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Associated natural exponential families and
elliptic functions

Gérard Letac

To Ole Barndorff-Nielsen for his 80th birthday.

Abstract This paper studies the variance functions of the natural exponential fam-
ilies (NEF) on the real line of the form(Am4+Bm2+C)1/2 wherem denoting the
mean. Surprisingly enough, most of them are discrete families concentrated onλZ
for some constantλ and the Laplace transform of their elements are expressed by
elliptic functions. The concept of association of two NEF isan auxilliary tool for
their study: two familiesF andG are associated if they are generated by symmet-
ric probabilities and if the analytic continuations of their variance functions satisfy
VF(m) =VG(m

√
−1). We give some properties of the association before its applica-

tion to these elliptic NEF. The paper is completed by the study of NEF with variance
functionsm(Cm4+Bm2+A)1/2. They are easier to study and they are concentrated
onaN.

Primary: 62E10 , 60G51
Secondary: 30E10

Key words: Variance functions, exponential dispersion models, function ℘ of
Weierstrass.

1 Foreword

Ole and I met for the first time in the Summer School of Saint Flour in 1986. Having
been converted to statistics by V. Seshadri two years before, I had learnt about ex-
ponential families through Ole’s book (1978) and I had fought with cuts and steep-
ness. Marianne Mora had just completed her thesis in Toulouse and was one of
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the Saint Flour participants: she was the first from Toulouseto make the pilgrim-
age to Aarhus the year after, followed by many others researchers from Toulouse:
Evelyne Bernadac, Ćelestin Kokonendji, Dhafer Malouche, Muriel Casalis, Abdel-
hamid Hassairi, Angelo Koudou and myself. Over the years allof us were in contact
with the everflowing ideas of Ole. During these Aarhus days (and Ole’s visits to
Toulouse) we gained a better understanding of the Lévy processes, of generalized
inverse Gaussian distributions and their matrix versions,of differential geometry ap-
plied to statistics. Among all the topics which have interested Ole, the choice today
is the one for which he may be the least enthusiastic (see the discussion of Letac
1991), namely the classification of exponential families through their variance func-
tions: Ole thought correctly that although the results weresatisfactory for the mind,
one could not see much real practical applications: in the other hand Mendeleiev
is universally admired for its prophetic views of chemical elements which had not
been yet discovered. Descriptions of natural exponential families with more and
more sophisticated variance functionsV have been done: whenV is a second degree
polynomial in the mean (Morris 1982), a power (Tweedie 1984,Jørgensen 1987), a
third degree polynomial (Letac-Mora 1990), the Babel classP+Q

√
R where poly-

nomialsP,Q,R have degrees not bigger than 2,1,2 (Letac 1992, Jørgensen 1997).
This is for univariate NEF: even more important works have been done for mul-
tivariate NEF, but the present paper will confine to one dimensional distributions
only.

Having forgotten variance functions during the last twentyyears and having
turned to random matrices and Bayesian theory, our interestfor the topic has been
rejuvenated by the paper by S. Bar-Lev and F. Van de Duyn Schouten (2004). The
authors consider exponential dispersion modelsG such that one of the transforma-
tions

T(P)(dx) =
xP(dx)
∫

R
xP(dx)

, T2(P)(dx) =
x2P(dx)
∫

R
x2P(dx)

.

mapsG into itself or one of its translates. ForT(P) they obtain exactly the ex-
ponential dispersion models concentrated on the positive line with quadratic vari-
ance functions: gamma, Poisson, negative binomial and binomial and no others. For
T2(P) they obviously obtain the previous ones, but they observe that new variance
functions appear, in particular(m4+ c2)1/2, without being able to decide whether
these natural exponential families (NEF) exist after all (it should be mentioned here
that their formula (11) is not correct and this fact greatly invalidates their paper). As
a result, our initial motivation was to address this particular question: is(m4+c2)1/2

a variance function? As we shall see, the answer is yes for a discrete set ofc. To solve
this particular problem, we have to design methods based on elliptic functions, and
these methods appear to have a wider domain of applicability. For this reason, the
aim of the present paper is the classification of the variancefunctions of the form
(Am4+Bm2+C)1/2 and their reciprocals in the sense of Letac-Mora (1990), namely
the variance functions of the formm(Cm4+Bm2+A)1/2.

Section 2 recalls general facts and methods for dealing withNEF’s. Section 3
opens a long parenthesis on pairs of associated NEF: ifF andG are NEF generated
by symmetric probabilities, we say that they are associatedroughly if we can write
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VF(m) = f (m2) andVG(m) = f (−m2). This definition seems to be a mere curiosity
of distribution theory, but appears to be illuminating whenapplied to our elliptic
NEF. Since this concept of association has several interesting aspects, I have pro-
vided here several detailed examples (Section 3.1) that thereader should skip if he
is only interested in elliptic NEF.

Section 4 rules out trivial values of the parameters for elliptic NEF. Sections 5-7
investigate the various cases according to the parameters(A,B,C), Section 8 con-
siders the reciprocal families of the previous elliptic NEF: these reciprocal NEF are
interesting distributions of the positive integers. Section 9 makes brief comments
on the variance functions(αm+β )

√

P(m) whereP is an arbitrary polynomial of
degree≤ 4, actually a complete new field of research. While the statements of the
present paper are understandable without knowledge of elliptic functions, the proofs
of Sections 5-7 make heavy use of them, and we shall constantly refer to the mag-
nificent book by Sansone and Gerretsen (1960) that we frequently quote by SG.

2 Retrieving an NEF from its variance function

The concept of exponential family is obviously the backboneof Ole’s book (Barn-
dorff -Nielsen (1978)) or of Brown (1986), but the notationsfor the simpler object
called natural exponential family are rather to be found in Morris (1982), Jørgensen
(1987) and Letac and Mora (1990).

If µ is a positive non Dirac Radon measure onR consider its Laplace transform

Lµ(θ) =
∫ ∞

−∞
eθxµ(dx)≤ ∞.

Assume that the interiorΘ(µ) of the intervalD(µ) = {θ ∈ R;Lµ(θ) < ∞} is not
empty. The set of positive measuresµ onR such thatΘ(µ) is not empty and such
thatµ is not concentrated on one point is denoted byM (R). We denote byM1(R)
the set of probabilitiesµ contained inM (R). In other terms, the elements ofM1(R)
are the probability laws onR which have a non trivial Laplace transform.

Write kµ = logLµ . Then the family of probabilities

F = F(µ) = {P(θ ,µ) ; θ ∈Θ(µ)}

where
P(θ ,µ)(dx) = eθx−kµ (θ)µ(dx)

is called the natural exponential family generated byµ . Two basic results are

m= k′µ(θ) =
∫ ∞

−∞
xP(θ ,µ)(dx)

and the fact thatk′µ is increasing (or thatkµ is convex). The setk′µ(Θ(µ)) = MF

is called the domain of the means. We denote byψµ : MF → Θ(µ) the reciprocal
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function ofm= k′µ(θ). ThusF = F(µ) can be parametrized byMF by the map from
MF to F which is

m 7→ P(ψµ(m),µ) = P(m,F).

In other terms an element ofF(µ) can be identified by the value of the meanmrather
than by the value of the canonical parameterθ . One can prove that the variance
VF(m) of P(m,F) is

VF(m) = k′′µ(ψµ(m)) =
1

ψ ′
µ(m)

. (1)

The mapm 7→VF(m) fromMF to (0,∞) is called the variance function and character-
izesF. The Jørgensen set ofµ is the setΛ(µ) of positive numberst such that there
exists a positive measureµt such thatΘ(µt) = Θ(µ) and such thatLµt = (Lµ)

t .
Obviously,Λ(µ) is an additive semigroup which contains all positive integers. If
t ∈ Λ(µ) we denoteFt = F(µt) and it is easily checked thatMFt = tMF and that

VFt (m) = tVF

(m
t

)

. (2)

The unionG = G(µ) = ∪t∈Λ(µ)F(µt) is called the exponential dispersion model
generated byµ .

If F is a NEF and ifh(x) = ax+b (with a 6= 0) then the familyh(F) of images
of elements ofF by h is still a NEF withMh(F) = h(MF) and

Vh(F)(m) = a2VF

(

m−b
a

)

. (3)

In spite of the similarity between (2) and (3), the last formula is much more useful
for dealing with a NEFF which is known only by its variance function: the reason
is that the Jørgensen setΛ(F) of F is unknown in many circumstances. In fact
Λ(F) is a closed additive semi group of[0,∞) which can be rather complicated (see
Letac, Malouche and Maurer (2002) for an example). In the other hand an affinity
is always defined, and this fact can be use to diminish the number of parameters of
a family of variance functions. For instance, if we considerthe variance function√

Am4+Bm2+C such thatC > 0, without loss of generality we could assume that
C= 1 by using the dilationx 7→ x/

√
C.

An important fact for the sequel is thatVF is real analytic, that means that for any
m0 ∈ MF there exists a positive numberr such that form0− r < m< m0+ r we have

VF(m) =
∞

∑
n=0

(m−m0)
n

n!
V(n)

F (m0)

which implies thatVF is analytically extendable to a connected open set of the
complex plane containing the real segmentMF . If µ ∈ M1(R), the Laplace trans-
form Lµ defined on the open intervalΘ(µ) is extendable analytically in a unique
way to the stripΘ(µ)+ iR of the complex plane. This extension is also denoted
Lµ and θ 7→ Lµ(iθ) is the Fourier transform of the probabilityµ . The function
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kµ(θ) = logLµ(θ) could be also extendable to an analytic function on the same
strip, but it would be a multivalued function ifLµ(θ) has zeros in the strip.

To conclude this section, recall the four steps allowing us to pass from the vari-
ance functionVF of a NEFF to a measureµ such thatF = F(µ).

1. Writing dθ = ψ ′
µ(m)dm= dm

VF (m) , we computeθ = ψµ(m) as a function ofm by
a quadrature;

2. we deduce from this the parameterm as a functionm= k′µ(θ) (this is generally
a difficult point);

3. we computekµ(θ) by a second quadrature and obtainLµ = ekµ ;
4. we use dictionary, creativity, or inversion Fourier formulas to retrieveµ from its

Laplace transform.

We keep these four steps in mind for dealing withVF(m) =
√

Am4+Bm2+C in the
sequel. It is worthwhile to sketch here an example with

V(m) =
√

1+4m4.

For 0< w< 1 we do the change of variable and perform the first step:

m=

√
1−w4

2w
, w2 =−2m2+

√

1+4m4, dθ =
dw√

1−w4
, θ =

∫ 1

w(m)

dw√
1−w4

.

The second step introduces a functionC(θ) defined on the interval[0,K] where
K =

∫ 1
0

dw√
1−w4

= 1.3098.. as

θ =
∫ 1

C(θ))

dw√
1−w4

. (4)

Sincew(m) = C(θ), up to the knowledge ofC(θ), and taking derivative of both
sides of (4), the second step is performed since

m= k′(θ) =
√

1−C(θ)4

2C(θ)
=−C′(θ)

2C(θ)
.

The third step is easy and we getk(θ) = −1
2 logC(θ) and the Laplace transform

L(θ) = 1√
C(θ)

. The fourth step needs to be explicit aboutC(θ) and the theory of

elliptic functions becomes necessary: details about this particular example are in
Theorem 4.1 when doingk2 =−1. The functionL will be the Laplace transform of
a discrete distribution concentrated on set on numbers of the form n/a wheren is
a relative integer and wherea is the complicated number2K

π = 0.8338... If we use
formula (3) we get the following surprizing result: the function

√
a4+4m4 is the

variance function of a NEF concentrated onZ.
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3 Associated natural exponential families

The source of this concept is the pair of identities (5) below: if

µ(dx) =
dx

2coshπ x
2

andν = 1
2(δ−1+δ1) is the symmetric Bernoulli distribution then

∫ +∞

−∞
eθxµ(dx) =

1
cosθ

(for |θ |< π/2),
∫ +∞

−∞
eiθxν(dx) = cosθ , (5)

which could be as well presented by reversing the roles of Fourier and Laplace
transforms:

∫ +∞

−∞
eiθxµ(dx) =

1
coshθ

,
∫ +∞

−∞
eθxν(dx) = coshθ . (6)

This is an example of what we are going to call an associated pair (µ ,ν) of proba-
bilities onR. Here is the definition:

Definition 3.1 Let µ andν be inM1(R) such thatµ andν are symmetric. We say
that (µ ,ν) is an associated pairif for all θ ∈ Θ(µ) the Fourier transform ofν is
1/Lµ(θ). In other terms forθ ∈Θ(µ) we have

∫ +∞

−∞
eθxµ(dx) = Lµ(θ),

∫ +∞

−∞
eiθxν(dx) =

1
Lµ(θ)

. (7)

The corresponding natural exponential familiesF = F(µ) andG = F(ν) are also
said to be associated.

We describe now the easy consequences of this definition:

Proposition 3.1Let (µ ,ν) in M1(R) be an associated pair. Then

1. (Symmetry) The pair(ν ,µ) is also associated;
2. (Uniqueness) If(µ ,ν1) is also associated, thenν1 = ν .
3. (Convolution) If(µ ′,ν ′) is an associated pair then(µ ∗µ ′,ν ∗ν ′) is also an asso-

ciated pair.
4. (Zeros) Denotezµ = inf{θ > 0 ; Lµ(iθ) = 0}. ThenΘ(ν) = (−zµ ,zµ).
5. (Variance functions) Consider the associated pairF = F(µ) andG = F(ν) of

NEF. If VF andVG are extended as analytic functions to the complex plane in a
neighborhood of zero, thenVF(m) =VG(im).

Comments
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1. Clearly, since the Fourier transform1
Lµ (θ) is real, the probabilityν must be sym-

metric.
2. Symmetry ofν implies thatΘ(ν) is a symmetric interval, as well as the mean

domain ofF(ν).
3. Because of the uniqueness of Part 2, we shall also writeµ∗ for indicating that

(µ ,µ∗) is an associated pair. In this caseµ∗ is called the associated probability
to µ (when it exists). We also observe that

(µ∗)∗ = µ , (µ ∗µ ′)∗ = µ∗ ∗ (µ ′)∗.

4. It is not correct to think that ifµ is in M1(R) thenµ∗ always exists. An example
is given by the first Laplace distribution (also called the bilateral exponential
distribution)

µ(dx) =
1
2

e−|x|dx, Θ(µ) = (−1,1), Lµ(θ) =
1

1−θ 2 .

Suppose thatν = µ∗ exists. Then its Fourier transform on(−1,1) is 1−θ 2. This
implies that its Laplace transform isLν(θ) = 1+ θ 2 and thereforeΘ(ν) = R.
But if kν = logLµ it is easy to see that the sign ofk′′ν(θ) is the sign of 1− θ 2,
which implies thatkν is not convex, a contradiction.
A more complicated example is given by

µt(dx) =
2t−2

πΓ (t)

∣

∣

∣

∣

Γ (
t + ix

2
)

∣

∣

∣

∣

2

dx (8)

for t > 0. We will see in Section 3.1 thatµt ∈ M1(R) satisfiesΘ(µt) = (−π
2 ,

π
2 )

and
2t−2

πΓ (t)

∫ +∞

−∞
eθx|Γ (

t + ix
2

)|2dx=
1

(cosθ)t
. (9)

If t is not an integer, thenµ∗
t = ν does not exist (Proposition 3.2). An obvious

case ist = 1/2 : if X,Y are iid such that Pr(X +Y = ±1) = 1/2 then Pr(X =
±1/2) = 1/4 and Pr(X+Y = 0)≥ 1/16> 0, a contradiction.

5. In Definition 3.1, suppose that we relax the constraint onν to have a Laplace
transform. Consider the example

µ(dx) =
dx

2cosh(πx)/2

with Laplace transform 1/cosθ defined onΘ(µ) = (−π
2 ,

π
2 ). A possible asso-

ciatedν is the Bernoulli1
2(δ−1 + δ1) which satisfies

∫ +∞
−∞ eiθxν(dx) = cosθ in

particular on|θ |< π/2) However it is not excluded that there exists other proba-
bilities ν fulfilling the same property on|θ |< π/2). Imposingν ∈ M1(R) rules
out this phenomenon, from Part 2 of Proposition 3.1.
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6. Here is the simplest example illustrating Part 5 of Proposition 3.1. We use once
more the associated pair (5). In this caseMF = R, aF = ∞, VF(m) = 1+m2,
MG = (−1,1), aG = 1,VG(m) = 1−m2. See Proposition 3.5 below.

7. SELF ASSOCIATED PAIRS ANDNEF: A trivial example isµ =N(0,1) sinceµ =
µ∗. More generally,VF is a function ofm4 if and only if µ = µ∗. An other impor-
tant example will be found in Theorem 5.1 below, which isVF(m) =

√
1+4m4.

Note that the symmetry ofµ is essential: ifVF(m) = m4, with MF = (0,∞), we
haveVF(m) =VF(im) but the concept of association does not make sense here.

8. This Part 5 provides also a way to decide quickly from the examination of the
variance function thatµ∗ does not exist. For instance, ifµ ∼ X−Y whereX and
Y are iid with the Poisson distribution of mean 1, thenF = F(µ) has variance
functionVF(m) =

√
1+m2. WouldG= F(µ∗) exist, its variance function would

beVG(m) =
√

1−m2. The domain of the mean ofG would be(−1,1), from the
principle of analytic continuation of variance functions (Theorem 3.1 in Letac
and Mora (1990)). However on around the pointm= 1, the functionVG would
be equivalent to 2(1−m)1/2. This is forbidden by the principle of Jørgensen,
Martinez and Tsao (1993): this principle says that ifMG = (a,b) with b< ∞ and
if

VG(m)∼m→b A× (b−m)p (10)

thenp /∈ (0,1).
Similarly consider the variance functionVF(m) = (1+m2)3/2 defined onMF =
R. One can consult Letac(1991) chapter 5 example 1.2 for a probabilistic inter-
pretation. It is generated by aµ such thatΘ(µ) = (−1,1) andkµ =

√
1−θ 2−1.

For seeing thatVG(m) = (1−m2)3/2 cannot be a variance function we observe
the following. If ν = µ∗ exists then

kν(θ) =
√

1+θ 2−1.

Therefore, by using the principle of maximal analytic continuation (see Proposi-

tion 3.2 below), we haveΘ(ν) = R. As a consequenceLν(θ) = e
√

1+θ2−1 is an
entire function, which is clearly impossible.

Proof of Proposition 3.1. 1) Suppose thatν is in M1(R). Then the knowledge
of the Fourier transform ofν on the intervalΘ(µ) gives the knowledge of the
Laplace transformLν onΘ(ν). Now the Fourier transform ofµ restricted toΘ(ν)
is Lµ(iθ) = 1/Lν(iθ) from the relation (7) extended by analyticity.

2) If ν1 exists, its Fourier transform coincides with the Fourier transform ofν on
the intervalΘ(µ). By analyticity, the two coincide everywhere andν = ν1.

3) is obvious.
4) Since the Fourier transform ofν restricted toΘ(µ) is 1/Lµ(θ) then in a neigh-

borhood ofθ = 0, the Laplace transform ofν satisfiesLν(θ) = 1/Lµ(iθ). Now we
use the following result:
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Proposition 3.2. (Principle of maximal analyticity) Ifν ∈ M (R) and if Θ(ν) =
(a,b) suppose that there exists(a1,b1) ⊃ (a,b) and a real analytic functionf on
(a1,b1) which is strictly positive and such thatf (θ) = Lν(θ) for a< θ < b. Then
a= a1 andb= b1.

Proof. Use the method of proof of Theorem 3.1 of Letac and Mora (1990)or Kawata
(1972), chapter 7.

We now return to the proof of Proposition 3.1, Part 4). WriteΘ(ν) = (−b,b).
Clearlyb> zµ is impossible since it would imply thatLν(zµ) would be finite, a con-
tradiction withLµ(zµ) = 0. We apply Proposition 2.2 to the presentν , to (a1,b1) =
(−zµ ,zµ) and to the positive analytic function on this intervalf (θ) = 1/Lµ(θ). As
a consequenceb= b1 = zµ and the result 4) is proved.

5) Consider the functionsLµ andLν . They are analytic on the stripsΘ(µ)× iR
andΘ(ν)× iR, and from Part 4)Θ(µ) + iΘ(ν) is the open square with vertices
±zν ± izν . Let Z be the set of zeros of the analytic functionθ 7→ Lµ(θ) restricted
to the squareΘ(µ)+ iΘ(ν). From the principle of isolated zeros,Z contains only
a finite number of points in the compact set[−a,a]× [−b,b] whena< zν andb<
zµ . Also Z has no zeros on the setS= (−zν ,zν)∪ (−izµ , izµ). Consider now the
partZ++ contained in the first quadrant, and its closed convex hullC++. Similarly
considerC±,±, the closed setC =C++∪C+−∪C−+∪C−− and the open setU =
Θ(µ)+ iΘ(ν)\C. ThenU is a simply connected set and is a neighborhood ofS.

We are in position to define logLµ = kµ on the open setU as an analytic function.
On this setU we have

kµ(θ) =−kν(iθ), k′µ(θ) =−ikν(iθ), k′′µ(θ) = k′′ν(iθ). (11)

Since
VF(k

′
µ(θ)) = k′′µ(θ), VG(k

′
ν(θ)) = k′′ν(θ)

we get finally
VG(ik

′
µ(iθ)) = k′′µ(iθ)

and this is saying that form in the open setk′µ(U) we haveVF(m) =VG(im), which
is the desired result.

Proposition 3.3.(Convolution of Bernoulli’s). Let(an)
∞
n=1 be a real sequence such

that∑∞
n=1a2

n < ∞. Let (Xn)
∞
n=1 and(Yn)

∞
n=1 be two iid sequences such that

Xn ∼
1

2cosh(πx/2)
, Yn ∼

1
2
(δ−1+δ1).

Then the distributionsµ of ∑∞
n=1anXn andν of ∑∞

n=1anYn are associated.

Proof. Easy, from (5) and Part 3) of Proposition 2.1. Note that foran = 1/3n thenν
is the purely singular Cantor distribution on(−1/2,1/2), while µ has a density.
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3.1 Examples of associated probabilities

Here are 3 groups of examples. It can be observed that they offer three different
generalizations of (5). We start with the classical formulafor t > 0 correct forθ ∈
(−t, t) :

∫ +∞

−∞
exθ dx

(coshx)t
=

2t−1

Γ (t)
Γ (

t +θ
2

)Γ (
t −θ

2
) (12)

with Θ(µt)= (−t, t). In particular using the duplication formula
√

π Γ (t)= 2t−1Γ ( t
2)Γ ( t+1

2 )
we get the Laplace transform of the probabilityαt below:

αt(dx) =
Γ ( t+1

2 )√
π Γ ( t

2)
× dx

(coshx)t
, Lαt (θ) =

1
Γ ( t

2)
2 ×Γ (

t +θ
2

)Γ (
t −θ

2
) (13)

with Θ(αt) = (−t, t). It is worthwhile to mention that ifX andY are iid with distri-
bution

β (
t
2
,1)(dx) =

t
2

x
t
2−11(0,1)(x)dx

and ifU =
√

X/Y then logU ∼ αt .
Formula (12) is easily proven by the change of variableu= e2x and the formula

∫ ∞
0

up−1du
(1+u)p+q = B(p,q) for p,q> 0. The Fourier version of (12) is

∫ +∞

−∞
eixθ dx

(coshx)t
=

2t−1

Γ (t)

∣

∣

∣

∣

Γ (
t + iθ

2
)

∣

∣

∣

∣

2

(14)

leading by Fourier inversion to

2t−1

2πΓ (t)

∫ +∞

−∞
eiθx

∣

∣

∣

∣

Γ (
t + ix

2
)

∣

∣

∣

∣

2

dx=
1

(coshθ)t
(15)

and by analyticity to (9). For a while, let us specialize these formulas tot = 2p−1
and to t = 2p where p is a positive integer. From the complements formula
Γ (z)Γ (1−z) = π/sin(πz) andΓ (z+1) = zΓ (z) we have fort = 1,2

Γ (
1+θ

2
)Γ (

1−θ
2

) =
π

cosπθ
2

, Γ (1+
θ
2
)Γ (1− θ

2
) =

πθ
2sinπθ

2

and more generally

Γ (
2p+1+θ

2
)Γ (

2p+1−θ
2

) =
1
2p (1−θ 2)(9−θ 2) . . .((2p−1)2−θ 2)× π

cosπθ
2

,(16)

Γ (p+
θ
2
)Γ (p− θ

2
) =

1
2p (4−θ 2)(16−θ 2) . . .(4p2−θ 2)× πθ

2sinπθ
2

.(17)

Proposition 3.4. If αt is defined by (13) thenα∗
t exists if and only ift ≥ 1. In
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particularα∗
1 = 1

2(δ−π/2+δπ/2) is a Bernoulli distribution and fort > 1 we have

α∗
t (dx) =

Γ (t)√
πΓ ( t−1

2 )
(cosx)t−21(−π/2,π/2)(x)dx.

In particular fort = 2p+1 andt = 2p+2 wherep is an non negative integer, then
(16) and (17) give(ϕt)

−1 whenϕt is the Fourier transform ofα∗
t .

Comments.For this example, the explicit calculation of the variance functions of
F = F(αt) and G = F(α∗

t ) is not possible. For instance ift = 2 the probability
α∗

2 is the uniform distribution on the segment(−π/2,π/2). In this caseLα∗
2
(θ) =

sinh(πt/2)
πt/2 : no way to computeθ = ψα∗

2
(m) in a close formula when

m= k′α∗
2
(θ) =

π
2

(

cotanh(
πθ)

2
)− 2

πθ

)

.

Shanbhag (1979) and, in their Proposition 4, Barlev and Letac (2012), have other
proofs of the ’only if’ condition of existence ofα∗

t .

Proof. For t > 1 we just rely on entry 3. 631, 9 of Gradshteyn and Ryzhik (2007).
If t < 1 we show thatα∗

t does not exist by showing thatθ 7→ k′′αt
(iθ) is not positive.

We obtain

k′′αt
(iθ) =

∞

∑
n=0

(n+ t
2)

2− θ2

4

[(n+ t
2)

2+ θ2

4 ]2
.

and a careful calculation shows that

lim
θ→∞

θ 2k′′αt
(iθ) = 2(t −1)

If t < 1 thenθ 7→ k′′αt
(iθ) cannot be positive for allθ ∈ R, and this ends the proof.

Proposition 3.5.If µt is defined by (9) thenµ∗
t exists if and only ift is a positive

integerN. In this caseµ∗
N is the image of the binomial distributionB(N,1/2) by

x 7→ 2x−N.

Comments.The most interesting particular case corresponds tot = 2 since in this
case we meet the uniform distribution on a segment with the associated pair

µ2(dx) =
x

4sinh(πx/2)
dx, (µ2)

∗(dy) =
1
2

1(−1,1)(y)dy.

This is also an illustration of Proposition 2.3 applied toan = 1/2n since∑∞
n=1

Yn
2n is

uniform on (-1,1) when(Yn)
∞
n=0 is an iid sequence of symmetric Bernoulli random

variables. For this example, the explicit calculation of the variance functions ofF =
F(µt) andG= F(µ∗

t ) gives
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VF(m) = t +
m2

t
, VG(m) = N− m2

N
.

Proof of Proposition 3.5.⇐ is obvious. To prove⇒ suppose that there exists a
positive integern0 such thatn0−1< t < n0 and suppose thatµ∗

t exists. Taking the
imageτ of µ∗

t by the mapx 7→ x′ = x− t, choosingθ > 0 and denotingz= e−2θ we
get

∫ +∞

−∞
eθx′τ(dx′) =

∫ +∞

−∞
eθ(x−t)µ∗

t (dx) =
1
2t

∞

∑
n=0

t(t −1) . . .(t −n+1)
n!

zn.

Sincet(t−1) . . .(t−n+1)< 0 whenn= n0+1 this shows thatτ({−2n0−2})< 0,
a contradiction.

The third example is obtained by considering the Babel classof NEF, namely the
set of exponential families such that the variance functionhas the formVF = P∆ +
Q
√

∆ where∆ , P andQ are polynomials with respective degrees less or equal to
2,1,2. Looking for possible pairs(F,G) in this class such thatVF(m) =VG(im) and
such thatF andG are generated by associated distributions(µ ,ν) -and therefore
symmetric- implies that∆(m) = Am2+C, P is a constant andQ(m) = A′m2+C′.
The caseC= 0 is excluded since the domain of the meanMF andMG are symmetric
interval andVF andVG are real analytic on them. As a consequence eitherF or G
must be such that∆(m) = 1−m2 (up to affinities). But there is only one type of
NEF in the Babel class such that∆(m) = 1−m2 and it is generated by the trinomial
distributions defined for 0< a< 1 by

µa =
1

a+1
(aδ0+

1
2

δ−1+
1
2

δ1) (18)

and their entire powers of convolution. Of course the limit cases are related to
Bernoulli, since

µ0 =
1
2

δ−1+
1
2

δ1, µ1 = (
1
2

δ−1/2+
1
2

δ1/2)∗ (
1
2

δ−1/2+
1
2

δ1/2).

Proposition 3.6.If µa is defined by (18) witha∈ (0,1) thenµ∗
a exists and is

µ∗
a = τb∗ τ−b.

wherea= cos2b with 0< b< π/4 and

τ±b(x) =
cosb

coshπx
4

e±bxdx.

Proof. We have
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Lµa(θ) =
a+coshθ

a+1
, VF(µa) =

1
1−a2 −m2− a√

1−a2

√

1
1−a2 −m2.

Therefore, ifµ∗
a does exist it must satisfy

Lµ∗
a
(θ) =

a+1
a+cosθ

, VF(µ∗
a)
=

1
1−a2 +m2− a√

1−a2

√

1
1−a2 +m2

with Θ(µa)
∗ = (−zµa,zµa) wherezµa is the smallest positive solution of cosθ =−a.

Such aµ∗
a actually exists. To see this we writea= cos2b with 0< b< π/4 and by

simple trigonometry and the help of formula (6):

cos2b+1
cos2b+cosθ

=
cosb

cos( θ
2 −b)

× cosb

cos( θ
2 +b)

= Lτb(θ)Lτ−b(θ)

where

τ±b(x) =
cosb

coshπx
4

e±bxdx.

4 Discussion and easy cases for(Am4+Bm2+C)1/2

In this section we recall known and not so well known results about a few particular
cases. The cases where only one of the three numbersA,B,C is not zero are classical:
we get respectively the gamma, Poisson or normal case. We nowinvestigate three
more interesting particular cases (they are all described in Letac 1992 as elements
of the Babel class).

4.1 The case A= 0

The useful results are contained in the following proposition:

Proposition 4.1.Let t > 0. Let N1 and N2 be two independent standard Poisson
random variables with expectationt/2. Then the exponential familyFt with domain
of the meansR and variance function(m2 + t2)1/2 exists and is generated by the
distributionµt of N1−N2. Furthermore

µt(dx) = ∑
n∈Z

e−t I|n|(t)δn(dx)

where

Ix(t) =
∞

∑
n=0

1
n!Γ (n+x+1)

( t
2

)2n+x
.
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Proof. SinceE(eθ(N1−N2) = et(coshθ−1) we get thatΘ(µt) = R and that

kµt (θ) = t(coshθ −1), k′µt
(θ) = t sinhθ , k′′µt

(θ) = t coshθ = (k′µt
(θ)2+ t2)1/2.

ThusVF(µt )(m) = (m2 + t2)1/2 as desired, and the domain of the means isR. A

consequence of this proposition and of 3 and 2 is that(Bm2 +C)1/2 is always a
variance function forB andC> 0.

4.2 The case C= 0

Proposition 4.2.Let t > 0. Then the exponential familyFt with domain of the means
R and variance functionm(1+ m2

t2
)1/2 exists. In particularF1 is generated byµ1 =

δ0 + 2∑∞
n=1 δn. More specifically,P is in F1 if and only if there existsq ∈ (0,1)

such thatP is the convolution of the Bernoulli distribution1
1+qδ0+

q
1+qδ1 with the

geometric distribution(1−q)∑∞
n=0qnδn.

Proof. Writing for θ < 0 Lµ1(θ) =
1+eθ

1−eθ it is easily seen that it generates a natural
exponential family with domain of the means(0,∞) and variance functionm(1+
m2)1/2. The only non trivial point of the proposition is the fact thatthe elements of
F1 are infinitely divisible. For this we write

kµ1(θ) =
∞

∑
n=1

1
n
(1+(−1)n)enθ .

Since the coefficient1n(1+(−1)n) of enθ is ≥ 0 the result is proved (although it is
difficult to computeµt explicitly whent is not an integer.

A consequence of this proposition is that(Am4+Bm2)1/2 is a variance function
for A andB> 0 with domain of the means(0,∞).

4.3 The case B2−4AC= 0

Here is a well known fact (see Morris (1982)):

Proposition 4.3.Let t > 0. The natural exponential familyFt with domain of the
meansR and variance functiont(1+ m2

t2
) is generated by the probabilityµt defined

by (8).

This rules the caseB2−4AC= 0 such thatAx2+Bx+C has a negative double root
with A> 0.
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Proposition 4.4.Let t > 0. The natural exponential familyFt with domain of the
means(t,∞) and variance functiont2(

m2

t2
−1) exists. In particularF1 is generated by

µ1 = ∑∞
n=1nδn.

Proof. We do not give the details aboutµ1 which are standard. Since the elements of
F1 are negative binomial distributions shifted by 1, they are still infinitely divisible
andFt does exist for allt > 0.

This rules out the caseB2−4AC= 0 such thatAx2+Bx+C has a positive double
rootx0 with A> 0 and domain of the means(

√
x0,∞).

Proposition 4.5.Let N > 0 be an integer. The natural exponential familyFt with
domain of the means(−N,N) and variance functionN2 (1− m2

N2 ) exists. It is generated
by (δ1+δ−1)

∗N.

Proof. This is an easy and classical fact.

4.4 Ax2+Bx+C cannot have simple roots on (0,∞)

We discard some values of(A,B,C). Suppose thatAx2+Bx+C has a positive simple
root x0 > 0. Then (Am4 +Bm2 +C)1/2 cannot be a variance function. For by the
principle of maximal analyticity, the domain of the means will havem0 =

√
x0 has

boundary point. Sincex0 is a simple root, then the variance function aroundm0 will
be equivalent tok|m−m0|1/2 for some positive constantk. But this is forbidden by
the principle of Jørgensen, Martinez and Tsao (1994) mentioned in (10).

4.5 The splitting of the elliptic variances in three cases

The only cases that we are left to consider in order to have a classification of
the variance functions of the form(Am4 +Bm2 +C)1/2 are now the cases where
Ax2+Bx+C is strictly positive on[0,∞) and has no double negative root. Of course
this implies thatA > 0 andC > 0. To simplify the matters, we chooseC = 1 and
we introduce the functionV(m) = (Am4+Bm2+1)1/2 and, fort > 0, the function
Vt(m) = tV(m/t). A simple analysis shows thatAx2+Bx+1 has no positive roots
and no double negative roots if and only if there exists a non zero real numbera and
a positive numberb such that

Ax2+Bx+1= (1+ax)2+2b2x.

Let us insist of the fact thata can be negative. Finally we introduce a complex num-
berk through its square in order to use the standard notations of elliptic functions:
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k2 = 1+
2a
b2

This leads to three cases

1. The case−1≤ k2 < 0. It corresponds to the fact thatP(x) = (1+ax)2+2b2x has
no roots and that the minimum ofP on [0,∞) is reached on 0.

2. The casek2 < −1. HereP has no roots and reaches its minimum on[0,∞) at
−b2(a+b2)/a2.

3. The casek2 > 0. HereP has two distinct negative real roots. TakingA= 1 instead
of C= 1 andP(x) = (x+a2)(x+b2) is convenient.

We investigate these cases in the next three sections.

5 The elliptic cases: The case−1≤ k2 < 0

We writek2 =−1+ p with 0≤ p< 1 and we introduce the following two constants:

K =
∫ 1

0
(1−x2)−1/2(2− p−x2)−1/2dx

K′ =
∫ 1

0
(1−x2)−1/2(1+(1− p)x2)−1/2dx. (19)

Here is our first serious result:

Theorem 5.1.Suppose thatk2 = 1+ 2a
b2 = −1+ p∈ [−1,0). For b=

√
2 anda=

−2+ p there exists a natural exponential familyGt with domain of the meansR and
variance function

t

√

(1+a
m2

t2 )2+2b2 m2

t2

whent is a multiple ofa. It is concentrated onπ
2KZ. The family G|a| is generated

by a symmetric probability measureµ|a| which is the convolution of the Bernoulli
distribution 1

2(δ− π
2K

+ δ π
2K
) by an infinitely divisible distributionα|a| concentrated

on π
KZ. We denoteq= e−πK′/K and for a positive integerν we denote

cν = c−ν =
qν − (−1)νq2ν

1−q2ν > 0.

Then the Laplace transform ofαt is

∫ ∞

−∞
eθxαt(dx) = exp

(

t
|a| ∑

ν∈Z\{0}
cν(e

νπθ
K −1)

)

.
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Finally the characteristic function ofµ2|a| is 1
℘(s+K)− p

3
where℘ is the elliptic Weier-

strass function satisfying

℘′2 = 4(℘−1+
2p
3
)(℘− p

3
)(℘+1− p

3
)

which is doubly periodic with primitive periods 2K and 2iK ′. In particular it has
zeros andGt cannot be infinitely divisible.

Comments.Doingb=
√

2 is not really a restriction. Using the formulaa2VF(m/a)
for the image ofF by x 7→ ax gives the description ofF for an arbitraryb> 0.

Proof. We apply the standard procedure for computing the Laplace transform of a
generating measure when the variance function is given. We shall use the following
change of variableu2 = (1+am2)2+2b2m2 for u≥ 1. This implies that

m2 =
1
a2 [−a−b2+

√

b4+2ab2+a2u2].

We consider now the new change of variable

u=
1
2
((2+

b2

a
)w2− b2

aw2 ) =
b2

2a
(k2w2− 1

w2 )

with 0< w< 1. This choice is designed in order to haveb4+2ab2+a2u2 = b4k2+
a2u2 transformed in a perfect square of a rational function ofw :

√

b4+2ab2+a2u2 =
a
2
((2+

b2

a
)w2+

b2

aw2 ) =
b2

2
(k2w2+

1
w2 )

This leads to

m2 =
b2

2a2w2 (1−w2)(1−k2w2) (20)

but also to a surprising result

a+b2+a2m2 = (a+
b2

2
)w2+

b2

2w2 =
b2

2
(k2w2+

1
w2 )

du= [(a+
b2

2
)w2+

b2

2w2 ]
2

aw
dw=

b2

a
(k2w2+

1
w2 )

dw
w

du
a+b2+a2m2 =

2
aw

dw (21)

Recall thata< 0 and thatw 7→ u is decreasing. Thus we get, gathering (21) and (20)
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dθ =
1

V(m)
×dm=

1
u
× 2udu

4m(a+b2+a2m2)
=

du
2m(a+b2+a2m2)

=
dw

awm

= −
√

2
b

dw
√

(1−w2)(1−k2w2)
(22)

We introduce the functionθ 7→C(θ) by

θ =

∫ 1

C(θ)

dw
√

(1−w2)(1−k2w2)

ThusC(0) = 1 and the functionC is defined on[0,K′]. Actually, we haveC(θ) =
sn(K′− θ). In (0,K′) it satisfiesC′(θ) = −(1−C(θ)2)1/2(1− k2C(θ)2)1/2. Now
we can write

θ =
∫ m

0
ψ ′

µ(x)dx=
∫ 1

w(m)

dw

(1−w2)1/2(1−k2w2)1/2
.

Thusw(m) =C(θ) and from (20)

m= k′µt
(θ) = m(C(θ)) =

1
|a|C(θ) (1−C(θ)2)1/2(1−k2C(θ)2)1/2 =

C′(θ)
aC(θ)

.

Thus finally we get the Laplace transform ofµt as

Lµt (θ) =
1

(C(θ))1/|a| .

We observe thatθ 7→C(θ) has an analytic continuation to the whole complex plane.
We now consider its restrictionc(s) = C(is) to the imaginary line. It satisfies the
differential equation

c′(s)2 = (c(s)2−1)(1−k2c(s)2) (23)

with the initial conditionc(0)= 1. Now introduce the functions 7→ f (s)=−k2c2(s).
It satisfies the differential equation

f ′(s)2 = 4 f 3(s)+4(1+k2) f 2(s)+4 f (s) = 4( f (s)+1) f (s)( f (s)+k2)

(just multiply (23) byc2 to reach this result). From now it is convenient to write

k2 = 1+a= p−1

with p∈ [0,1). Then writing f (s) =− p
3 +h(s) we geth′(s)2 = 4h(s)3−g2h(s)−g3

with

g2 = 4(1− p+
2p2

3
), g3 =−4p

3
(1− p+

2p2

9
)

Thush satisfies the differential equation of the℘ function of Weierstrass for the
parametersg2 andg3 (see SG 247). We can also writeh′2(s) = 4(h−e1)(h−e2)(h−
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e3) with e1 = 1− 2p
3 > e2 =

p
3 > e3 =−1+ p

3 with discriminant

∆ = g3
2−27g2

3 = [4(1− p)(2− p)]2.

Thus (see SG page 279 and page 283) the function℘ has periods 2K = 2ω and
2iK ′ = 2ω ′

2iK ′ K+2iK ′ 2K+2iK ′

iK ′ K+ iK ′ 2K + iK ′

0 K 2K

ω =
1√

2− p

∫ 1

0

dw

(1−w2)1/2(1− 1
2−pw2)1/2

,

ω ′ =
i√

2− p

∫ 1

0

dw

(1−w2)1/2(1− 1−p
2−pw2)1/2

= iK ′.

The last equalityω ′ = iK ′ is obtained from the changes of variablew= u1/2, u= 1−
v andv= t2. We haveh(s) =℘(s+C) for some constantC. Now, since the variance

functiont(1+am2

t2
)1/2)2+ 4m4

t2
)1/2 is symmetric, there exists a symmetric measure

which generates it and without loss of generality we assume that the characteristic
functions 7→ 1

f (s)t/2|a| is real. Thus we have to takeC such thatc(0) = 1 or f (0) =

1− p or h(0) = 1− 2p
3 = e1 or℘(C) = e1. Hence from SG page 279C= K.

Sinces 7→℘(s) has periods 2K and 2iK ′ and since℘(K) = 1− 2p
3 = e1 we have

f (s) =℘(s+K)− p
3
.

Note thats 7→℘(s) has no real zeros, only poles on multiples of 2K and is periodic.
See the picture in SG page 280. Thus

s 7→
(

1− p
f (s)

)t/2|a|

is 2K periodic and has zeros on odd multiples ofK. Since it is 2K periodic, this
implies that it is the characteristic function of a symmetric probability concentrated
on multiples ofπ/K.

1− p
f (s)

t/2|a|
= ∑

ν∈Z
pν(t)e

iν π
K = p0(t)+2

∞

∑
ν=1

pν(t)cos
πν
K

.
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We are going to consider− t
2|a| log f (s) and to compute its Fourier series. For this

we use formula 5.8-22 in SG page 263 applied toα = 2 which gives here since
e2 = p/3

f (2Kz)1/2 =

√

℘(2Kz+K)− p
3
=

ϑ3(z+ 1
2)

Cϑ1(z+ 1
2)

(24)

whereC is some constant and where theq occurring in the Theta functions is given

by SG page 261 byq= eiπτ with τ = iK ′/K. Thusq= e−
K′
K π here. Forgetting the

factort/|a| we have

−1
2

log f (s) = logC+ logϑ1(
s

2K
+

1
2
)− logϑ3(

s
2K

+
1
2
).

Consider the derivative of this function:

−1
2
(log f (s))′ =

1
2K

ϑ ′
1(

s
2K + 1

2)

ϑ1(
s

2K + 1
2)

− 1
2K

ϑ ′
3(

s
2K + 1

2)

ϑ3(
s

2K + 1
2)
.

Now we use formulas aboutϑ ′
j/ϑ j given in SG page 274. They are

ϑ ′
1(z)

ϑ1(z)
= π cosπz

sinπz+ 4π
∞

∑
ν=1

q2ν

1−q2ν sin2νπz

ϑ ′
3(z)

ϑ3(z)
= 4π

∞

∑
ν=1

(−1)νqν

1−q2ν sin2νπz

In these expressions we replacez by s
2K + 1

2 and we get

ϑ ′
1(

πs
2K + π

2 )

ϑ1(
πs
2K + π

2 )
= −π sin πs

2K
cos πs

2K
+ 4π

∞

∑
ν=1

(−1)νq2ν

1−q2ν sin
πs
K

ϑ ′
3(

πs
2K + π

2 )

ϑ3(
πs
2K + π

2 )
= 4π

∞

∑
ν=1

qν

1−q2ν sin
πs
K

Thus

−K
π
(log f (s))′ = − sin πs

2K

cosπs
2K

+4
∞

∑
ν=1

(−1)νq2ν −qν

1−q2ν sin2
πs
2K

,

−1
2

log f (s) = C1+ logcos
πs
2K

+2
∞

∑
ν=1

qν − (−1)νq2ν

1−q2ν cos2ν
πs
2K

,

−1
2

log f (s) = C1+ logcos
πs
2K

+ ∑
ν∈Z\{0}

q|ν |− (−1)νq2|ν |
1−q2|ν | exp2ν iπ

s
2K

,

whereC1 is a constant such thatf (0) = 1− p. Thus
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1

c(s)t/|a|
=C2(cos

πs
2K

)t/|a|exp

[

∑
ν∈Z\{0}

q|ν |− (−1)νq2|ν |
1−q2|ν | exp2ν iπ

s
2K

]

The theorem is proved.

6 The elliptic cases:k2 <−1

This case is more complicated when treated by the retrievingmethod of Section 2.
A reason is the fact that the functionm 7→V(m) is not convex. More specifically, if
P(x)= (1+ax)2+2b2x is used to defineV(m)=

√

P(m2) the casek2 = 1+ 2a
b2 <−1

correspond to the case whereP′ has a positive root. Here we shall rather use the
method of associated NEF, but no new interesting distributions will appear, as shown
by the following result:

Theorem 6.1. If k2 = 1+ 2a
b2 < −1 then

√

(1+am2)2+2b2m2 is not a variance
function.

Proof. Suppose that
√

(1+am2)2+2b2m2 is the variance function of some NEF
F1. Let us assume first that the associatedF2 exists. As a consequence the variance
function ofF2 is

VF2(m) =
√

(1−am2)2−2b2m2 =
√

(1+am2)2+2(2a−b2)m2.

Like in Theorem 5.1 without loss of generality we may assume that 2a−b2 = 2, and
Theorem 5.1 gives us a detailed description ofF2. If µ2 is the symmetric probability
generatingF2 we have seen thatLµ(θ) =C(θ)−1/|a| whereC(θ) = sn(K′−θ) with
K and K′ defined by (19). As a consequence, ifµ1 is the symmetric probability
generatingF1, then from Proposition 3.1 its Fourier transform is

ϕµ1(s) =C(s)1/|a|.

Now we use the fact that the functionC is doubly periodic with periods 2K and 2iK ′.
This implies that the Fourier transformϕµ1(s) has period 2K′ which means thatµ2

is concentrated on a coset of the groupZ/(2K′). We are going to use this to see that
s 7→ C(s)−1/|a| is also a Fourier transform of a probability and this will obviously
contradict the existence ofµ2. For this, we have to understand the 2K′ periodicity
of C by coming back to formula (24) which shows thatC(2Ks) is the power of a
function of the form

ϑ3(z+ 1
2)

Cϑ1(z+ 1
2)
.
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Now we use the Jacobi imaginary transformation (see SG pages269-272). In our
particular case this Jacobi transformation is the following. Denoteτ = iK ′/K. Then
−1/τ = iK/K′. The theta functionsϑ1 andϑ3 are implicitely functions ofτ and it
is sometimes useful to writeϑi(z|τ) instead ofϑi(z). Formulas linkingϑi(z|τ) and
ϑi(z|−1/τ) are known (see 5.10-9 in SG). These formulas show, by the magic of
the Jacobi transformation, thatC(s)−1/|a| is the Fourier transform of the probability
onZ/K′ which is obtained from Theorem 5.1 simply by exchanging the roles ofK
andK′. We therefore obtain the desired contradiction.

The last task is to get rid of the hypothesis thatF1 has an associated NEF. If
F1 = F(µ1) exists withVF1(m) =

√

(1+am2)2+2b2m2 then playing with the affine
and the Jørgensen transformations (2) and (3) it is possibleto find a positive number

t such that
√

(1−am
t

2)2−2b2 m
t

2 is the variance function of some NEFF2. This

F2 = F(µ2) is necessarily of the type considered in Theorem 5.1 (namelywith 1<
k2 < 0). We have seen that in this case the Laplace transform ofµ2 is a negative
power ofC(θ) = sn(θ −K′). Therefore the Fourier transform ofµ1 is a positive
power ofC(s). However, a negative power ofC(s) was also the Fourier transform of
a probability: we get a contradiction and this ends the proof.

7 The elliptic cases:k2 > 0

In this section we study the variances of the formV(m) =
√

(m2+a2)(m2+b2)
where 0< a< b.

Theorem 7.1Let 0< a < b such thatb2 − a2 = 24/3. There exists an natural ex-

ponential family with variance function 2
√

(m2

4 +a2)(m2

4 +b2). It is generated by a
symmetric discrete distribution concentrated on the groupπ

KZ whereK i a constant
given below by (25).

Proof. We haveθ =
∫m

0
dt√

(t2+a2)(t2+b2)
. We do the changes of variablet 7→ u 7→ v 7→

w defined foru> ab, v> 2ab
b2−a2 , w>

√

b+a
b−a.

u2 = (t2+a2)(t2+b2), u=
b2−a2

2
v, v=

1
2
(w2− 1

w2 ).

Sinceudu= 2t(2t2+b2+a2)dt anddv= (w2+ 1
w2 )

dw
w we get

θ =
b2−a2

4

∫

2
√

(m2+a2)(m2+b2)

b2−a2

2ab
b2−a2

dv
t(2t2+b2+a2)

.

We have also
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t2 = −b2+a2

2
+

b2−a2

2

√

v2+1=−b2+a2

2
+

b2−a2

4
(w2+

1
w2 )

=
b2−a2

4w2 (w2− b+a
b−a

)(w2− b−a
b+a

).

Thus 2t2+a2+b2 = b2−a2

2 (w2+ 1
w2 ) which implies that dv

2t2+b2+a2 = b2−a2

2
dw
w . De-

noting for simplificationr = b+a
b−a > 1 we get

θ =
(b2−a2)3/2

4

∫ w(m)

√
r

dw
√

(w2− r)(w2− r−1)

wherem 7→ w(m)>
√

r is defined by

m2 =
b2−a2

4w2(m)
(w2(m)− r)(w2(m)− r−1).

Now for simplification let us assume that(b2−a2)3/2

4 = 1. Introduce the functionθ 7→
C(θ) from (0,∞) to (

√
r,∞) defined by

θ =
∫ C(θ)
√

r

dw
√

(w2− r)(w2− r−1)
.

Thus we havew(m) = w(k′(θ)) = C(θ). This functionC satisfies the differential
equation

C′=
√

(C2− r)(C2− r−1),
C′(θ)
C(θ)

=
1

C(θ)

√

(C2(θ)− r)(C2(θ)− r−1)=
2√

b2−a2
k′(θ).

Thus the Laplace transform ofµ is L(θ) = C(θ)c wherec =

√
b2−a2

2 . We now
imitate the procedure used in Theorem 4.1: we consider the Fourier transformc(s) =
C(is) for s∈ R, which satisfies

c′(s)2 =−(c2(s)− r)(c2(s)− r−1),

then f (s) = c2(s) which satisfiesf ′2 = 4c2c′2 = −4 f ( f − r)( f − r−1), thenh(s) =
1
3(r + r−1)− f (s) which satisfies

h′(s)2 = 4h(s)3−g2h(s)−g3

= 4[h(s)− 1
3
(r + r−1)][h(s)− 1

3
(r −2r−1)][h(s)− 1

3
(r−1−2r)]

= 4(h(s)−e1)(h(s)−e2)(h(s)−e3)

with g2 =
4
3(r

2+ r−2−1), g3 =
4
27(3r +3r−1−2r3−2r−3) and
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e1 =
1
3
(r + r−1) > e2 =

1
3
(r −2r−1) > e3 =

1
3
(r−1−2r)

Hence for some complex constantC we haveh(s) =℘(s+C) with periods 2K and
2iK ′ defined by

K =
∫ ∞

e1

dx
√

4x3−g2x−g3
, K′ =

∫ e3

−∞

dx
√

−4x3+g2x+g3
(25)

(see Whittaker and Watson (1927) Example 1 page 444). Now to determine the
constantC one observes thatf (s) = 1

3(r + r−1)−℘(s+C) is real since this is the
Fourier transform of a symmetric measure. Furthermoref (0) = c(0)2 = r. Thus
℘(C) = 1

3(r
−1−2r) = e3 which impliesC= iK ′. Now we use the formula (see SG

formula 5.8-22)
√

℘(z)−ej =
π

2K

[

ϑ ′
1(0)ϑ j+1(

z
2K )

ϑ j+1(0)ϑ1(
z

2K )

]

that we shall use for writing

c2(s) = f (s) =
1
3
(r + r−1)−h(s) = e1−℘(s+ iK ′) =

π2

4K2

∣

∣

∣

∣

∣

ϑ ′
1(0)ϑ2(

s
2K + i K′

2K )

ϑ2(0)ϑ1(
s

2K + i K′
2K )

∣

∣

∣

∣

∣

2

.

Let us introduce the notationq= e−πK/K′
With it, ϑ1 andϑ2 are given by

ϑ1(z) = 2Cq1/4sinπz
∞

∏
ν=1

(1−2q2ν cos2πz+q4ν)

ϑ2(z) = 2Cq1/4cosπz
∞

∏
ν=1

(1+2q2ν cos2πz+q4ν)

whereC= ∏ν=1(1−q2ν) (see SG pages 268-9). Let us give a simpler presentation

of c2(s) : usingz= s
2K + i K′

2K andu= e
iπs
2K we introduce the following symbols for

ν = 1,2, . . .

ϕν(u) =
u4+u−4

q2ν +q−2ν +q2+q−2 , ϕ0(u) =
u2+u−2

q+q−1 .

We get

∣

∣

∣

∣

cosπz
sinπz

∣

∣

∣

∣

2

=
1+ϕ0(u)
1−ϕ0(u)

,

∣

∣

∣

∣

1+2q2ν cos2πz+q4ν

1−2q2ν cos2πz+q4ν

∣

∣

∣

∣

2

=
1+ϕν(u)
1−ϕν(u)

.

and finally the elegant formula

c2(s) = f (s) =C
∞

∏
ν=0

1+ϕν(u)
1−ϕν(u)
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where the constantC is such thatf (0) = 1. The last step is the formula, correct for
|Z|< 1 :

1+Z
1−Z

= 1+2
∞

∑
n=1

Zn = ∑
n∈Z

Z|n|.

ReplacingZ by ϕν(u) we see thatfν(s) =Cν
1+ϕν (u)
1−ϕν (u)

whereCν is such thatfν(0) = 1
is the characteristic function of a probability distribution concentrated on the addi-
tive group 2π

K Z for ν ≥ 1 and on the additive groupπKZ for ν = 0. As a resultf is
the characteristic function of a symmetric discrete distribution on the groupπKZ.

Comments.Of course the restrictionb2−a2 = 24/3 is not important and can be gen-
eralized by a dilation. In the other hand, finding the Jørgensen set of these families is
a difficult question. It should also be mentioned that the characteristic functionfν(s)
above has the form1−cν

1−cν
1+cν coss
1−cν coss after dilationx 7→ 2π

K x if ν 6= 0 or x 7→ π
K x. If the

Poisson kernel distribution onZ of parameterr ∈ (0,1) is defined bypn =
1−r
1+r r |n|,

then 1−cν
1−cν

1+cν coss
1−cν coss can be seen as a mixing of a Dirac mass on zero and of Poisson

kernel distribution with parameterr = cν .

8 The family F

Theorem 8.1.Let x> 0. The NEFFx with domain of the means(0,∞) and variance
function

VFx(m) = m(1+
4m4

x4 )1/2

is generated by a positive measure onN which is νx(dt) = ∑∞
n=0

pn(x)
n! δn(dt) with

generating function

fx(z) =
∞

∑
n=0

pn(x)
n!

zn = e
x
∫ z
0

dw
(1−w4)1/2 . (26)

which satisfies
(1−z4) f ′′x (z)−2z3 f ′x(z)−x2 fx(z) = 0.

The total mass ofνx is exp(x1
4B(1

2,
1
4)). The polynomialspn are given bypn(x) = xn

for n= 0,1,2,3,4, p5(x) = x5+12x and forn≥ 2

pn+2(x) = x2pn(x)+n(n−1)2(n−2)pn−2(x).

Proof. The proof of the first formula is a routine calculation for exponential families
concentrated onN, but we give details. We use successively the change of variables
u= 2m2/x2 andu= sinhv.
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dθ =
dm

V(m)
=

4mdm

4m2
√

1+4m4

x4

=
du

u
√

1+u2
=

dv
2sinhv

=
1
2
(

1
ev−1

− 1
ev+1

)evdv

Denotingz= eθ we get

z2 =
ev−1
ev+1

, ev =
1+z2

1−z2 , e−v =
1−z2

1+z2 , u= sinhv=
2z2

1−z4 , m=
xz√

1−z4
.

Thusk′µ(θ) = x eθ√
1−e4θ

and this leads to the result 26.

The trick to obtain the differential equation forfx is to write(1−z4)1/2 f ′x = x fx,
then to differentiate with respect tozand then to multiply both sides of the result by
(1−z4)1/2. Then the differential equation leads to the equality

∑
n≥0

(n+1)(n+2)
pn+2(x)
(n+2)!

zn− ∑
n≥4

(n−3)(n−2)
pn−2(x)
(n−2)!

zn

−2 ∑
n≥3

(n−2)
pn−2(x)
(n−2)!

zn−x2 ∑
n≥0

pn(x)
n!

zn = 0.

Using fx(0) = p0(x) = 1 and f ′x(0) = p1(x) = x we getpn(x) = xn for 0≤ n≤ 4 and
for n≥ 4 we have

(n+1)(n+2)
pn+2(x)
(n+2)!

− (n−3)(n−2)
pn−2(x)
(n−2)!

−2(n−2)
pn−2(x)
(n−2)!

−x2 pn(x)
n!

= 0,

(n+1)(n+2)
pn+2(x)
(n+2)!

− (n−1)(n−2)
pn−2(x)
(n−2)!

−x2 pn(x)
n!

= 0.

Now we multiply both sides byn! and we use the definition ofpn for getting

pn+2(x) = x2pn(x)+n(n−1)2(n−2)pn−2(x).

Checking the correctness of this equality forn= 2,3 is easy.

Remarks. It is easy to check that ifn= 4q+ r with r = 0,1,2,3 then there exists a
monic polynomialPq,r of degreeq such that

pn(x) = xrPq,r(x
4).

For instanceP0,r(z) = 1, P1,0(z) = z, P1,1(z) = z+12, P1,2(z) = z+72,
P1,3(z) = z+252,P2,0(z) = z2+672z, P2,1(z) = z2+1512z+1260.

We now extend Theorem 8.1 to a more general variance function, without be-
ing so specific about calculation of the corresponding distribution. This variance
function forx= 1 is the reciprocal variance function fort = 1 of VGt where
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VGt (m) =

√

1+2p
m2

t2 +(2− p)2 m4

t4 .

Theorem 8.2.Let p∈ [0,1). Let x> 0. The NEFFx with domain of the means(0,∞)
and variance function

VFx(m) = m

[

1+2p
m2

x2 +
(2− p)2m4

x4

]1/2

is generated by a positive measure onN with generating function

fx(z) = exp

[

x

√

2
2− p

∫ z

0
(1+qw2)1/2(1−w4)−1/2dw

]

. (27)

whereq= p/(2− p)2.

Proof. It is convenient to denotec= p/(2− p) and to observe that

0≤ c< 1 ,
√

1−c2 =
2
√

1− p
2− p

,
c±1√
1−c2

=± 1√
1− p

.

We use successively the change of variablesu=(2−p)m2/x2 andu=
√

1−c2sinhv−
c.

dθ =
dm

V(m)
=

4mdm

4m2
√

1+2pm2

x2 + (2−p)2m4

x4

=
du

u
√

1+2cu+u2
=

dv

2
√

1−c2sinhv−2c

=
evdv√

1−c2e2v−2cev−
√

1−c2
=

1
2

[

1

ev− 1√
1−p

− 1

ev+ 1√
1−p

]

evdv.

Denotingz= eθ we get

z2 =
ev− 1√

1−p

ev+ 1√
1−p

, ev =
1√

1− p

1+z2

1−z2 , e−v =
√

1− p
1−z2

1+z2

√

1−c2sinhv=
4z2+ p(1−z2)2

(2− p)(1−z4)
, u=

2z2

1−z4 (1+cz2), m2=
2

2− p
z2

1−z4 (1+qz2).

Thus

m= k′µ(θ) = x

√

2
2− p

(1+qe2θ )1/2

(1−e4θ )1/2
eθ

and this leads to the result (27).
It remains to prove that the Taylor expansion ofz 7→ fx(z) defined by (27) has

positive coefficients. For this it is enough to prove that theargument of the expo-
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nential

z 7→
∫ z

0
(1+qw2)1/2(1−w4)−1/2dw

has positive coefficients. It is enough to prove thatz 7→ (1+ qz2)1/2(1− z4)−1/2

has positive coefficients. It is enough to prove thatz 7→ (1+qz)1/2(1−z2)−1/2 has
positive coefficients. It is enough to prove that

z 7→ log[(1+qz)(1−z2)−1] =
∞

∑
n=1

anzn

has positive coefficients. But this very last point is easy tocheck since 0≤ q < 1
and sincean is computable: for oddn thenan = qn/n> 0 and for evenn= 2p we
have

an =
1
p
− q2p

2p
> 0.

The theorem is proved.

9 Conclusion: general elliptic variances

It seems that the present paper is only scratching the surface of an interesting theory.
Indeed, consider the set of variance functions of the form

VF(m) = (αm+β )
√

P(m) (28)

whereP is a polynomial with degree≤ 4. The present paper has considered only the
casesP(m) = Am4+Bm2+C. Recall a definition appearing in Hassairi (1992) and
Barlev, Bshouty and Letac (1994). We say that two NEFF1 andF2 on the real line
belong to the same orbit if there exists a Moebius transformation y= (ax+b)/(cx+
d) such thatad−bc= 1 and such that on a suitable interval form we have

VF1(m) = (cm+d)3VF2

(

am+b
cm+d

)

.

The most celebrated pair(F1,F2) is the set of normal distributions with variance 1
and the set of inverse Gaussian distributions, with variance m3 on (0,∞). The pair
(
√

4+m4, m
√

1+4m4) offers another example. Roughly saying thatF1 andF2 be-
long to the same orbit means the following: suppose thatF1 andF2 are generated by
µ1 andµ2 and let us draw inR2 the curvesC1 andC2 which are the representative
curves of the convex functionskµ1 andkµ2 (in the case of the pair normal-inverse
Gaussian, they are a parabola and a piece of parabola). ThenF1 andF2 are in the
same orbit if and only if there exists an affine transformation of the planeR2 which
maps a part ofC1 onto a part ofC2. This affine transformation can be described
in terms of the coefficients(a,b,c,d) of the Moebius transformation. A very sat-
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isfactory fact observed in Hassairi (1992) is that the quadratic and cubic NEF are
split in 4 orbits, respectively generated by the normal, thePoisson, the hyperbolic
and the Ressel-Kendall distributions. Now we remark that ifF has the form (28)
and if G is in the orbit ofF then necessarilyVG(m) = (α1m+ β1)

√

P1(m) where
the polynomialP1 has also degree≤ 4. Therefore we are facing the problem of a
whole classification of this set (28) of variance functions into orbits. This implies a
mastering of the elliptic curvesy2 = P(x) and the use of beautiful mathematics. The
theory of exponential families expanded by Ole Barndorff Nielsen forty years ago
is still hiding many secrets.
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