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Copulas with prescribed correlation matrix

Luc Devroye∗, Gérard Letac†

February 23, 2015

1 Foreword

Marc Yor was also an explorer in the jungle of probability distributions, either
in discovering a new species, or in landing on an unexpected simple law after a
difficult trip on stochastic calculus: we remember his enthousiam after proving

that
(∫∞

0
exp(2B(t)− 2st)dt

)−1
is gamma distributed with shape parameter

s (’The first natural occurrence of a gamma distribution which is not a chi
square!’). Although the authors have been rather inclined to deal with discrete
time, common discussions with Marc were about laws in any dimension. Here
are some remarks -actually initially coming from financial mathematics- where
the beta-gamma algebra (a term coined by Marc) has a role.

2 Introduction

The set of symmetric positive semi-definite matrices (rij)1≤i,j≤n of order n such
that the diagonal elements rii are equal to 1 for all i = 1, . . . , n is denoted by
Rn. Given a random variable (X1, . . . , Xn) on R

n with distribution µ such that
the second moments of the X ′

is exist, its correlation matrix

R(µ) = (rij)1≤i,j≤n ∈ Rn

is defined by rij as the correlation of Xi and Xj if i < j, and rii = 1. A copula
is a probability µ on [0, 1]n such that Xi is uniform on [0, 1] for i = 1, . . . , n
when (X1, . . . , Xn) ∼ µ. We consider the following problem: given R ∈ Rn,
does there exist a copula µ such that R(µ) = R? The aim of this note is to show
that the answer is yes if n ≤ 9. The present authors believe that this limit n = 9
is a real obstruction and that for n ≥ 10 there exists R ∈ Rn such that there is
no copula µ such that R(µ) = R.

Section 3 gives some general facts about the convex set Rn. Section 4 proves
that if k ≥ 1/2, if 2 ≤ n ≤ 5 and if R ∈ Rn there exists a distribution µ on
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[0, 1]n such that

Xi ∼ βk,k(dx) =
1

B(k, k)
xk−1(1− x)k−11(0,1)(x)dx (1)

if (X1, . . . , Xn) ∼ µ. This is an extension of the previous statement since βk,k is
the uniform distribution if k = 1. Section 5 proves the remainder of the theorem,
namely for 6 ≤ n ≤ 9. Section 6 considers the useful and classical Gaussian
copulas and explains why there are R ∈ Rn that cannot be the correlation
matrix of any Gaussian copula. The present paper is both a simplification and
an extension of the arXiv paper Devroye and Letac (2010).

3 Extreme points of Rn

The set Rn is a convex part of the linear space of symmetric matrices of order
n. It is clearly closed and if R = (rij)1≤i,j≤n ∈ Rcn we have |rij | ≤ 1: this shows
that Rn is compact. More specifically, Rn is in the affine subspace of dimension
n(n − 1)/2 of the symmetric matrices of order n with diagonal (1, . . . , 1). Its
extreme points have been described in Ycart (1985). In particular we have

Theorem 3.1: If an extreme point of Rn has rank r then r(r + 1)/2 ≤ n.

We vizualize this statement:

r 1 2 3 4 5 ...
r(r+1)

2 1 3 6 10 15 ...

• Case n = 2. As a consequence the extreme points of R2 are of rank one. They
are nothing but the two matrices

[
1 1
1 1

]
,

[
1 −1

−1 1

]
.

This comes from the fact R ∈ R2 of rank one has the form R = AAt where
At = (a1, a2): since rii = 1 this implies that a21 = a22 = 1.

• Case n ≥ 3. Figure 1 below displays the acceptable values of (x, y, z) when

R(x, y, z) =




1 z y
z 1 x
y x 1


 (2)

is positive definite. Its boundary is the part in |x|, |y|, |z| ≤ 1 of the Steiner
surface 1− x2 − y2 − z2 + 2xyz = 0.

Proposition 3.2: Let n ≥ 3. Then R = (rij)1≤i,j≤n ∈ Rn has rank 2 if and
only if there exists n distinct numbers α1, . . . , αn such that rij = cos(αi − αj).
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Figure 1: The space of the three off-diagonal correlation coefficients of a corre-
lation matrix is a convex subset of [0, 1]3.

Proof: ⇒: Since R has rank 2 there are two independent vectors A and B of Rn

such that R = AAt +BBt. Wrting At = (a1, . . . , an) and Bt = (b1, . . . , bn) the
fact that rii = 1 implies that a2i +b2i = 1. Taking ai = cosαi and bi = sinαi gives
rij = cos(αi−αj). ⇐: Since only differences αi−αj appear in rij = cos(αi−αj)
without loss of generality we take αn = 0 we define At = (cosα1, . . . , cosαn−1, 1)
and Bt = (sinα1, . . . , sinαn−1, 1) and R = AAt +BBt is easily checked. �

• Case n ≥ 6.

Proposition 3.3: Let n ≥ 6. Then R = (rij)1≤i,j≤n ∈ Rn has rank 3 if and
only if there exist v1, . . . , vn on the unit sphere S2 of R3 such that for all i < j
we have rij = 〈vi, vj〉 and such that the system v1, . . . , vn generates R3.

Proof: The direct proof is quite analogous to Proposition 2.2: there exist
A,B,C ∈ R

n such that R = AAt + BBt + CCt. and such that A,B,C are
independent. Writing

[A,B,C] =




a1 b1 c1
a2 b2 c2
. . . . . . . . .
an bn cn


 (3)

the desired vectors are vti = (ai, bi, ci). The converse is similar. �
The following proposition explains the importance of the extreme points of

Rn for our problem.

Proposition 3.4: Let X = (X1, . . . , Xn) ∼ µ and Y = (Y1, . . . , Yn) ∼ ν be two
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random variables of Rn such that for all i = 1, . . . , n we have Xi ∼ Yi and Xi

has second moments and are not Dirac. Then for all λ ∈ (0, 1) we have

R(λµ+ (1− λ)ν) = λR(µ) + (1− λ)R(ν).

Proof: Xi ∼ Yi implies that the mean mi and the dispersion σi of Xi and Yi

are the same. Denote D = diag(σ1, . . . , σn). Since the Xi are not Dirac, D is
invertible. Denote by

Σ(µ) = (E((Xi −mi)(Xj −mj))1≤i,j≤n = DR(µ)D

the covariance matrix of µ. Define Z = (Z1, . . . , Zn) by Z = X with probability
λ and Z = Y with probability (1− λ). Thus Z ∼ λµ+ (1− λ)ν. Here again the
mean and the dispersion of Zi are mi and σi. Finally the covariance matrix of
Z is Σ(λµ+ (1− λ)ν) = λΣ(µ) + (1− λ)Σ(ν) which gives

R(λµ+ (1− λ)ν) = D−1Σ(λµ+ (1− λ)ν)D−1

= λD−1Σ(µ)D−1 + (1− λ)D−1Σ(ν)D−1

= λR(µ) + (1− λ)R(ν). �

Corollary 3.5: Let ν1, . . . , νn a sequence of probabilities on R having second
moments and denote by M the set of probabilities µ on R

n such that for all
i = 1, . . . , n we have Xi ∼ νi, with (X1, . . . , Xn) ∼ µ. Then the map from M to
Rn defined by µ 7→ R(µ) is surjective if and only if for any extreme point R of
Rn there exists a µ ∈ M such that R = R(µ).

Proof: ⇒ comes from the definition. ⇐: Since the convex set Rn has dimension
N = n(n− 1)/2 , the Caratheodory theorem implies that if R ∈ Rn then there
exists N+1 extreme points R0, . . . , RN of Rn and non negative numbers (λi)

N
i=0

of sum 1 such that
R = λ0R0 + · · ·+ λNRN

From the hypothesis, for j = 0, . . . , N there exists µj ∈ M such that R(µj) =
Rj . Define finally

µ = λ0µ0 + · · ·+ λNµN

and apply Proposition 3.4, we get that R = R(µ) as desired. �

Comments: With the notation of Corollary 3.5 and the result of Proposition
3.4, the map µ 7→ R(µ) from M to Rn is affine. Consider now the case where
for all i = 1, . . . , n, the probability νi is concentrated on a finite number of
atoms. In this particular case M is a polytope, and therefore its image R(M) is
a polytope contained in Rn. For n = 3 clearly R3 is not a polytope (see Figure
1) and therefore there exists a R ∈ R3 which is not in R(M) : with discrete
margins, you cannot reach an arbitrary correlation matrix.
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4 The case 3 ≤ n ≤ 5 and the Gasper distribu-

tion.

In this section we prove (Proposition 4.2) that if ν1 = . . . = νn = βkk as defined
by (1) and with k ≥ 1/2, if M is defined as in Corollary 2.5 and if R ∈ Rn

has rank 2 one can find µ ∈ M such that R = R(µ). The corollary of this
Proposition 1 will be that for any R ∈ Rn with 3 ≤ n ≤ 5 one can find µ such
that R(µ) = R and such that the margins of µ are βkk. Proposition 4.1 relies
on the existence of a special distribution Φk,r called the Gasper distribution in
the plane that we are going to describe.

Definition: Let k ≥ 1/2. Let D > 0 such that D2 ∼ β1,k− 1
2
(if k > 1

2 ) and

D ∼ δ1 if k = 1
2 . We assume that D is independent of Θ, uniformly distributed

on (0, 2π). Let r ∈ (−1, 1) and α ∈ (0, π) such that r = cosα. The Gasper
distribution Φk,r is the distribution of (D cosΘ, D cos(Θ− α)).

Proposition 4.1: If (X1, X2) ∼ Φk,r thenX1 andX2 have distribution νk(dx) =
1

B(k,k) (1− x2)k−11(−1,1)(x)dx and correlation r.

Proof: Clearly X1 ∼ −X1 and for seeing that X1 ∼ νk enough is to prove that

E(X2s
1 ) =

21−2k

B(k, k)

∫ 1

−1

x2s(1− x2)k−1dx (4)

The righthand side of (4) is

22−2k

B(k, k)

∫ 1

0

x2s(1− x2)k−1dx = 21−2k Γ(s+ 1
2 )Γ(2k)

Γ(s+ 1
2 + k)Γ(k)

.

The lefthand side of (4) is

E(D2s)E((cos2 Θ)s) =
Γ(s+ 1)Γ(k + 1

2 )

Γ(s+ k + 1
2 )

× Γ(s+ 1
2 )√

πΓ(s+ 1)
.

Using the duplication formula Γ(k)Γ(k+ 1
2 ) = 21−2k

√
π Γ(2k) proves (4). Since

Θ is uniform one has cos(Θ − α) ∼ cosΘ and X1 ∼ X2. For showing that the
correlation of (X1, X2) is r = cosα we observe that

E(X2
1 ) = E(D2)E(cos2 Θ) =

1

2k + 1

E(X1X2) = E(D2)E(cosΘ cos(Θ− α)) =
cosα

2k + 1
. �

Comments: It is worthwhile to say a few things about this Gasper distribution.
It is essentially considered in two celebrated papers by George Gasper (1971)
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and (1972). If k = 1
2 then Φ 1

2 ,r
is concentrated on the ellipse Er = Ecosα

parameterized by the circle as

θ 7→ (x(θ), y(θ)) = (cos θ, cos(θ − α))

Er = {(x, y); (y − xr)2 = (1− x2)(1− r2)} = {(x, y);∆(x, y, z) = 0}
where

∆(x, y, r) = det




1 r y
r 1 x
y x 1


 = 1− x2 − y2 − r2 + 2xyr

(Compare with (2). Now denote by Ur = {(x, y);∆(x, y, r) > 0} the interior of
the convex hull of Er and assume that k > 1

2 . Then Gasper shows that

Φr,k(dx, dy) =
2k − 1

2π
(1− r2)

1
4−

k
2 ∆(x, y, r)k−

3
21Ur

(x, y) dxdy

The Gasper distribution φk,r appears as a Lancaster distribution (see Letac
(2008)) for the pair (νk, νk). More specifically consider the sequence (Qn)

∞
n=0 of

the orthonormal polynomials for the weight νk. Thus Qn is the Jacobi polyno-
mial P k−1,k−1

n normalized such that

∫ 1

−1

Q2
n(x)νk(dx) = 1.

For 1/2 < k denote

K(x, y, z) =

∞∑

n=0

Qn(x)Qn(y)Qn(z)

Qn(1)
.

This series converges if |x|, |y|, |z| < 1 and its sum is zero when (x, y) is not in
the interior Ur of the ellipse Er. With this notation we have

φk,r(dx, dy) = K(x, y, r)νk(dx)νk(dy).

This result is essentially due to Gasper (1971) (with credits to Sonine, Gegen-
bauer and Moller). See Koudou (1995) and (1996) for details.

Proposition 4.2: Let α1, . . . , αn which are distinct modulo π. Let

R = (cos(αi − αj)1≤i,j≤n ∈ Rn

and consider the two-dimensional planeH ⊂ R
n generated by c = (cosα1, . . . , cosαn)

and s = (sinα1, . . . , sinαn). Consider the random variable X = (X1, . . . , Xn)
concentrated on H such that (X1, X2) ∼ Φk, cos(α1−α2) and denote by µ the
distribution of X. Then

• For 1 ≤ i < j ≤ n we have (Xi, Xj) ∼ Φk, cos(αi−αj)
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• R = R(µ).

Proof: Recall that R ∈ Rn from Proposition 3.2. Since X ∈ H there exists
A,B such that for all i = 1, . . . , n one has Xi = A cosαi+B sinαi. From the fact
that (X1, X2) ∼ Φk,cos(α1−α2) we can claim the existence of a (Θ, D) such that
Θ is uniform on the circle and is independent of D > 0 such that D2 ∼ β1,k− 1

2

and such that
(X1, X2) ∼ D cos(Θ− α1), D cos(Θ− α2))

From an elementary calculation this leads to saying that (A,B) ∼ (D cosΘ, D sinΘ)
and finally that

(X1, . . . , Xn) ∼ (D cos(Θ− α1), . . . , D cos(Θ− αn)).

From Proposition 4.1 this proves the results. �

Conclusion: The previous proposition has shown that for k ≥ 1
2 and for any

extremal pointR ofRn there exists a distribution µR in (−1, 1)n with margins νk
and correlation matrix R. From Corollary 3.5 above, since an arbitrary R ∈ Rn

is a convex combination R = λ0R0+ · · ·+λnRn of extreme points Ri of Rn the
distribution µ = λ0µR0

+ · · ·+ λnµRn
has margins νk and correlation R.

Since νk is the affine transformation of βk,k by u 7→ x = 2u− 1 this implies
that there exists also a distribution in (0, 1)k with margins βk,k and correlation
matrix R. Since β1,1 is the uniform distribution on (0, 1) a corollary is the
existence of a copula with arbitrary correlation matrix R.

Example: To illustrate Proposition 4.2 consider the case n = 3 and R ∈ R3

defined by

R =




1 − 1
2 − 1

2
− 1

2 1 − 1
2

− 1
2 − 1

2 1




which is an extreme point corresponding to α1 = 0, α2 = 2π/3 = −α3. This
example is important since, as we are going to observe in Section 6, it is not
possible to find a Gaussian copula having R as correlation matrix. Recall now
a celebrated result:

Archimedes Theorem: If X is uniformly distributed on the unit sphere S of
the three-dimensional Euclidean space E and if Π is an orthogonal projection
of E on a one-dimensional line F ⊂ E then Π(X) is uniform on the diameter
with end points S ∩ F.

Proof: While we learnt a different proof in ’classe de Première’ in the middle of
the fifties, here is a computational proof: let Z ∼ N(0, idE). Then X ∼ Z/‖Z‖.
Choose orthonormal coordinates (x1, x2, x3) such that F is the x1 axis. As a
consequence of Z = (Z1, Z2, Z3) we have X2

1 ∼ Z2
1/(Z

1
1 + Z2

2 + Z2
3 ) and since

the Z2
i are chi square independent with one degree of freedom, this implies that
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Figure 2: Illustration of our construction. First take a point uniformly on the
surface of the ball. Project it to the plane shown (so that it falls in the circle).
The three coordinates of that point are each uniformly distributed on [−1, 1]

.

X2
1 ∼ β1/2,1 which leads quickly to X1 uniformly distributed on (−1, 1)since

X1 ∼ −X1. �
Proposition 4.2 offers a construction (see Figure 2) of a distribution in C =

[−1, 1]3 with uniform margins ν1 on (−1, 1) as a distribution concentrated on
the plane P of equation x + y + z = 1. The intersection C ∩ P is a regular
hexagon. Introduce the disc D inscribed in the hexagon C ∩ P and the sphere
S admiting the boundary of D as one of its grand circles. Now consider the
uniform distribution on S. Denote by µ its orthogonal projection µ on D.
Actually any orthogonal projection of µ on a diameter of D is uniform on this
diameter, from Archimedes Theorem. Apply this to the three diagonals of the
hexagon C∩P : this proves that the three margins of µ are the uniform measure
ν1.

5 The case 6 ≤ n ≤ 9

Proposition 5.1: Let n ≥ 6 and let A,B,C be three independent vectors of
R

n such that R = [A,B,C][At, Bt, Ct]t = AAt + BBt + CCt is a correlation
matrix. Let Y = (U, V,W ) be uniformly distributed on the unit sphere S2 ⊂ R

3

and let µ be the distribution of X = AU + BV + CW in R
n. Then R(µ) = R

and the marginal distributions of µ are ν1, the uniform distribution in (−1, 1).
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Proof: From Archimedes Theorem, U, V and W have distribution ν1. Further-
more, since the distribution of (U, V ) is invariant by rotation, then (U, V ) ∼
(D cosΘ, D sinΘ) where D =

√
U2 + V 2 is independent of Θ uniform on the

circle. This implies that E(UV ) = 0. Since E(U2) = 1/3 the covariance matrix
of (U, V,W ) is I3/3. From this remark, and using the fact that AU +BV +CW
is centered, the covariance matrix of AU +BV + CW is

E((AU +BV + CW )(AU +BV + CW )t) = R/3

and this proves R(µ) = R. Finally, using the representation (4) of the matrix
[A,B,C] and denoting vi = (ai, bi, ci) we see that the component Xi of AU +
BV + CW is aiU + biV + ciW = 〈vi, Y 〉. Since ‖vi‖2 = 1 the random variable
Xi is the orthogonal projection of Y on Rvi and is uniform on (-1,1) from
Archimedes Theorem. �

Comments: The above proposition finishes the proof of the fact that for n ≤ 9,
and if R is an extreme point of Rn then it is the correlation of some copula.
From Proposition 3.4 this completes the proof that any R ∈ Rn is the correlation
of a copula for n ≤ 9. The fact that this result can be extended to n ≥ 10 is
doubtful, since there are R ∈ R10 of the form AAt +BBt +CCt +DDt where
A,B,C,D ∈ R

10 and the technique of the proof of Proposition 5.1 seems to
indicate that it is impossible. A similar phenomenon seems to occur if we want
to construct a distribution µ in R

6 such that R(µ) has rank 3 and such that the
margins of µ are β1/2,1/2.

Accordingly, we conjecture the existence of R ∈ R10 which cannot be the
correlation of a copula, and we conjecture the existence of R ∈ R6 which cannot
be the correlation of a distribution whose margins are the arsine distribution.

6 Gaussian copulas

In this section, we explore the simplest idea for building a copula on [0, 1]n with a
non trivial variance: select a Gaussian random variable (X1, . . . , Xn) ∼ N(0, R)
where R ∈ Rn, introduce the distribution function

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2dt

of N(0, 1) and observe that the law µ of (U1, . . . , Un) = (Φ(X1), . . . ,Φ(Xn)) is
a copula. A µ which can be obtained in that way is called a Gaussian copula.
However its correlation R∗ = R(µ) is not equal to R except in trivial cases.

Therefore this section considers the map from Rn to itself defined by R 7→
R∗. This map is not surjective: in particular, in comments following Proposition
6.1 we exhibit a correlation matrix which cannot be the correlation of a Gaussian
copula. First we compute R∗ by brute force (Proposition 6.1), getting a result
of Falk (1999). We make also two remarks about the expectation of f1(X)f2(Y )
when (X,Y ) is centered Gaussian (Propositions 6.2, 6.4). Proposition 6.5 leads
to a more elegant proof of Proposition 6.1 by using Hermite polynomials.
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Proposition 6.1: Let R = (rij)1≤i,j≤n be a correlation matrix, let

(X1, . . . , Xn) ∼ N(0, R)

and let µ be the law of (U1, . . . , Un) = (Φ(X1), . . . ,Φ(Xn)). Then

R(µ) = R∗ = (g(rij))1≤i,j≤n

where

g(r) =
6

π
arcsin

r

2
. (5)

Proof. We begin with a standard calculation. We start with (X,Y ) centered

Gaussian with covariance

Σr =

[
1 r
r 1

]
. (6)

We now compute the quadruple integral

f(r) = E(Φ(X)Φ(Y )) =

∫

R4

e
− 1

2 (u
2+v2+ 1

1−r2
(x2−2rxy+y2))

1u<x,v<y
dxdydudv

(2π)2
√
1− r2

.

Performing the change of variables (x, y, u, v) 7→ (x, y, x− u, y − v) = (x, y, t, s)
we get

f(r) =
1√

4− r2

∫ ∞

0

∫ ∞

0

e−
1
2 (t

2+s2)g(r, t, s)
dtds

2π

with

g(r, t, s) =

√
4− r2

1− r2

∫

R2

e
xt+ys− 1

2(1−r2)
((2−r2)x2−2rxy+(2−r2)y2) dxdy

2π

Consider

A =
1

1− r2

[
2− r2 −r
−r 2− r2

]
, B =

1

4− r2

[
2− r2 r

r 2− r2

]
.

Then B = A−1, detA = 4−r2

1−r2 and detB = 1−r2

4−r2 . Therefore g(r, t, s) is the
Laplace transform of a centered random Gaussian random variable with covari-
ance matrix B. We get

g(r, t, s) = e
1

2(4−r2)
((2−r2)t2+2rts+(2−r2)s2)

and therefore

f(r) =
1√

4− r2

∫ ∞

0

∫ ∞

0

e
− 1

2(4−r2)
(2t2−2rts+2s2) dtds

2π

Now we use the fact that if (T, S) is a Gaussian centered random variable with
correlation coefficient cosα with 0 < α < π then Pr(T > 0, S > 0) is explicit.
For computing it, just introduce S′ ∼ N(0, 1) independent of T observe that
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(T, S) ∼ (T, T cosα + S′ sinα) and finally write (T, S′) = (D cosΘ, D sinΘ)
where D > 0 and Θ are independent and where Θ is uniform on (0, 2π). This
leads to

Pr(T > 0, S > 0) = Pr(cosΘ > 0, cos(Θ− α) > 0) =
π − α

2π
.

We apply this principle to the above integral which can be seen as

Pr(T > 0, S > 0) = f(r)

when (T, S) ∼ N(0,

[
2 r
r 2

]
). The correlation coefficient of (T, S) is here

cosα = r
2 and we finally get

f(r) =
1

2π
(π − arg cos

r

2
) =

1

2
− 1

2π
arg cos

r

2
.

Now we consider the function

g(r) = 12E((Φ(X)− 1/2)(Φ(Y )− 1/2)) = 12f(r)− 3 =
6

π
arg sin

r

2

and the function T (x) = 2
√
3(Φ(x)−1/2). Thus the random variables T (X) and

T (Y ) are uniform on (−
√
3,
√
3) with mean 0, variance 1 and correlation g(r).

This implies that the correlation between Φ(X) and Φ(Y ) is g(r). Coming back
to the initial (X1, . . . , Xn) the correlation between Φ(Xi) and Φ(Xj) is g(r). �

Comments: The function g is odd and increasing since g′(r) = 6
π
√
4−r2

. Thus

we have |g(r)| < r < 1. It satisfies g(0) = 0, g(±1) = ±1, g′(0) = 3
π and

g′(1) = 2
√
3

π . Finally for −1 < ρ < 1 we have

ρ = g(r) ⇔ r = 2 sin
πρ

6
.

Calculation shows that for −1 < ρ < 1 we have 0 ≤ |2 sin πρ
6 − ρ| ≤ 0.0180...

therefore the two functions are quite close. It is useful to picture g and its

inverse function in Figure 3. Observe also that if ρ = −1/2 we get

r = −2 sin
π

12
= −

√
3− 1√
2

= −0.51... < −1/2.

An important consequence is the fact that since r < −1/2 the matrix R(r, r, r) of
(2) is not a correlation matrix and therefore the correlation matrixR(− 1

2 ,− 1
2 ,− 1

2 )
cannot be the correlation matrix of a Gaussian copula. Falk (1999) makes es-
sentially a similar observation.

In the sequel, we proceed to a more general study of the correlation between
f1(Y1) and f2(Y2) when (Y1, Y2) ∼ N(0,Σr) as defined in (6). We thank Ivan
Nourdin for a shorter proof of the following proposition:

11



Figure 3: Graphs of ρ = g(r) = 6
π arg sin r

2 and r = g−1(ρ) = 2 sin πρ
6 .

Proposition 6.2: Given any r ∈ [−1, 1] consider the Gaussian random variable
(Y1, Y2) ∼ N(0,Σr). Consider two probabilities ν1 and ν2 on R with respective
distribution functions G1 and G2. Then the correlation of G1(Y1) and G2(Y2)
is a continuous increasing function of r.

Proof: We use the fact that if f ∈ C2(R2) then

d

dr
E(f(Y1, Y2)) = E(

∂2

∂y1∂y2
f(Y1, Y2)) (7)

To see this recall that if X ∼ N(0, 1) then an integration by parts gives

E(Xϕ(X)) = E(ϕ′(X)). (8)

Writing Y2 = rY1 +
√
1− r2Y3 where Y1 and Y3 are independent N(0, 1) we get

d

dr
E(f(Y1, Y2)) = E((Y1 −

r√
1− r2

Y3)
∂

∂y2
f(Y1, Y2)) (9)

= E(Y1
∂

∂y2
f(Y1, Y2))−

r√
1− r2

E(Y3
∂

∂y2
f(Y1, Y2))

= E(Y1
∂

∂y2
f(Y1, Y2))− rE(

∂2

∂y22
f(Y1, Y2)) (10)

= E(
∂2

∂y1∂y2
f(Y1, Y2)) (11)

12



In this sequence of equalities (9) is derivation inside an integral, (10) is the appli-
cation of (8) to ϕ(Y3) =

∂
∂y2

f(Y1, rY1 +
√
1− r2Y3)) and (11) is the application

of (8) to ϕ(Y1) =
∂

∂y2
f(Y1, rY1 +

√
1− r2Y3)) which satisfies

ϕ′(Y1) =
∂2

∂y1∂y2
f(Y1, Y2) + r

∂2

∂y22
f(Y1, Y2).

The application of (7) to the proof of Proposition 1 is clear: if G1 and G2 are
smooth enough, we take f(y1, y2) as G1(y1)G2(y2). If not we use an approxima-
tion. �.

Corollary 6.3: Given two probability distributions µ1 and µ2 on the real line
having second moments with respective distribution functions F1 and F2. Given
any r ∈ [−1, 1] consider the Gaussian random variable (Y1, Y2) ∼ N(0,Σr). Then
(X1, X2) = F−1

1 (Φ(Y1)), F
−1
1 (Φ(Y2)) has a correlation

ρ = gµ1,µ2
(r)

which is a continuous increasing function on [−1, 1]. In particular if gµ1,µ2
(−1) =

a and gµ1,µ2
(1) = b and if a ≤ ρ ≤ b there exists a unique r = fµ1,µ2

(ρ) ∈ [−1, 1]
such that (X1, X2) has correlation ρ.

Proposition 6.4: Let (X,Y ) be a centered Gaussian variable of R2 with co-
variance matrix Σr and let f : R → R be a function such that E(f(X)) = 0
and E(f(X)2) = 1. Then E(f(X)f(Y )) = r for all −1 ≤ r ≤ 1 if and only if
f(x) = ±x.

Proof: Write r = cosα with 0 ≤ α ≤ π. If X,Z are independent centered
real Gaussian random variables with variance 1, then Y = X cosα + Z sinα is
centered with variance 1, (X,Y ) is Gaussian and E(XY ) = cosα. Therefore we
rewrite this as

cosα =

∫

R2

f(x)f(x cosα+ z sinα)e−
1
2 (x

2+z2) dxdz

2π
(12)

=

∫ ∞

0

ρe−
ρ2

2

(
1

2π

∫ π

−π

f(ρ cos θ)f(ρ cos(α− θ))dθ

)
dρ (13)

where we have used polar coordinates x = ρ cos θ and z = ρ sin θ for the second
equality. This equality is established for 0 ≤ α ≤ π but it is still correct when
we change α into −α. Now we introduce the Fourier coefficients for n in the set
Z of relative integers:

f̂n(ρ) =
1

2π

∫ π

−π

f(ρ cos θ)e−inθdθ.

Since f is real we have the Hermitian symmetry f̂−n(ρ) = f̂n(ρ). Expanding the
periodic function (13) in Fourier series and considering the Fourier coefficients

13



of α 7→ cosα we get for n 6= ±1
∫ ∞

0

ρe−
ρ2

2 f̂2
n(ρ)dρ = 0 (14)

and
∫∞
0

ρe−
ρ2

2 f̂2
±1(ρ)dρ = 1

2 . Hermitian symmetry implies that f̂2
0 (ρ) is real and

since
∫∞
0

ρe−
ρ2

2 f̂2
0 (ρ)dρ = 0 we get that f̂2

0 (ρ) = 0 for almost all ρ > 0. This is
saying that for almost all ρ > 0 we have

∫ π

−π

f(ρ cos θ)dθ = 0 : (15)

Since θ 7→ f(ρ cos θ) is a real even function we have

f(ρ cos θ) ∼
∞∑

n=1

an(ρ) cosnθ

and the real number an(ρ) is equal to 2f̂n(ρ) and to 2f̂−n(ρ) which are therefore
real numbers. Using (14) they are zero for all n 6= ±1 and we get almost
everywhere that f(ρ cos θ) = a1(ρ) cos θ or f(ρu) = a1(ρ)u for all −1 ≤ u ≤ 1.
To conclude we write

a1(ρ)u = f(ρu) = f(ρ1
ρ

ρ1
u) = a1(ρ1)

ρ

ρ1
u

where u is small enough such that | ρ
ρ1
u| ≤ 1. This implies a1(ρ)

ρ = a1(ρ1)
ρ1

which

is a constant c by the principle of separation of variables. Therefore f(x) = cx
almost everywhere and E(f(X)2) = 1 implies that c = ±1. �

For computing expressions like E(f1(Y1)f2(Y2)) when (Y1, Y2) ∼ N(0,Σr) we
use the classical fact below:

Proposition 6.5: Let (Y1, Y2) ∼ N(0,Σr). Let f1 and f2 be real measurable
functions such that E(fi(Yi)

2) is finite for i = 1, 2. Consider the Hermite poly-
nomials (Hk)

∞
k=0 defined by the generating function

ext−
t2

2 =
∞∑

k=0

Hk(x)
tk

k!

and the expansions

f1(x) =

∞∑

k=1

ak
Hk(x)√

k!
, f2(x) =

∞∑

k=1

bk
Hk(x)√

k!
.

Then for all −1 ≤ r ≤ 1

E(f1(Y1)f2(Y2)) =

∞∑

k=1

akbkr
k.

14



Proof: Let us compute

E(eY1t− t2

2 eY2s− s2

2 ) =

∞∑

k=0

∞∑

m=0

tk

k!

sm

m!
E(Hk(Y1)Hm(Y2))

For this, we use the usual procedure and first write r = cos θ with 0 ≤ θ ≤ π. If
Y1, Y3 are independent centered real Gaussian random variables with variance
1, then Y2 = Y1 cos θ + Y3 sin θ is centered with variance 1, (Y1, Y2) is Gaussian
and E(Y1Y2) = cos θ. Furthermore a simple calculation using the definition of
Y2 gives

E(eY1t− t2

2 eY2 s− s2

2 ) = ets cos θ

This shows that E(Hk(Y1)Hm(Y2)) = 0 if k 6= m and that E(Hk(Y1)Hk(Y2)) =
k! cosk θ. From this we get the result. �

Corollary 6.6: Let pn ≥ 0 such that
∑∞

n=1 pn = 1 and consider the gen-
erating function g(r) =

∑∞
n=1 pnr

n. Let R = (rij)1≤i,j≤d in Rn. Then R∗ =
(g(rij))1≤i,j≤d is the covariance matrix of the random variable (f(X1), . . . , f(Xd))
where (X1, . . . , Xd) is centered Gaussian with covariance R and where

f(x) =

∞∑

n=1

εn
√
pn

Hn(x)√
n!

with fixed εn = ±1.

Example: We have seen an example of such a function f with f(x) = T (x) =
2
√
3(Φ(x)− 1/2) and

g(r) =
6

π
arg sin

r

2
=

3

π

∞∑

n=0

(
1

2
)n

1

4nn!

r2n+1

2n+ 1
.

Thus p2n+1 = 3
π (

1
2 )n

1
4nn!

1
2n+1 and p2n = 0. For computing εn we have really to

compute

εn

√
pn√
n!

= E(T (X)
Hn(X)

n!
)

For this we watch the coefficient of tn in the power expansion of

E(T (X)eXt− t2

2 )

For this we need

E(Φ(X)eXt− t2

2 ) = 1− Φ(− t√
2
) =

1

2
+

1

2
√
π

∞∑

n=0

(−1)n

4nn!

t2n+1

2n+ 1

E(T (X)eXt− t2

2 ) =

√
3

π

∞∑

n=0

(−1)n

4nn!

t2n+1

2n+ 1

15



Therefore

ε2n+1

√
p2n+1√

(2n+ 1)!
=

√
3

π

(−1)n

4nn!

1

2n+ 1

which shows that ε2n+1 = (−1)n.

7 References

Devroye, L. and Letac, G. (2010) “Copulas in three dimensions with pre-
scribed correlations” arXiv 1004.3146.

Falk, M. (1999) “A simple approach to the generation of uniformly distributed
random variables with prescribed correlations” Comm. Statist. Simulation

Comp., 28, 785-791.

Gasper, G. (1971) “Positivity and the Convolution Structure for Jacobi Series”
Ann. of Math., 93, 112-118.

Gasper, G. (1972) “Banach Algebra for Jacobi Series and Positivity of a Ker-
nel” Ann. of Math., 95, 261-280.
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