1) -m d-1 -d/2,...,-m 1 -d/2 ([usu ] 1 )du (58) = Φ (d) -m d-1 -d/2,...,-m 1 -d/2,0 (s) (59) = Φ (d) 0,m 1 +d/2,...,m d-1 +d/2 (s -1 ) (60) = Φ (d) -d/2,m 1 ,...,m d-1 (s -1 )(det s -1 ) d/2 (61) = Φ (d) m 1 ,...,m d-1 ,0 (s -1 )(det s -1 ) (d-1)/2 . ( 62 
)
In the equations above, equality (56) follows from (45) by replacing (d, p) by (d -1, d/2). Equalities (57) and (61) come from Lemma 3. In the identities following (58) we have replaced κ by (m 1 , . . . , m d-1 ) for clarity. Formulas (58) and (60) come from Lemma 2, and (59) comes from Lemma 1. The proof of (62) is more involved and is a consequence of formula (iii) in Theorem XIV 3.1 of FK, where we replace (d, r, λ, µ) respectively by 1, d and

λ = m 1 + d -1 4 , m 2 + d -3 4 , . . . , m d-1 - d -3 4 , - d -1 4 , µ = - d -1 4 , m 1 + d -1 4 , m 2 + d -3 4 , . . . , m d-1 - d -3 4 .
The fact that µ is a permutation of λ and the reference above imply (62). Now we observe that

π 1/2 Γ(d/2) C κ (I d-1 ) = C κ,0 (I d ), (63) 
implied by formula (26). Finally we gather (55), ( 62) and ( 63) to obtain To illustrate Proposition 9 we consider the function f 3 (t) defined on P 3 by (44). More specifically we have

f 3 (t) = 1 det t m 1 ≥m 2 ≥m 3 >0 C (3) m 1 ,m 2 ,m 3 (t) (m 1 + m 2 + m 3 )! m 1 ! Γ(m 2 + 1/2) (m 3 -1)! .
We also consider the measure m(2, 2, 2)(dt) on P 2 parameterized by (a, b, c) → t = ϕ(a, b, c) as in [START_REF] Graczyk | Characterisation of the Wishart processes and Wishart distributions[END_REF]. From (54), we have

m(2, 2, 2)(da, db, dc) = 1 (det t) 1/2 m 1 ≥m 2 ≥0 C (2) m 1 m 2 (t) (m 1 + m 2 )! m 1 ! Γ(m 2 + 1/2) = 1 √ π ∞ k=0 ∞ n=0 (a 2 -b 2 -c 2 ) n+(k-1)/2 2 2n (3/2 + k) n (n + k)! k! (2n)! P k a √ a 2 -b 2 -c 2 .
This last formula is obtained by using the calculations done in Section 4.2 for Φ (2) m 1 ,m 2 in (30), for C (2) m 1 ,m 2 (I 2 ) in (34) and the change of indexes (m 1m 2 , m 1 ) = (k, n). Finally the singular measure r(dt) concentrated on the set of matrices of rank 2 in the cone P 3 of positive semidefinite matrices of order 3 is constructed as follows. One considers the product of m(2, 2, 2)(da, db, dc) by the uniform probability measure du on the orthogonal group O(3). The measure r(dt) is the image of this product measure by the following map:

(a, b, c, u) → t = u           a + b c 0 c a -b 0 0 0 0           u .
Proposition 9 says that the measure m(2, 3, 3)(dt) on the set P 3 of semipositive definite matrices of order 3 defined by the Laplace transform (det s) -1 exp trace s -1 is the sum r(dt) + f 3 (t)1 P 3 (t)dt.

Convolution lemmas in the cone P d

Let G k the set of linear subspaces G of dimension k of a Euclidean space E of dimension d. Let us endow G k with the uniform distribution, i.e., the unique probability on G k such that G ∼ uG for all u ∈ O(d). Lemma 4 below describes an intuitively obvious fact. For the sake of completeness, we offer a proof, although other ones may already exist in the literature. 

. , dy d-2 ) on R d(d-2) = R d × • • • × R d such that for all s ∈ P d we have R d(d-2) e -(y 1 sy 1 +•••+y d-2 sy d-2 ) m(dy) = 1 det s (d-2)/2 e tr {s -1 I(d-1,d)} .
We write the elements y = (y 1 , . . . , y d-2 ) more conveniently with the help of the transposed matrix y = (y i, j ) with d -2 rows y 1 , . . . , y d-2 and d columns c 1 , . . . , With these notations we can write

c d y =             y 1 . . . y d-2             =             y 1,1 . . . y 
1 det s (d-2)/2 1 e tr (s -1 1 ) = R d(d-2) e -tr {sG(c)} m(dc) = R d(d-2) e -c 1 2 e -tr {s 1 G(c 2 ,...,c d )} m(dc 1 , dc 2 , . . . , dc d ) = R (d-1)(d-2) e -tr {s 1 G(c 2 ,...,c d )} R d-2 K(c 2 , . . . , c d ; dc 1 ) m 1 (dc 2 , . . . , dc d ) = R (d-1)(d-2)
e -tr {s 1 G(c 2 ,.. 

x = 0. Since x G 2 x = x 2 c 2 + • • • + x d c
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The question of the existence of the non-central Wishart distribution was addressed in [START_REF] Letac | The non-central Wishart as an exponential family and its moments[END_REF] where we claimed, in Proposition 2.3, that such a distribution exists if and only if p is in Λ d without any restriction on Σ ∈ P d or w ∈ P d . However the proof of the 'if' part was not given in [START_REF] Letac | The non-central Wishart as an exponential family and its moments[END_REF] since we considered it obvious that if p was in the part {1/2, 2/2, . . . , (d -1)/2} of Λ d , then NCW(2p, w, Σ) did exist without restriction on the rank of w. This gap in [START_REF] Letac | The non-central Wishart as an exponential family and its moments[END_REF] was kindly pointed out to us, in a private communication, by E. Mayerhofer who later showed in [START_REF] Mayerhofer | On the existence of non-central Wishart distributions[END_REF] that the statement was not only unproven, but false. More specifically, Mayerhofer [START_REF] Mayerhofer | On the existence of non-central Wishart distributions[END_REF] showed that if NCW(2p, w, Σ) exists, if d ≥ 3 and if n = 2p is in {1, 2, . . . , d -2}, then rank w ≤ n + 1. We reproved it in a different form in Proposition 2.4 of the present paper. Mayerhofer [START_REF] Mayerhofer | On the existence of non-central Wishart distributions[END_REF] used a stochastic process valued in the set of symmetric matrices in order to prove this statement. Finally, he conjectured in [START_REF] Mayerhofer | On the existence of non-central Wishart distributions[END_REF] that rank w ≤ n holds, and Proposition 2.5 shows that the conjecture is true.
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  where Y 1 . . . , Y n ∈ R d are independent Gaussian column vectors with the same non-singular covariance matrix Σ and respective means m 1 , . . . , m n which are not necessarily equal. For s in the open cone P d of positive definite symmetric matrices of order d and w = m 1 m 1 + • • • + m n m n in the closed cone of positive semidefinite matrices P d , one can readily derive the Laplace transform E(e -tr (sX) ) = 1 det(I d + 2Σs) n/2 e -tr {2s(I d +2Σs) -1 w} .

( a )

 a If p ∈ {1/2, 2/2, . . . , (d -2)/2}, then NCW(2p, w, Σ) exists if and only if the rank k of w is such that k ≤ 2p. (b) If p ≥ (d -1)/2, then NCW(2p, w, Σ) exists for any w. As just noted above, Statement (b) has already been proved for p > (d-1)/2 and the density of the NCW(2p, w, Σ) distribution is known. For p = (d -1)/2, Statement (b) is established by observing that NCW(d -1, w, Σ) = lim p↓(d-1)/2

  dx, where δ 0 denotes Kronecker's delta. For 2p > d -1, formula (53) below gives m(2p, d, d). If k and n are integers such that 0 ≤ k ≤ n ≤ d, formula (7) gives m(n, k, d). Finally m(1, 2, 2) is computed in Section 3. The measure m(d -1, d, d) is computed in Section 4.3 and details about m(2, 3, 3) are given in Section 4.4. We will show below that these examples are the only cases of existence. For instance the function s → exp tr (s -1 ) on P d is not the Laplace transform of a positive measure if d ≥ 2.

Proposition 1 .

 1 Let Σ ∈ P d , w ∈ P d and p ∈ Λ d . Suppose that rank w = k. Then NCW(2p, w, Σ) as defined by (2) exists if and only if m(2p, k, d) exists. Furthermore, if m(2p, k, d) exists, then p belongs to the Gindikin set (3).

Example 1 .

 1 When 0 ≤ k ≤ n ≤ d we can use the above principle for constructing NCW[n, 2I(k, d), I d ] from m(n, k, d).

  and is less than or equal to dn -2 then, by Propositions 1-2, m exists. Now we write the convolution m(n, k, d) * m = m(d -2, d -1, d), which contradicts the non-existence of m(d -2, d -1, d). Similarly, suppose that m(d -2, d, d) does not exist and that there exists n such that 0 ≤ n ≤ d -2 and such that m(n, d, d) exists. Then m(n, d, d) * m(d -2n, 0, d) = m(d -2, d, d) also leads to a contradiction.

Proposition 4 .Proposition 5 .

 45 If d ≥ 3, the measure m(d -2, d, d) does not exist. Apart from Proposition 9 below, our main result is as follows. If d ≥ 3, the measure m(d -2, d -1, d) does not exist.

Proposition 6 .

 6 Let Σ ∈ P d , w ∈ P d with rank k ∈ {0, . . . , d} and p > 0. Then the non-central Wishart distribution NCW(2p, w, Σ) exists if and only either 2p ≥ d -1 or 2p = n ∈ {0, 1, . . . , d -2} and 0 ≤ k ≤ n. In particular, for d = 2, the probability NCW(2p, w, Σ) exists if and only if 2p ≥ 1. For an arbitrary d, NCW(0, w, Σ) exists if and only if w = 0. Proof. From Proposition 1, the existence of NCW(2p, w, Σ) is equivalent to the existence of m(2p, k, d) when rank w = k. ⇒: We have seen in Proposition 1 that p must be in Λ d as defined in (3). If furthermore 2p = n ∈ {0, . . . , d -2} let us show that 0 ≤ k ≤ n. Suppose the contrary 0 ≤ n < k holds. A reformulation of the first part of Proposition 3 is the following: if there exists (n, k) such that 0 ≤ n < k < d and such that m(n, k, d) exists then m(d -2, d -1, d) exists. This contradicts the statement of Proposition 5. Thus the 'if' part of Proposition 6 is proved. ⇐: If 2p > d -1 Proposition 2.2 of [9] proves the existence of m(2p, k, d) without constraints on k. Passing to the limit when 2p = d -1 shows the existence of m(d -1, k, d) also for any k. If 2p = n ≤ d -2 and if 0 ≤ k ≤ n, Proposition 2 shows that m(n, k, d) exists.

and one observes that m( 1 , 1 , 1 )

 111 is quite close to (22). To summarize this remark, the singular part of m(1, 2, 2) can be seen as the image of √ πλ 1 m(1, 1, 1)(dλ 1 ) ⊗ du by the map (u, λ 1 ) → u λ 1 0 0 0 u from (0, ∞) × O(2), where du is the uniform probability on O(2). This is the key to the generalization of the computation from m(1, 2, 2) to the computation of m(d -1, d, d) for d ≥ 2 done in the next section. 4. Computation of the measure m(d -1, d, d) Before stating Proposition 9 which describes m(d -1,

Proposition 8 .

 8 Let p > 0 and let W be a random variable of P d such that E(e tr sW ) = {det(I ds)} -p when I ds is positive definite. Then, for all κ ∈ E d , we have E{Φ(d) κ (W)} = (p) κ and W exists if and only if p is in Λ d as defined by (3).

Lemma 3 . 4 . 3 .Proposition 9 .

 3439 43) In this list (42) comes FK, Proposition VII.1.5 (ii), p. 127, which states that ∆ m 1 ,...,m d-1 ,m d (x -1 ) = ∆ -m d ,...,-m 1 (x), and (43) comes from the invariance of the Haar probability du on O(d) by u → pu. If x ∈ P d , then Φ (d) m 1 ,...,m d (x)(det x) p = Φ (d) m 1 +p,...,m d +p (x). Proof. By definition, Φ (d) κ (x)(det x) p = O(d) ∆ m 1 ,...,m d (uxu )(det uxu ) p du = O(d) ∆ m 1 +p,...,m d +p (uxu )du = Φ (d) m 1 +p,...,m d +p (x), which completes the argument. The derivation of m(d -1, d, d) Define the singular measure r(dt) on P d and concentrated on the set S d-1 of symmetric matrices of rank d -1 as the image of the product measure

e 2 κ∈E d- 1 C

 21 -tr (st) r(dt) = (det s) -(d-1)/(κ,0) (s -1 ) |κ|! , which proves (52) and Proposition 9 itself. 4.4. Example: m(2, 3, 3)

Lemma 4 .Lemma 7 .

 47 Let F be a fixed linear subspace of dimension n of the Euclidean space E of dimension d. If the random linear subspace G of E has the uniform distribution on G k and if k ≤ dn, then Pr(G ∩ F {0}) = 0. Proof. It is enough to prove the lemma for E = R d , F = {0} × R d-n and k = dn. Let Z 1 , . . . , Z n be iid random variables in R d following the standard Gaussian distribution N(0, I d ). Let G be the random linear subspace of E Let a, b ∈ {1, . . . , d -1} such that a + b < d. If m(a, a + b, d) exists, it is concentrated on S a . Proof. From the Laplace transforms of the measures we know that m(a, a + b, d) * m(b, 0, d) = m(a + b, a + b, d). From Proposition 2.2, we know that m(a + b, a + b, d) is concentrated on S a+b since this is the case for the singular noncentral Wishart N(n, I(n, d), I d ) with n = a + b. Since the Laplace transform of m(b, 0, d) is (det s) -b/2 , we know that m(b, 0, d) is invariant by the transformations x → uxu for any u ∈ O(d). By Lemma 6 we deduce that m(a, a + b, d) is concentrated on S a if it exists. 6. m(d -2, d -1, d) and m(d -2, d, d) do not exist for d ≥ 3 In this section we prove Propositions 4 and 5. Proof of Proposition 4. Suppose that m(d -2, d, d) exists. Then m(d -2, d, d) * m(2, 0, d) = m(d, d, d). From (45) and (50), the measure m(d, d, d) has a C ∞ density g. As a consequence P d e -tr (sx) m(d -2, d, d)(dx) = det s P d e -tr (sx) g(x)dx = (-1) n P d e -tr (sx) det(∂/∂x)g(x)dx. This implies that m(d -2, d, d)(dx) = (-1) n det(∂/∂x)g(x)dx has a density. However, since m(d -2, d, d) * m(1, 0, d) = m(d -1, d, d) this would imply that m(d -1, d, d) is absolutely continuous, which contradicts Proposition 9. Proof of Proposition 5. Suppose that m(d-2, d-1, d) exists. By Lemma 7, the measure m(d-2, d-1, d) is concentrated on S d-2 . Therefore there exists a positive measure m(dy) = m(dy 1 , . .

=

  [c 1 , . . . , c d ] . With this notation introduce the Gram matrix G(c) = G(c 1 , . . . , c d ) = ( c j , c k ) 1≤ j,k≤d and denote by m(dc) what we denoted by m(dy) before. We get R d(d-2) e -tr {sG(c)} m(dc) = 1 det s (d-2)/2 e tr {s -1 I(d-1,d)} . (64) Equality (64) means that m(d -2, d -1, d)(dx) is the image of m(dc) by c → x = G(c). Now in (64) we choose s = diag(1, s 1 ) where s 1 is a symmetric positive definite matrix of order d -1. We also desintegrate m(dc) by introducing a probability kernel K(c 2 , . . . , c d ; dc 1 ) and a positive measure m 1 (dc 2 , . . . , dc d ) such that e -c 1 2 m(dc 1 , dc 2 , . . . , dc d ) = m 1 (dc 2 , . . . , dc d )K(c 2 , . . . , c d ; dc 1 ).

  d 2 the linear space of x ∈ R d-1 such that x 2 c 2 + • • • + x d c d = 0 has at least dimension 1, the kernel of the endomorphism of R d-1 with matrix G 2 has at least dimension 1 and its image has at most dimension d -2. This contradicts Proposition 9 which says that m(d -2, d -1, d -1) has an absolutely continuous part and therefore charges matrices with rank d -1.

  is a polynomial when κ ∈ E d . Recall the following (see FK, Lemma XI.2.3, p. 226, or Muirhead [13] Theorem 7.2.7, p. 248):

  .,c d )} m 1 (dc 2 , . . . , dc d ) since K is a probability kernel. The last equality says that the image of m 1 (dc 2 , . . . , dc d ) by the map (c 2 , . . . ,c d ) → x = G(c 2 , . . . , c d ) is nothing but m(d -2, d -1, d -1)(dx). Denote G 2 = G(c 2 , .. . , c d ) for simplicity. Since c 2 , . . . , c d are vectors of a Euclidean space of dimension d -2, the rank of G 2 is less than or equal to d -2. To prove this elementary fact of linear algebra we use G 2 ∈ P d-1 . This implies that if x = (x 2 , . . . , x d ) , then G 2 x = 0 if and only if x G 2
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generated by the vectors Z 1 , . . . , Z n . Since for all u ∈ O(d) we have (uZ 1 , . . . , uZ n ) ∼ (Z 1 , . . . , Z n ), clearly G ∼ uG and G follows the uniform distribution. Introduce the matrix M = [Z 1 , . . . , Z n ] = (Z i j ) 1≤i≤d, 1≤ j≤n , whose columns are the vectors Z 1 , . . . , Z n . Then x 1 Z 1 + • • • + x n Z n = MX, where X = (x 1 , . . . , x n ) . Now G ∩ F {0} implies that there exists a non-zero X such that the first n elements of MX are zero. In other terms, considering the square matrix M 1 of order n defined by M 1 = (Z i j ) 1≤i, j≤n , we have that G ∩ F {0} implies that there exists a non-zero X such that M 1 X = 0. This happens if and only if det M 1 = 0. Since the n 2 entries of the matrix M 1 are independent N(0, 1) variables, the event det M 1 = 0 has probability zero and the lemma is proved.

In the sequel we will denote by S b the set of x ∈ P d with b = rank x = 0, . . . , d. Of course S d = P d .

Lemma 5. Let Y be a random variable in S b and assume that uYu ∼ Y for all u in the orthogonal group

To see that rank

Let x 0 and Y be the restrictions of the endomorphisms x 0 and Y to the linear space E. Since x 0 and Y are symmetric, this implies that Therefore the measure µ * K y 0 is concentrated on S a+b for ν 0 almost all y 0 ∈ D b . From Lemma 5, this implies that µ is concentrated on S a .

⇐ : If µ is concentrated on S a with a + b ≤ d, it is an easy consequence of Lemma 5 that µ * ν is concentrated on S a+b .