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Associated natural exponential families and
elliptic functions

Geérard Letac

To Ole Barndorff-Nielsen for his 80th birthday.

Abstract This paper studies the variance functions of the naturabesptial fam-

ilies (NEF) on the real line of the forrpAnt* 4+ Bn? + C)%/2 wherem denoting the
mean. Surprisingly enough, most of them are discrete famdoncentrated ohZ

for some constamt and the Laplace transform of their elements are expressed by
elliptic functions. The concept of association of two NEFRais auxilliary tool for
their study: two familie= andG are associated if they are generated by symmet-
ric probabilities and if the analytic continuations of theariance functions satisfy

Vi (M) = Ve(my/—1). We give some properties of the association before its e@pli
tion to these elliptic NEF. The paper is completed by theystfdEF with variance
functionsm(Cnt* +Bn¥ + A)}/2. They are easier to study and they are concentrated

onaN.
Primary: 62E10, 60G51

Secondary: 30E10

Key words: Variance functions, exponential dispersion models, foncf] of
Weierstrass.

1 Foreword

Ole and | met for the first time in the Summer School of SaintFln 1986. Having
been converted to statistics by V. Seshadri two years befftwad learnt about ex-
ponential families through Ole’s book (1978) and | had faugith cuts and steep-
ness. Marianne Mora had just completed her thesis in Toelemnsl was one of
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the Saint Flour participants: she was the first from Touldosmake the pilgrim-
age to Aarhus the year after, followed by many others rekeasdrom Toulouse:
Evelyne Bernadac, &estin Kokonendji, Dhafer Malouche, Muriel Casalis, Abde
hamid Hassairi, Angelo Koudou and myself. Over the yearsfals were in contact
with the everflowing ideas of Ole. During these Aarhus daysl (@le’s visits to
Toulouse) we gained a better understanding of theylprocesses, of generalized
inverse Gaussian distributions and their matrix versiohdifferential geometry ap-
plied to statistics. Among all the topics which have inteed<Ole, the choice today
is the one for which he may be the least enthusiastic (seeisicassion of Letac
1991), namely the classification of exponential familigstiyh their variance func-
tions: Ole thought correctly that although the results veatisfactory for the mind,
one could not see much real practical applications: in therohand Mendeleiev
is universally admired for its prophetic views of chemickmnents which had not
been yet discovered. Descriptions of natural exponendialilfes with more and
more sophisticated variance functionsave been done: whéhis a second degree
polynomial in the mean (Morris 1982), a power (Tweedie 19#tgensen 1987), a
third degree polynomial (Letac-Mora 1990), the Babel cRgsQv/R where poly-
nomialsP, Q, R have degrees not bigger thanl2? (Letac 1992, Jgrgensen 1997).
This is for univariate NEF: even more important works haverbdone for mul-
tivariate NEF, but the present paper will confine to one disimmal distributions
only.

Having forgotten variance functions during the last twepgars and having
turned to random matrices and Bayesian theory, our intéseshe topic has been
rejuvenated by the paper by S. Bar-Lev and F. Van de Duyn $ehd2004). The
authors consider exponential dispersion mo@@euch that one of the transforma-

tions P(dY 2p(dx)
xP(dx 2 X X
T(P)(dX) - 'fRXP(dX)’ T (P)(dX) - fRXZP(dX) :

mapsG into itself or one of its translates. FAr(P) they obtain exactly the ex-
ponential dispersion models concentrated on the positieewith quadratic vari-
ance functions: gamma, Poisson, negative binomial andval@nd no others. For
T?(P) they obviously obtain the previous ones, but they obseraertbw variance
functions appear, in particuldm® + ¢)1/2, without being able to decide whether
these natural exponential families (NEF) exist after akfiiould be mentioned here
that their formula (11) is not correct and this fact greatlyalidates their paper). As
aresult, our initial motivation was to address this patticquestion: igm®* + ¢?)%/2
avariance function? As we shall see, the answer is yes facaade set of. To solve
this particular problem, we have to design methods basedlipticsfunctions, and
these methods appear to have a wider domain of applicaltitythis reason, the
aim of the present paper is the classification of the varidngetions of the form
(Anf*+Bn? +C)/2 and their reciprocals in the sense of Letac-Mora (1990) @iam
the variance functions of the form(Cnt* + Bn? + A)Y/2.

Section 2 recalls general facts and methods for dealing MigR's. Section 3
opens a long parenthesis on pairs of associated NEFaifdG are NEF generated
by symmetric probabilities, we say that they are associateghly if we can write
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Ve (m) = f(m?) andVg(m) = f(—m?). This definition seems to be a mere curiosity
of distribution theory, but appears to be illuminating whegplied to our elliptic
NEF. Since this concept of association has several integeaspects, | have pro-
vided here several detailed examples (Section 3.1) thattmer should skip if he
is only interested in elliptic NEF.

Section 4 rules out trivial values of the parameters fopgtiNEF. Sections 5-7
investigate the various cases according to the param@ieBsC), Section 8 con-
siders the reciprocal families of the previous elliptic NEtese reciprocal NEF are
interesting distributions of the positive integers. Satt® makes brief comments
on the variance function@m+ B8)+/P(m) whereP is an arbitrary polynomial of
degree< 4, actually a complete new field of research. While the statesngfthe
present paper are understandable without knowledge pfieffunctions, the proofs
of Sections 5-7 make heavy use of them, and we shall congtafidr to the mag-
nificent book by Sansone and Gerretsen (1960) that we fréiguprote by SG.

2 Retrieving an NEF from its variance function

The concept of exponential family is obviously the backboh®le’s book (Barn-
dorff -Nielsen (1978)) or of Brown (1986), but the notatidos the simpler object
called natural exponential family are rather to be found wrié (1982), Jgrgensen
(1987) and Letac and Mora (1990).

If u is a positive non Dirac Radon measurel®ronsider its Laplace transform

Lu(8) = [ () <

Assume that the interio®(u) of the intervalD(u) = {6 € R;L,(08) < «} is not
empty. The set of positive measuge®n R such tha®®(u) is not empty and such
that i is not concentrated on one point is denoted#yR). We denote by#;(R)
the set of probabilitieg contained in# (R). In other terms, the elements.of; (R)
are the probability laws oR which have a non trivial Laplace transform.

Write k;; = logL,. Then the family of probabilities

F=F(u)={P(6,u); 6co(u)}
where
P(6, u)(dx) = e* (@) p(dx)
is called the natural exponential family generatedubyfwo basic results are

m=K,(6) :/ZxP(G,u)(dx)

and the fact thak), is increasing (or thak, is convex). The sek;, (O(u)) = Mg
is called the domain of the means. We denotefhy: Mg — ©() the reciprocal
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function ofm= k;l(e). ThusF =F(u) can be parametrized By by the map from
Mg to F which is

M P(y (M), 1) = P(M,F).

In other terms an element Bf( ) can be identified by the value of the meamnather
than by the value of the canonical paramefefOne can prove that the variance
Ve (m) of P(M,F) is
1

VE(m) =K (Ypu(m) = ——. (1)
The magm— Ve (m) from Mg to (0, ») is called the variance function and character-
izesF. The Jgrgensen set afis the setA () of positive numbers such that there
exists a positive measuyg such thato(p) = ©(p) and such that,, = (L,)".
Obviously,A(u) is an additive semigroup which contains all positive integéf
t € A(u) we denoter = F () and it is easily checked thr, = tMg and that

Vin(m) =tve (). )

The unionG = G(U) = Uea ) F (tk) is called the exponential dispersion model
generated by.

If F is a NEF and ith(x) = ax+ b (with a # 0) then the familyh(F) of images
of elements of- by his still a NEF withMy, ) = h(Mg) and

Vi) (M) = Ve (rnab) : 3)

In spite of the similarity between (2) and (3), the last folanis much more useful
for dealing with a NEFF which is known only by its variance function: the reason
is that the Jgrgensen sat(F) of F is unknown in many circumstances. In fact
A(F) is a closed additive semi group [ o) which can be rather complicated (see
Letac, Malouche and Maurer (2002) for an example). In thermlland an affinity
is always defined, and this fact can be use to diminish the puwiiparameters of
a family of variance functions. For instance, if we consitlex variance function
vAmf -+ B? + C such thatC > 0, without loss of generality we could assume that
C =1 by using the dilatiorx — x/+/C.

An important fact for the sequel is thdt is real analytic, that means that for any
mo € Mg there exists a positive numbesuch that fomg —r < m< mp+r we have

0

Vel = 3

which implies thatVk is analytically extendable to a connected open set of the
complex plane containing the real segmbht. If u € .#1(R), the Laplace trans-
form L, defined on the open interv& (i) is extendable analytically in a unique
way to the strip@(u) + iR of the complex plane. This extension is also denoted
Ly and 8 — L,(i0) is the Fourier transform of the probabilify. The function
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ku(6) = logL,(0) could be also extendable to an analytic function on the same
strip, but it would be a multivalued functionlif, (6) has zeros in the strip.

To conclude this section, recall the four steps allowingaugass from the vari-
ance function/e of a NEFF to a measurg@ such thakF = F(u).

1. Writingd@ = g, (mdm= Vg(r;‘m, we computed = @, (m) as a function ofn by
a quadrature;

2. we deduce from this the parameteas a functiorm= k;,(e) (this is generally
a difficult point);

3. we computd, (0) by a second quadrature and obthjp= el

4. we use dictionary, creativity, or inversion Fourier farias to retrieveu from its
Laplace transform.

We keep these four steps in mind for dealing Wig{m) = v Ant* + Bn? +C in the
sequel. It is worthwhile to sketch here an example with

V(m) =/ 1+4mt

For 0< w < 1 we do the change of variable and perform the first step:

vV1i—w dw 1 dw
= W=-2m+V1+4mt, dO= —— 6= .
m 2w VR Vi—wA /w(m) Vi-wh

The second step introduces a functio(@) defined on the intervglo, K] where

K=/s W = 1.3098. as

1 dw
6= ) 4
/c:(@)) V1i—w @

Sincew(m) = C(6), up to the knowledge of(6), and taking derivative of both
sides of (4), the second step is performed since

m_ k(g VL COF __C(O)

2C(6) - 2C(6)°

The third step is easy and we g€i9) = —% logC(6) and the Laplace transform

L(B) = \/(%. The fourth step needs to be explicit ab&{) and the theory of
elliptic functions becomes necessary: details about thriqular example are in

Theorem 4.1 when doink? = —1. The functionL will be the Laplace transform of
a discrete distribution concentrated on set on numberseofdim n/a wheren is
a relative integer and wheeeis the complicated numbéﬁ =0.8338.. If we use
formula (3) we get the following surprizing result: the ftioo v/a* -+ 4m* is the
variance function of a NEF concentrated®n
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3 Associated natural exponential families

The source of this concept is the pair of identities (5) belibw
dx
H(dx) = 2cosh’

andv = %(5,14— 01) is the symmetric Bernoulli distribution then

/ereexu(dx) 1 (for |8] < 1/2) /+weiexv(dx) = cosf (5)
w cosf S ’

which could be as well presented by reversing the roles ofi€pand Laplace
transforms:

+oo 1 +o0
/ e'exu(dx):m,/ ey (dx) = coshb. (6)

This is an example of what we are going to call an associated pav) of proba-
bilities onR. Here is the definition:

Definition 3.1 Let 4 andv be in.Z1(R) such thatu andv are symmetric. We say
that (i, v) is an associated paiif for all 8 € ©(u) the Fourier transform o is
1/L,(8). In other terms fo® € ©(u) we have

[ eu@n=1,0). [ dvan = ™)

1
- Lu(6)
The corresponding natural exponential famililes= F(u) andG = F(v) are also
said to be associated.

We describe now the easy consequences of this definition:

Proposition 3.1Let (i, V) in .#1(R) be an associated pair. Then

1. (Symmetry) The paifv, ) is also associated;

2. (Uniqueness) Ifu,v1) is also associated, then = v.

3. (Convolution) If(p’,v’) is an associated pair thép = 1, v« V') is also an asso-

ciated pair.

(Zeros) Denote, =inf{6 >0; L,(i6) =0}. ThenO(v) = (—2y,2,).

5. (Variance functions) Consider the associated paif F(u) andG = F(v) of
NEF. If VE andV are extended as analytic functions to the complex plane in a
neighborhood of zero, therk (m) = Vg (im).

»

Comments
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1. Clearly, since the Fourier transfor% is real, the probabilitw must be sym-
metric.

2. Symmetry ofv implies that®(v) is a symmetric interval, as well as the mean
domain ofF (v).

3. Because of the uniqueness of Part 2, we shall also wfiteor indicating that
(u,u*) is an associated pair. In this cgséis called the associated probability
to i (when it exists). We also observe that

(W) =4, (Uxp')"=p s (u)"

4. ltis not correct to think that it is in .21 (R) thenu* always exists. An example
is given by the first Laplace distribution (also called thiatgral exponential
distribution)

P —(— __ 1
p(dx) = sedx O(n) = (-1,1), Lu(0) = ;53
Suppose that = u* exists. Then its Fourier transform 6a1,1) is 1— 62. This
implies that its Laplace transform Is,(8) = 1+ 62 and thereforé®(v) = R.
But if k, = logL,, it is easy to see that the sign kif(6) is the sign of - 62,
which implies thak, is not convex, a contradiction.
A more complicated example is given by

22 t4ix. |2
() = s M (5| dx ®)
fort > 0. We will see in Section 3.1 that, € .#1(R) satisfiesd(w) = (-3, 3)
and
272 pro e EIX 5 1
i (t) /—oo eI 2 JIFdx= (coso)t’ ©

If t is not an integer, thep; = v does not exist (Proposition 3.2). An obvious
case ist = 1/2: if X,Y are iid such that RX +Y = +£1) = 1/2 then P(X =
+1/2) =1/4 and P(X+Y =0) > 1/16 > 0O, a contradiction.

5. In Definition 3.1, suppose that we relax the constrainvdo have a Laplace
transform. Consider the example

dx

Hidx) = 2coshl{mx)/2

with Laplace transform Acosf defined on®@(u) = (-7, 7). A possible asso-
ciatedv is the Bernoulli}(6_1 + &) which satisfies/ "’ €%v(dx) = cos6 in
particular on 8| < 11/2) However it is not excluded that there exists other proba-
bilities v fulfilling the same property off| < 11/2). Imposingv € .#1(R) rules

out this phenomenon, from Part 2 of Proposition 3.1.
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6. Here is the simplest example illustrating Part 5 of Prajmos3.1. We use once
more the associated pair (5). In this cade = R, ap = oo, Vg(m) = 1+ n?,
Mg = (—1,1), ag = 1,Vs(m) = 1— m?. See Proposition 3.5 below.

7. SELF ASSOCIATED PAIRS ANDNEF: A trivial example ig1 = N(0, 1) sinceu =
u*. More generallyVr is a function oft* if and only if 4 = p*. An other impor-
tant example will be found in Theorem 5.1 below, whicMigm) = v/1+ 4m?.
Note that the symmetry gi is essential: itVe (m) = m*, with Mg = (0, ), we
haveVe (m) = Ve (im) but the concept of association does not make sense here.

8. This Part 5 provides also a way to decide quickly from thengxation of the
variance function thati* does not exist. For instance tif~ X —Y whereX and
Y are iid with the Poisson distribution of mean 1, then= F(u) has variance
functionVe (m) = v/1+ m?. Would G = F(u*) exist, its variance function would
beVs(m) = v/1—m2. The domain of the mean & would be(—1,1), from the
principle of analytic continuation of variance functionghéorem 3.1 in Letac
and Mora (1990)). However on around the paimt 1, the functionVg would
be equivalent to ¢L — m)¥/2. This is forbidden by the principle of Jargensen,
Martinez and Tsao (1993): this principle says thafl§ = (a, b) with b < c0 and
if

Va(m) ~mop Ax (b—m)P (10)
thenp ¢ (0,1).
Similarly consider the variance functiaf (m) = (1+ m?)%2 defined onVIF =
R. One can consult Letac(1991) chapter 5 example 1.2 for a piliie inter-
pretation. Itis generated byrasuch tha®(u) = (—1,1) andk, = v1— 62— 1.
For seeing tha¥g(m) = (1—m?)%/2 cannot be a variance function we observe
the following. If v = u* exists then

ky(0) =V1+62—1.

Therefore, by using the principle of maximal analytic conttion (see Proposi-

tion 3.2 below), we hav@®(v) = R. As a consequends, (6) = eV19*1is an
entire function, which is clearly impossible.

Proof of Proposition 3.1.1) Suppose that is in .#1(R). Then the knowledge
of the Fourier transform o on the interval®(u) gives the knowledge of the
Laplace transforni, on ©(v). Now the Fourier transform qfi restricted to®(v)
isLy(i8) = 1/L,(i6) from the relation (7) extended by analyticity.

2) If vy exists, its Fourier transform coincides with the Fouriansform ofv on
the interval®(u). By analyticity, the two coincide everywhere and-= v;.

3) is obvious.

4) Since the Fourier transform ofrestricted ta@@(u) is 1/L,(0) then in a neigh-
borhood of6 = 0, the Laplace transform of satisfied, (8) = 1/L(i6). Now we
use the following result:
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Proposition 3.2. (Principle of maximal analyticity) Ifv € .#(R) and if ©(v) =
(a,b) suppose that there exista;,b1) D (a,b) and a real analytic functiofi on
(aq,b1) which is strictly positive and such th&t0) = L, (8) fora< 8 < b. Then
a=a andb=Db;.

Proof. Use the method of proof of Theorem 3.1 of Letac and Mora (1888jpwata
(1972), chapter 7.

We now return to the proof of Proposition 3.1, Part 4). W@¢év) = (—b,b).
Clearlyb > z,, is impossible since it would imply that, (z,) would be finite, a con-
tradiction withL,(z,) = 0. We apply Proposition 2.2 to the presentto (a;,b1) =
(—2zu,2y) and to the positive analytic function on this interddb) = 1/L,(6). As
a consequende= b; = z, and the result 4) is proved.

5) Consider the functionls, andL,. They are analytic on the strifg(u) x iR
andO(v) x iR, and from Part 4P(u) +i©(v) is the open square with vertices
+z, +iz,. Let Z be the set of zeros of the analytic functin— L, (0) restricted
to the squar®(u) +i©(v). From the principle of isolated zero#,contains only
a finite number of points in the compact $ef, a] x [—b,b] whena < z, andb <
zu. Also Z has no zeros on the s8t= (—zy,z,) U (—izy,iz,). Consider now the
partZ,, contained in the first quadrant, and its closed convex@ull. Similarly
considelC,. ., the closed se€ =C,, UC,_UC—+UC__ and the open s&l =
O(u)+ie(v)\C. ThenU is a simply connected set and is a neighborhoo8 of

We are in position to define ldg, = k;, on the open séf as an analytic function.
On this setU we have

ku(0) =—ky(i0), k’“(e) = —iky(i0), kﬁ(e) =K(i). (11)
Since
Vi (ky,(8)) =k;(8), Va(k,(0)) =k;(6)

we get finally
VG(ik;,(iG)) = k’[,(ie)

and this is saying that fanin the open sek;, (U) we haveVr (m) = Vg(im), which
is the desired result.

Proposition 3.3.(Convolution of Bernoulli’s). Le{a,);_, be a real sequence such
thaty> ;a2 < oo. Let (Xn)%_; and(Y,)%_; be two iid sequences such that

1 1
Xn ), Yn’\‘é(6,1+51)

- 2coshmx/2
Then the distributiongt of S, anX, andv of S ; a,Y, are associated.

Proof. Easy, from (5) and Part 3) of Proposition 2.1. Note thatfpe= 1/3" thenv
is the purely singular Cantor distribution ¢r1/2,1/2), while i has a density.
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3.1 Examples of associated probabilities

Here are 3 groups of examples. It can be observed that they thifee different
generalizations of (5). We start with the classical fornfolat > 0 correct forf

(—t,t):

e dx 21 t10 _t—6
/700 exe(coshx)tzl'(t)r( 2 M=)

with ©(Lk) = (—t,t). In particular using the duplication formudrr (t) = 21 (5)I (52)
we get the Laplace transform of the probabilitybelow:

(12)

r(t dx 1 t+6. _t—06
\/ﬁl—(%) X (COSI‘X)“ Lat(e) - I—(%)Z XI—( 2 )r( 2 ) (13)
with ©(at) = (—t,t). It is worthwhile to mention that iX andY are iid with distri-
bution

~—

ot (dx) =

t tot_
B(éﬂ)(dx) =X 110.1)(x)dx

and ifU = /X/Y then lodJ ~ a.

Formula (12) is easily proven by the change of variable e and the formula

o % = B(p,q) for p,q> 0. The Fourier version of (12) is
o e dX 20146 7
X0 —
/4, ¢ (coshx)t I (t) ' 2 ) (14)
leading by Fourier inversion to
21 e | tix |? 1
2l (t) /40 e 2 )| dx= (coshg)t (15)

and by analyticity to (9). For a while, let us specialize thégmulastd =2p—1
and tot = 2p where p is a positive integer. From the complements formula
I (2r (1—2) = ni/sin(rz) andl” (z+ 1) = zI" (z) we have foit = 1,2

1+6,_,1-6 m 0 0 no
r r = rNi+-)r(l—-)=——
(M) = e TN A 5)= 5 G
and more generally
2p+1+6,_,2p+1-6, 1 ., o o 12 g2 i’
M5 () = 5 (1-6%)(9-6%)..((2p- 1) G)XTos%@a)
¢] _9 1 2 - 2 2 o
F(p+2)M(p=5) = 55(4-69)(16—-6)...(4p 9>Xzsin"9(l7)

2

Proposition 3.4.1f o is defined by (13) them* exists if and only ift > 1. In
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particulara; = %(5_71/2 + 0r/2) is a Bernoulli distribution and far> 1 we have

() t-2
a (dx) = ————(cox)" " “1,_ xX)dx.
t( ) \/ﬁr(%)( ) ( n/2,r[/2)( )
In particular fort = 2p+ 1 andt = 2p+ 2 wherep is an non negative integer, then
(16) and (17) givé )t whengy is the Fourier transform af;’.

Comments. For this example, the explicit calculation of the varianaadtions of
F =F(a;) and G = F(a;) is not possible. For instance tif= 2 the probability
a3 is the uniform distribution on the segmet11/2, 11/2). In this casel4; (6) =

sinh(mt/2)

w2 - Noway to computd = L/Ja;(m) in a close formula when

m=K,(6) = g (cotanf(nze)) - nze> .

Shanbhag (1979) and, in their Proposition 4, Barlev andd_812), have other
proofs of the "only if’ condition of existence af;".

Proof. Fort > 1 we just rely on entry 3. 631, 9 of Gradshteyn and Ryzhik (2007
If t <1 we show thaty;* does not exist by showing that— kg, (i) is not positive.
We obtain

© (n+ %)2_ %2

K (i0) = _ =
o nZO [(n44)24 &2
and a careful calculation shows that

lim 62Ky (i0) =2(t — 1)
If t < 1thenb — kg, (i6) cannot be positive for ab € R, and this ends the proof.

Proposition 3.5.1f 1 is defined by (9) theny* exists if and only ift is a positive
integerN. In this caseuy; is the image of the binomial distributioB(N,1/2) by
X+ 2x—N.

Comments.The most interesting particular case corresponds=@® since in this
case we meet the uniform distribution on a segment with tkecated pair

(e = st (o) (AY) = 3110,y

4sinh(rx/2

This is also an illustration of Proposition 2.3 appliedato=1/2" sincey % is
uniform on (-1,1) wher{Y,);r_ is an iid sequence of symmetric Bernoulli random
variables. For this example, the explicit calculation & Hariance functions df =
F(w) andG = F (1) gives
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m? m?

Proof of Proposition 3.5. < is obvious. To prove=- suppose that there exists a
positive integeng such thatg — 1 < t < ng and suppose that" exists. Taking the
imagert of 1 by the mapc— X' = x—t, choosingd > 0 and denoting = e 2% we
get

T o TR o 1 2tt-1)...(t—n+1)
X O(x—t) ,,*
dx :/ () g (d) = = 2.
[ = [ =53 .
Sincet(t—1)...(t—n+1) < 0 whenn=ng+ 1 this shows that ({—2ny — 2}) < 0,
a contradiction.

The third example is obtained by considering the Babel add¢EF, namely the
set of exponential families such that the variance fundtas the form/e = PA +
QV/A whereA, P andQ are polynomials with respective degrees less or equal to
2,1,2. Looking for possible pair§F, G) in this class such tha= (m) = Vg (im) and
such thatF and G are generated by associated distributiéasv) -and therefore
symmetric- implies tha\(m) = An? +C, P is a constant an®(m) = A'n? +C'.
The cas&€ = 0 is excluded since the domain of the mé&nandMg are symmetric
interval andvre andVg are real analytic on them. As a consequence efher G
must be such thaf(m) = 1 —n? (up to affinities). But there is only one type of
NEF in the Babel class such thafm) = 1 —n? and it is generated by the trinomial
distributions defined for & a < 1 by

1 1 1
Ua:m( 50'4’55714‘551) (18)

and their entire powers of convolution. Of course the linases are related to
Bernoulli, since

11 1 1 1 1
Ho= 5814501, = (50-172+ 582) * (58-1/2+ 5812)-

Proposition 3.6.If 5 is defined by (18) witha € (0, 1) thenp; exists and is

Uy = To*T_p.
wherea = cosd with 0 < b < 17/4 and

cosb

e*Pd
coshZ¥ X

Tip(X) =

Proof. We have
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a+ coshd 1 a 1
(@) =g Ve = T " e\ e ™

Therefore, ify; does exist it must satisfy

a+1 1 a 1
= — W= — M —— = 4P
atcosg’ T T 1 g2 * +

Vi-azV l-a?

with O (Ua)* = (—2u,, Zy,) Wherez,,, is the smallest positive solution of cBs= —a.
Such au actually exists. To see this we write= cos 2 with 0 < b < 11/4 and by
simple trigonometry and the help of formula (6):

Lz (6)

cosb+1  cosb " cosb
cosd+cosd  cogd —b) " cog?+b)

=L (0)Lr ()

where

cosb
Teb(X) = cosh® "
4

4 Discussion and easy cases foAnt 4 Bn? +C)1/2

In this section we recall known and not so well known resulisua a few particular
cases. The cases where only one of the three numbBr€ is not zero are classical:
we get respectively the gamma, Poisson or normal case. Wénvestigate three
more interesting particular cases (they are all describdaiac 1992 as elements
of the Babel class).

4.1 ThecaseA=0

The useful results are contained in the following propoaiti

Proposition 4.1.Lett > 0. Let N; and N, be two independent standard Poisson
random variables with expectatiof2. Then the exponential famillg with domain

of the mean®R and variance functioin? +t2)%/2 exists and is generated by the
distributionp; of Ny — N. Furthermore

pe(dX) =5 et ()n(dx)

nez

where
1 t

© 2n+x
Ix(t) = n;m (E) " .
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Proof. SinceE (e?(N1—N2) — ¢l(coshb—1) e get thatd (1) = R and that
Ky (8) =t(cosh® — 1), ki, (8) =tsinh8, K/, () =tcoshd = (K, (8)%+t%)%/2.

Thus Ve, (M) = (m? +12)1/2 as desired, and the domain of the meanRisA

consequence of this proposition and of 3 and 2 is t{Bar’ +C)Y2 is always a
variance function foB andC > 0.

4.2 ThecaseC =0

Proposition 4.2.Lett > 0. Then the exponential familst with domain of the means
R and variance functiom(1+ tﬁz)l/2 exists. In particulaf; is generated by =
%+ 23 1 0. More specifically,P is in Fy if and only if there existsy € (0,1)
such thatP is the convolution of the Bernoulli distributioﬁéo + %q51 with the
geometric distributiodl —q) 3 o_o9"n.

Proof. Writing for 6 < 0L, (8) = igz it is easily seen that it generates a natural
exponential family with domain of the mea(g, «) and variance functiom(1+
n?)1/2. The only non trivial point of the proposition is the fact tiie elements of

F, are infinitely divisible. For this we write

St (e

M s

kﬂl(e) =

n=1

Since the coefficient (1+ (—1)") of €' is > 0 the result is proved (although it is
difficult to computey; explicitly whent is not an integer.

A consequence of this proposition is th@inf + Bn?)/2 is a variance function
for AandB > 0 with domain of the mean®, ).

4.3 ThecaseB2—4AC=0

Here is a well known fact (see Morris (1982)):

Proposition 4.3.Lett > 0. The natural exponential famill; with domain of the

meansR and variance functiot(1+ tﬁz) is generated by the probability defined
by (8).

This rules the casB? — 4AC = 0 such that\x’ + Bx+C has a negative double root
with A > 0.
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Proposition 4.4.Lett > 0. The natural exponential famill; with domain of the
meangt, «) and variance functioé(tﬁ2 —1) exists. In particulaF; is generated by
1= 31 Ndn.

Proof. We do not give the details about which are standard. Since the elements of
F, are negative binomial distributions shifted by 1, they dileisfinitely divisible
andFR does exist for alt > 0.

This rules out the casg? — 4AC = 0 such that\x? 4+ Bx+ C has a positive double
rootxp with A > 0 and domain of the mearig/Xp, ©).

Proposition 4.5.Let N > 0 be an integer. The natural exponential fantywith
domain of the means-N,N) and variance functio§ (1— %) exists. Itis generated
by (& + 6 1)*N.

Proof. This is an easy and classical fact.

4.4 AX? +Bx+ C cannot have simple roots on (0, )

We discard some values &, B,C). Suppose thahx’ +Bx-+C has a positive simple
root xo > 0. Then (Anf* 4 Br? + C)Y/2 cannot be a variance function. For by the
principle of maximal analyticity, the domain of the meandl Wwave mp = ,/Xg has
boundary point. Since, is a simple root, then the variance function aroamadwill

be equivalent t&m— mo|1/2 for some positive constait But this is forbidden by
the principle of Jargensen, Martinez and Tsao (1994) meetidn (10).

4.5 The splitting of the elliptic variancesin three cases

The only cases that we are left to consider in order to haveassification of
the variance functions of the forfAnf' 4 Bn? + C)Y/2 are now the cases where
AX? 4 Bx+C is strictly positive or{0, ) and has no double negative root. Of course
this implies thatA > 0 andC > 0. To simplify the matters, we choos2= 1 and
we introduce the functiol (m) = (Anf' -+ Bn? + 1)1/ and, fort > 0, the function

Vi (m) = tV(m/t). A simple analysis shows th&b¢ + Bx+ 1 has no positive roots
and no double negative roots if and only if there exists a oo real numbea and

a positive numbeb such that

A +Bx+1= (1+ax)?+2b%x.

Let us insist of the fact that can be negative. Finally we introduce a complex num-
berk through its square in order to use the standard notationsitfefunctions:
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2a
2 _

k = 1+ ?
This leads to three cases

1. The case-1< k? < 0. It corresponds to the fact thBfx) = (14 ax)? +2b?°x has
no roots and that the minimum &fon [0, «) is reached on 0

2. The cas&? < —1. HereP has no roots and reaches its minimum [0rw) at
—b?(a+b?)/a2.

3. The cas&? > 0. HereP has two distinct negative real roots. Takifvg- 1 instead
of C =1 andP(x) = (x+ a?)(x+b?) is convenient.

We investigate these cases in the next three sections.

5 The elliptic cases: The case-1 < k?* < 0

We writek? = —1+ pwith 0 < p < 1 and we introduce the following two constants:

K:A%L«%4ﬂmfpfﬁrvﬁx

K= /Ol<l— X) M2 (14 (1 pp) (19)
Here is our first serious result:
Theorem 5.1.Suppose tha?> = 1+ 2 = —1+ p € [~1,0). Forb= v/2 anda=

—2+ pthere exists a natural exponential fam@ywith domain of the meanR and
variance function

t\/(1+art22)2+2b2r22

whent is a multiple ofa. It is concentrated ogg Z. The family G 5 is generated
by a symmetric probability measure, which is the convolution of the Bernoulli
distribution%(é_% + 5%) by an infinitely divisible distributioro, concentrated
on Z7Z. We denoteg = e ™'/K and for a positive integer we denote

qv _ (_1)vq2v

iy

CV :Cf\/ -

Then the Laplace transform of is

/joeexat(dx) = exp<;{il S (e - 1)) .

velZN{o}
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Finally the characteristic function b is m wherel] is the elliptic Weier-
3

(s+K)
strass function satisfying
2p p p

0% =40-1+ %)@ -3)d +1-3)

which is doubly periodic with primitive periodsk2and 2K’. In particular it has
zeros and3; cannot be infinitely divisible.

Comments.Doing b = v/2 is not really a restriction. Using the formuaVg (m/a)
for the image of by x +— axgives the description df for an arbitraryb > 0.

Proof. We apply the standard procedure for computing the Laplasestorm of a
generating measure when the variance function is given.hak sse the following
change of variable? = (1+an?)? + 2b?n? for u > 1. This implies that

ne = a—lz[—a—b2+ b# + 2ab? + a2u?].

We consider now the new change of variable

1

b2 b2 b?
W W

ERAET 2

with 0 < w < 1. This choice is designed in order to havet 2ak? + au? = b*k? +
a?u? transformed in a perfect square of a rational functiowof

b? b? b? 1
22 2 W2 = — (K*wW?+ —
vV b*+ 2ab? + a?u 2((2+ a) + 5) > (k +W2)

This leads to

u= %((2+ (KW — =)

m? = b72(1—WZ)(1—|<ZW2) (20)

2a2w?
but also to a surprising result

a+b?+a’m? = (a+ b—z)werb—2 = b—z(kzwz+ i)
2 2w 2 w2

b2 b2 . 2 b? 1 dw
du 2

atbltazn? W (21)

Recall thata < 0 and thatv — uis decreasing. Thus we get, gathering (21) and (20)
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46 — 1 de_}X 2udu B du _dw
~ V(m) ~u’ 4m(a+b2+a2m?)  2m(a+b2+a2m?)  awm
_ V2 dw 22)
b /1 w2)(1— kew?)

We introduce the functiofl — C(0) by

_/1 dw
Jee) /(1T—w2)(1— K2w?)

ThusC(0) = 1 and the functior€ is defined or0,K’]. Actually, we haveC(68) =
sn(K’ — 8). In (0,K’) it satisfiesC'(8) = —(1—C(8)?)Y/2(1 - k?C(8)?)Y/2. Now
we can write

(9—/mw’(x)dx—/l dw
o TH B w(m) (1—W2)1/2(1— k2W2)1/2'
Thusw(m) = C(8) and from (20)

m= k;,t(e) =m(C(0)) = aJC]'@(l_C(e)Z)l/Z(l_ kZC(G)Z)l/Z _

Thus finally we get the Laplace transformgfas

1

L (6) = (C(Q))l/‘a‘ :

We observe thafl — C(6) has an analytic continuation to the whole complex plane.
We now consider its restrictioa(s) = C(is) to the imaginary line. It satisfies the
differential equation

¢(9)? = (c(9* ~ 1)(1 - Ke(s)?) (23)

with the initial conditionc(0) = 1. Now introduce the functioa— f(s) = —k2c%(s).
It satisfies the differential equation

/()2 = 4f3(s) + 41+ K?) F2(s) + 41 (s) = 4(f(9) + 1) F () (f(5) +K)
(just multiply (23) byc? to reach this result). From now it is convenient to write

K=1+a=p-1

with p € [0,1). Then writing f (s) = — & + h(s) we geth'(s)? = 4h(s)® — goh(s) — gs
with
2p2 _@ 2p2

92:4(1—P+?)a O3 = 3(1—p+?)

Thush satisfies the differential equation of the function of Weierstrass for the
parametersg, andgs (see SG 247). We can also writé(s) = 4(h—e; ) (h—ey)(h—
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e3) withe; =1— % >e = §p >e3=—-1+ g with discriminant

A =g} 2765 = [4(1-p)(2—p)2

Thus (see SG page 279 and page 283) the funcfidras periods R = 2w and
2iK' = 20/

2iK’ K+ 2iK" —— 2K + 2iK’
iK’ K+iK’ 2K +iK’
0 K 2K
w— 1 /1 dw
V2=plJo (1_W2)1/2(1_2f1pwz)1/2’
o dw =iK’.

_ /1
V2=pJo (1-w?)1/2(1— =Bw2)1/2

The last equalityy’ = iK' is obtained from the changes of variatle- u/2, u=1—
vandv =t2. We haven(s) = (] (s+C) for some constar@. Now, since the variance
functiont(1+ atﬁz)l/z)2 + “t—"f)l/z is symmetric, there exists a symmetric measure
which generates it and without loss of generality we assumatthe characteristic

functions — W is real. Thus we have to tak&such thaic(0) = 1 or f(0) =
1-porh(0)=1- % = e or[J(C) = e;. Hence from SG page 20@= K.
Sinces— [J(s) has periods B and 2K’ and sinceé](K) =1— % = e; we have
_ p
f(9)=0(s+K)— 3.

Note thats+— [J(s) has no real zeros, only poles on multiples Kf&nd is periodic.
See the picture in SG page 280. Thus

is 2K periodic and has zeros on odd multipleskaf Since it is X periodic, this
implies that it is the characteristic function of a symnepiobability concentrated
on multiples ofr/K.

1— pt/z‘a‘ — 0 v
- = = t)eVK = po(t) +2 t) cos—.
9 ng pu(t) Po(t) V; Pv(t) cos—-
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We are going to conside#ﬁ log f (s) and to compute its Fourier series. For this
we use formula 5.8-22 in SG page 263 appliedhte- 2 which gives here since
& =p/3
X} 1
f(2K2)Y2 = \ Jo(2Kz+ k) — B = 232t 2) (24)
whereC is some constant and where tpeccurring in the Theta functions is given
by SG page 261 by = ™ with T = iK’/K. Thusq = e~ k" here. Forgetting the
factort/|a] we have
1 1 1

—Elogf( S) = IogC+Iogz91(—+ ) Iogﬁg(—Jr 2)

Consider the derivative of this function:

1 9(x+3)  1950x+3)
K 9(+3) 2KIg(m+3)

Now we use formulas abou?tj’/f),- given in SG page 274. They are

1 :
~>(logf(s))' =

19]/.(2) _ COSTIZ ad q2V

910 Mg+ 4712 1—q sinvrz
93(2) Q"

932 4nz 1_ - Sinvrz

In these expressions we repladiey - + % and we get

0 2
31(%4‘%) sm2K +47T2 (71) gvsmls
(kg +3) Moos g 1—q v K
HE+D s
= am sm—
I3(+3) Z 17
Thus
K sinB oo (_1)Vq2V_qV
——(logf(s)) = ——2K 14 7sn2—
Tl'( g ()) COS% o 1_q2v ! ZK

1 S ] qv _ (_1)vq2v
——logf(s) = | 2y ——~ 2 © ke
5109 (s) =Ci+log CoSy -+ Zl e cosy > K

V| _(_1\va2lv
wexpw”'[i’

1
—Zlogf(s logcos.>
51097(8) = Cr+logcosg e+ 1— 2 2K

veZ\{0}

whereC; is a constant such th&{0) = 1— p. Thus
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; — CZ(COSE)t/lal exp

q' - (-1)"q?"| .S
c(s)V/ 2K SXpVIMH

e -V 2K

The theorem is proved.

6 The elliptic casesk? < —1

This case is more complicated when treated by the retriaviethod of Section 2.

A reason is the fact that the functiom— V (m) is not convex. More specifically, if
P(x) = (1+ax)?+ 2b?xis used to defin¥ (m) = /P(n?) the case® =1+ 2 < -1
correspond to the case whepPehas a positive root. Here we shall rather use the
method of associated NEF, but no new interesting distdiostivill appear, as shown
by the following result:

Theorem 6.1.1f k? = 1+ & < —1 then/(1+an?)2+ 2b?? is not a variance
function.

Proof. Suppose that/(1+an®)2+2b2n? is the variance function of some NEF
F1. Let us assume first that the associdtgexists. As a consequence the variance
function of F;, is

Ve, (m) = \/(1—an?)? — 202m2 = \ /(1 + an?)? 4 2(2a— b2)n2.

Like in Theorem 5.1 without loss of generality we may assuma¢ 21— b? = 2, and
Theorem 5.1 gives us a detailed descriptiofrofif 1y is the symmetric probability
generating we have seen that, (8) = C(68) Y/ whereC(8) = sn(K’ — 8) with
K andK’ defined by (19). As a consequence if is the symmetric probability
generating, then from Proposition 3.1 its Fourier transform is

Pus(9) =C(s) /.

Now we use the fact that the functi@ns doubly periodic with periodskR and 2K”’.
This implies that the Fourier transforgn,, (s) has period R’ which means thaf,
is concentrated on a coset of the gréf{2K’). We are going to use this to see that
s C(s)~VIa is also a Fourier transform of a probability and this will @sly
contradict the existence qf. For this, we have to understand thi€’ Deriodicity
of C by coming back to formula (24) which shows tf@&@Ks) is the power of a
function of the form

93(z+ %)

Coi(z+3)
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Now we use the Jacobi imaginary transformation (see SG p26@272). In our
particular case this Jacobi transformation is the foll@vibenoter = iK’/K. Then
—1/1 = iK/K'. The theta function$; and 83 are implicitely functions ofr and it
is sometimes useful to writd;(z|T) instead of9;(z). Formulas linkingd;(z|7) and
9i(z] — 1/1) are known (see 5.10-9 in SG). These formulas show, by theawdgi
the Jacobi transformation, thafs)~%//2 is the Fourier transform of the probability
onZ/K" which is obtained from Theorem 5.1 simply by exchanging ties ofK
andK’. We therefore obtain the desired contradiction.

The last task is to get rid of the hypothesis tRathas an associated NEF. If
F1 = F () exists withVe, (m) = /(14 an?)2 + 2b2ne then playing with the affine
and the Jgrgensen transformations (2) and (3) it is pogsilfiled a positive number

t such that\/(l—atmz)2 —2p2™2 is the variance function of some NE. This
F, = F () is necessarily of the type considered in Theorem 5.1 (namighy1 <

k? < 0). We have seen that in this case the Laplace transforpp 6§ a negative
power ofC(6) = sn(8 — K’). Therefore the Fourier transform pf; is a positive
power ofC(s). However, a negative power 6fs) was also the Fourier transform of
a probability: we get a contradiction and this ends the proof

7 The elliptic casesk? > 0

In this section we study the variances of the fovfm) = /(m? + a2)(m? + b?)
where O< a< b.

Theorem 7.1Let 0 < a < b such thath? — a2 = 24/3. There exists an natural ex-
ponential family with variance function#(% + a2)(¥ +b?). Itis generated by a

symmetric discrete distribution concentrated on the grBépvhereK i a constant
given below by (25).

Proof. We have = [{" m. We do the changes of varialiles u— vi—
w defined foru > ab, v > 220, w> /2.
b? —a? 1 1
2 121 02121 p2) U — WA —
W= (4282 +07), u=———v, v=S(W— ).
Sinceudu= 2t(2t2+ b? + a%)dt anddv = (W* + ) & we get
i Y
A gy, (22 + b2+ a2)

We have also



Elliptic NEF 23

b?+a2 b?—a? b>+a? b?>—a? 1
2 _ —
=t V= o (w2+@)

7b2—a2( 7b+a)( 7b—a)
4w b—a b+a’”

Thus 22+ a2+ b2 = Y52 (w2 + %) which implies thaty; 44—, = 252 4% pe.
noting for simplificationr = 22 > 1 we get

6:

(b27a2)3/2 w(m) dw
O A LT

wherem— w(m) > /T is defined by

b? — a2
~ aw?(m)

(W (m) — ) (w?(m) —r ).
Now for simplification let us assume thg$)3/2 = 1. Introduce the functiol —
C(0) from (0, ) to (1/T, ) defined by

C(6) dw
VW)

Thus we havev(m) = w(k'(8)) = C(6). This functionC satisfies the differential
equation

9:

C — \/(CZf r)(C2—r-1), CC:/((GG)) = C(le)\/(cz(e) —1)(C2(8) —r-1) =

K(8).

Thus the Laplace transform qf is L(8) = C(6)¢ wherec = 7”’22“32. We now
imitate the procedure used in Theorem 4.1: we consider thedtdransforne(s) =
C(is) for s€ R, which satisfies

(82 = —(H(9) —1)(P(s) — 1Y),
then f (s) = ¢(s) which satisfiesf’? = 4c>c? = —4f(f —r)(f —r~1), thenh(s) =
2(r +r=1) — f(s) which satisfies
h(s)? = 4nh(s)* — gah(s) — gs
= alh(s) — 2 (r+r Y]hs) — 3 (r—2r H][h(s) ~ 5(r - 2x)]
= 4(h(s) —ex)(h(s) —ez)(N(s) — €3)

with go = 3(r?+172 - 1), g3 = 7(3r +3r* —2r®—2r~%) and
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1 1
_ - -1 — “(r_or1 e
e = 3(r+r ) > e 3(r 2 ) > e 3(r 2r)

Hence for some complex constahtve haveh(s) = [J(s+ C) with periods X and
2iK’ defined by

(25)

K_/°° dx K,_/es dx
a /H3—gx—gs’ —o /=43 +goX+ 03

(see Whittaker and Watson (1927) Example 1 page 444). Now terrdme the
constaniC one observes thdt(s) = %(r +r~1) —[(s+C) is real since this is the
Fourier transform of a symmetric measure. Furthermioj@ = c(0)2 = r. Thus
0oe) = %(r*1 — 2r) = e3 which impliesC = iK’. Now we use the formula (see SG

f la 5.8-22
o ) D(Z) —e — n [191(0)19]+1(2f<)}
P77 2K [ 9111(0091(%)

that we shall use for writing

9(0)9-(S i K 2
c3(s) = f(s):f(r—H’l)—h(s):el—D(s+iK’):4—752 32%3?&25:%;
2K 2K

Let us introduce the notatian= e ™ /K" With it, 3, andd, are given by
91(2) = 2Cq/*sinmz [ (1—20” cos 2+ ")
v=1

92(2) = 2Cq"*cosmz [] (1+ 297" cos 2+ ')
v=1

whereC = [1,-1(1—g?) (see SG pages 268-9). Let us give a simpler presentation
of ¢2(s) : usingz= »¢ + i% andu = ez we introduce the following symbols for
v=12,...

uru u?4u?
W= @ g g Y gt
We get
cosmz|? ~ 1+¢o(u) |1+29? cos2z+q 2_ 1+ ¢y(u)
sinmz| ~ 1-¢o(u)’ |1-29%cos2z+a* |  1—¢y(u)’

and finally the elegant formula

. = 1+ gu(u)
c2(s) = f(s)fcvz T du(0)
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where the constai@ is such thatf (0) = 1. The last step is the formula, correct for
|Z] <1:

1+2 l

o 142520 = § 2z

1-2z nz ngZ

ReplacingZ by ¢, (u) we see thaf, (s) =C, ”gVE ; whereC, is such thaff, (0) =1

is the characteristic function of a probability distritlmriiconcentrated on the addi-
tive group%"Z for v > 1 and on the additive groufZ for v = 0. As a resultf is
the characteristic function of a symmetric discrete distiion on the grougfZ.

Comments.Of course the restrictiob? — a2 = 2%/3 is not important and can be gen-
eralized by a dilation. In the other hand, finding the Jargarset of these families is
a difficult question. It should also be mentioned that theatteristic function‘v( s)

above has the form—% %; after dilationx — 27x if v # 0 orx+> Zx. If the

Poisson kernel d|str|bution df of parameter € (0,1) is defined byp, = 34r/",

then% gv %’Lgv o= can be seen as a mixing of a Dirac mass on zero and of Poisson

kernel distribution with parameter= c,.

8 The family F

Theorem 8.1.Letx > 0. The NEFF, with domain of the mean@®, «) and variance
function

amt
is generated by a positive measureMmwhich is vy (dt) = 3%, P 6,1(dt) with
generating function
- pn(X 7z
(1 w4) (1-wh12
nzb o (26)

which satisfies

(1-2M1) (2) — 2283F4(2) — ¥*fx(2) = 0.

The total mass ofy is exp(x4 (2, 4)) The polynomialg, are given byp,(x) = X"
forn=0,1,2 3,4, ps(x) = x> + 12x and forn > 2

Pr2(X) = X*Pn(X) +n(n—1)*(n—2) pn-2(X)-

Proof. The proof of the first formula is a routine calculation for erential families
concentrated oiY, but we give details. We use successively the change ofblasa
u = 2n?/x? andu = sinhv.
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dm Amdm du dv 1 1 1

V(m) 4mz\/1+4% u/I+w2 2sintv 2'e—1 e'+1
Denotingz = e we get
-1 , 1+2 _, 1-7 27 Xz

u=sinhv=

=—— &=""F e'="-3 m= .
e +1’ 1-72’ 1+272° 1-4 1-7A

Thusk, (8) = x o

The trick to obtain the differential equation féy is to write (1— 2*)1/2f, = xfy,
then to differentiate with respect #nd then to multiply both sides of the result by
(1—2%1/2. Then the differential equation leads to the equality

and this leads to the result 26.

Zo(n+ 1)(n+2) Prs2(X) 0 _ 3 (n_3)<n_z)L2<><)zn

(n+2)! & (n—2)!
Pn—2(X) Pn(X)
—ZH;(n—Z) (n—ZZ)!Zn_XZn; o 2'=0

Using fx(0) = po(X) = 1 andf;(0) = p1(x) = xwe getpn(x) =x"for0<n< 4 and
for n > 4 we have

N R B R
(D2 P2 g g P2 )

(n+2)! (n—2)! n!

Now we multiply both sides by! and we use the definition gd, for getting
Pn2(X) =X Pn(X) +Nn(n—1)*(N—2) pr-2(X).

Checking the correctness of this equality foe 2,3 is easy.

Remarks. It is easy to check that i = 4q+r with r = 0,1, 2,3 then there exists a
monic polynomiaP,, of degreeq such that

Pn(X) =X Pq,r(x4)-

For instancd,(z) =1, Pio(2) =z, PL1(2) =2+ 12, Py2(2) =2+ 72,
PL3(2) =2+ 252 Poo(2) = 22+ 6722 Py1(2) = 22+ 1512+ 1260

We now extend Theorem 8.1 to a more general variance funatithout be-
ing so specific about calculation of the corresponding ithistion. This variance
function forx = 1 is the reciprocal variance function fot= 1 of Vg, where
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o e
Vg, (m) = \/1+2pt2+(2 p)th

Theorem 8.2.Letp e [0,1). Letx > 0. The NEFFR with domain of the mean®, )
and variance function

m (2 p)2nf] Y2
Vpx(m):m[1+2pxz+(f4)]

is generated by a positive measureMdwith generating function

_ | 2 [ /201 WA~V
Z)—exp[x 2_p/0(1+qm/2)12(1 wh) 12dw]. 27)

whereq = p/(2— p)?.
Proof. It is convenient to denote= p/(2— p) and to observe that

2y/1-p ctl 1

0<c<«1, 1-c2= , =4+ )
- 2—-p Vi-c2 Vv1-p

We use successively the change of varialileg 2 — p)m? /x? andu = v/1 — c2sinhv—
c.

4o — dm 4mdm B du B dv
V(m) 4mz\/1_|_2pﬁ2+(2—)r:22m4 u/1+2cu+w2  2v/1-c2sinhv—2c
X
B e'dv Y I SR S PO
V1-c2e® —2ce —/1-c2 2 e"——llTp e"Jr—llTp '
Denotingz = e we get
& 5 1 147
2 1p v_ eV — /7
e"+ﬁ’e \/1—p1—22’ 1+z2

. v —72)? 7 Z
\/1—czs|nhv=‘12_+$((ll_zj) ,u:12_24(1+c22),m2 %7(1+q£)

(g —x | 2 (1)
m=1k,(6) =X 71 (1_649)1/2e

and this leads to the result (27).
It remains to prove that the Taylor expansionzefs fx(z) defined by (27) has
positive coefficients. For this it is enough to prove that dahgument of the expo-

Thus
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nential

ZH/()Z(l—i—qV\/z)l/Z(l—\A/“)’l/zdw

has positive coefficients. It is enough to prove that (14 q2)Y3(1—2*)"1/2
has positive coefficients. It is enough to prove that (1+q2)Y/2(1—22)~Y/? has
positive coefficients. It is enough to prove that

00

zerlog[(1+a2)(1-2) 1 = § an?’

n=1

has positive coefficients. But this very last point is easgtieck since & q< 1
and sincea,, is computable: for odd thena, = q"/n > 0 and for evem = 2p we
have

ah==-——-—>0.
p 2p

The theorem is proved.

9 Conclusion: general elliptic variances

It seems that the present paper is only scratching the suofaamn interesting theory.
Indeed, consider the set of variance functions of the form

Ve(m) = (am+B)y/P(m) (28)

whereP is a polynomial with degre€ 4. The present paper has considered only the
casesP(m) = Anf + Bn? +C. Recall a definition appearing in Hassairi (1992) and
Barlev, Bshouty and Letac (1994). We say that two NEERandF, on the real line
belong to the same orbit if there exists a Moebius transfoong = (ax+b)/(cx+

d) such thatad — bc= 1 and such that on a suitable interval fove have

am+b
cm+d )/’

Vi, (M) = (cm+d)3Vg, (

The most celebrated paiFi, ) is the set of normal distributions with variance 1
and the set of inverse Gaussian distributions, with vaganton (0, ). The pair
(vV4+mt, m/1+ 4nm?) offers another example. Roughly saying tRaandF, be-
long to the same orbit means the following: supposefhandF, are generated by
py and iz and let us draw iiR? the curve<C; andC, which are the representative
curves of the convex functiorlg,, andk, (in the case of the pair normal-inverse
Gaussian, they are a parabola and a piece of parabola). Fihemd F, are in the
same orbit if and only if there exists an affine transformatibthe planeR? which
maps a part o; onto a part ofC,. This affine transformation can be described
in terms of the coefficientéa, b, c,d) of the Moebius transformation. A very sat-
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isfactory fact observed in Hassairi (1992) is that the qaticliand cubic NEF are
split in 4 orbits, respectively generated by the normal,Rbésson, the hyperbolic
and the Ressel-Kendall distributions. Now we remark th#& Has the form (28)
and if G is in the orbit ofF then necessarilyg(m) = (a1m+ B1)+/Pi(m) where
the polynomialP, has also degreg 4. Therefore we are facing the problem of a
whole classification of this set (28) of variance functiom®iorbits. This implies a
mastering of the elliptic curve® = P(x) and the use of beautiful mathematics. The
theory of exponential families expanded by Ole Barndor#lIsin forty years ago
is still hiding many secrets.
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