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Copulas with prescribed correlation matrix

Luc Devroye* Gérard Letac!

February 23, 2015

1 Foreword

Marc Yor was also an explorer in the jungle of probability distributions, either
in discovering a new species, or in landing on an unexpected simple law after a
difficult trip on stochastic calculus: we remember his enthousiam after proving
that (f; exp(2B(t) — 2st)dt)_1 is gamma distributed with shape parameter
s ("The first natural occurrence of a gamma distribution which is not a chi
square!’). Although the authors have been rather inclined to deal with discrete
time, common discussions with Marc were about laws in any dimension. Here
are some remarks -actually initially coming from financial mathematics- where
the beta-gamma algebra (a term coined by Marc) has a role.

2 Introduction

The set of symmetric positive semi-definite matrices (r;;)1<;, j<n of order n such
that the diagonal elements r;; are equal to 1 for all i = 1,...,n is denoted by
R,. Given a random variable (X71,...,X,,) on R™ with distribution p such that
the second moments of the X/s exist, its correlation matrix

R(p) = (T’ij)1§z’,j§n ER,

is defined by r;; as the correlation of X; and Xj; if 7 < j, and r;; = 1. A copula
is a probability p on [0,1]™ such that X; is uniform on [0,1] for ¢ = 1,...,n
when (Xi,...,X,) ~ u. We consider the following problem: given R € R,,
does there exist a copula p such that R(p) = R? The aim of this note is to show
that the answer is yes if n < 9. The present authors believe that this limit n = 9
is a real obstruction and that for n > 10 there exists R € R,, such that there is
no copula y such that R(u) = R.

Section 3 gives some general facts about the convex set R,,. Section 4 proves
that if £ > 1/2,if 2 < n <5 and if R € R, there exists a distribution u on
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[0,1]™ such that

1 _ _
Xi ~ Brk(dz) = mxk "1 —2)" 1) (2)da (1)
if (X1,...,X,) ~ p. This is an extension of the previous statement since Sy i is

the uniform distribution if £ = 1. Section 5 proves the remainder of the theorem,
namely for 6 < n < 9. Section 6 considers the useful and classical Gaussian
copulas and explains why there are R € R, that cannot be the correlation
matrix of any Gaussian copula. The present paper is both a simplification and
an extension of the arXiv paper Devroye and Letac (2010).

3 Extreme points of R,

The set R, is a convex part of the linear space of symmetric matrices of order
n. It is clearly closed and if R = (73;)1<s,j<n € Rc, we have |r;;| < 1: this shows
that R,, is compact. More specifically, R, is in the affine subspace of dimension

n(n — 1)/2 of the symmetric matrices of order n with diagonal (1,...,1). Its
extreme points have been described in Ycart (1985). In particular we have

Theorem 3.1: If an extreme point of R,, has rank r then r(r +1)/2 < n.

We vizualize this statement:

r 1[2[3][4 [5
13 ]6]10]15

e Case n = 2. As a consequence the extreme points of Ry are of rank one. They
are nothing but the two matrices

fHaEN}

This comes from the fact R € Rs of rank one has the form R = AA?* where
At = (ay,az): since r;; = 1 this implies that a? = a3 = 1.

e Case n > 3. Figure 1 below displays the acceptable values of (z,y, z) when

1
R(z,y,z) = | 2 (2)
y

8 = W
8w

is positive definite. Its boundary is the part in |z|,|y|,|z| < 1 of the Steiner
surface 1 — 22 — y? — 22 + 2xyz = 0.

Proposition 3.2: Let n > 3. Then R = (74;)1<i,j<n € Ry has rank 2 if and
only if there exists n distinct numbers a4, ..., a, such that r;; = cos(a; — o).
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Figure 1: The space of the three off-diagonal correlation coefficients of a corre-
lation matrix is a convex subset of [0, 1]3.

Proof: =: Since R has rank 2 there are two independent vectors A and B of R™
such that R = AA' + BB'. Wrting A* = (ay,...,a,) and B = (by,...,b,) the
fact that r;; = 1 implies that a?+b? = 1. Taking a; = cos o; and b; = sin o; gives
1i; = cos(ay — ). <=: Since only differences a; —a; appear in r;; = cos(a; — ;)
without loss of generality we take a,, = 0 we define A* = (cosa,...,cosa,_1,1)
and B! = (sinay,...,sina,_1,1) and R = AA* + BB? is easily checked. [J

e Case n > 6.

Proposition 3.3: Let n > 6. Then R = (7i;)1<i j<n € R, has rank 3 if and
only if there exist v1,...,v, on the unit sphere Sy of R? such that for all i < j
we have r;; = (v;,v;) and such that the system vi,...,v, generates R>.

Proof: The direct proof is quite analogous to Proposition 2.2: there exist
A,B,C € R" such that R = AA' + BB! 4+ CC*. and such that A, B,C are
independent. Writing

the desired vectors are vf = (ai, bi, ¢;). The converse is similar. O
The following proposition explains the importance of the extreme points of
R, for our problem.

Proposition 3.4: Let X = (X3,...,X,) ~pand Y = (Y3,...,Y,) ~ v be two



random variables of R™ such that for all # = 1,...,n we have X; ~ Y; and X
has second moments and are not Dirac. Then for all A € (0,1) we have

RAu+ (1 —=XNv) = AR(u) + (1 — MR(v).

Proof: X; ~ Y; implies that the mean m; and the dispersion o; of X; and Y;
are the same. Denote D = diag(oy,...,0,). Since the X; are not Dirac, D is
invertible. Denote by

E(p) = (E(X; —m)(X; —my))i<ij<n = DR(p)D

the covariance matrix of u. Define Z = (Z1,...,Z,) by Z = X with probability
A and Z =Y with probability (1 — X). Thus Z ~ Au+ (1 — A)v. Here again the
mean and the dispersion of Z; are m; and o;. Finally the covariance matrix of
Z is Z(Ap+ (1 — Nv) = AX(u) + (1 — A\)X(v) which gives

ROp+(1=XNv) = D 'SOAu+(1-Nv)Dt
= AD7'S(uWD '+ (1-ND'E(w)D!
= AR(u)+ (1 - NR(v). O

Corollary 3.5: Let vq,...,v, a sequence of probabilities on R having second
moments and denote by M the set of probabilities p on R™ such that for all
i=1,...,n we have X; ~ v;, with (X3,...,X,) ~ p. Then the map from M to
R, defined by u— R(u) is surjective if and only if for any extreme point R of
R, there exists a yu € M such that R = R(u).

Proof: = comes from the definition. <: Since the convex set R,, has dimension
N =n(n—1)/2, the Caratheodory theorem implies that if R € R,, then there
exists N +1 extreme points Ry, ..., Ry of R,, and non negative numbers (\;)¥,
of sum 1 such that

R=XMNRo+- -+ ANRN

From the hypothesis, for j = 0,..., N there exists u; € M such that R(p;) =
R;. Define finally

= Aopo + -+ ANUN
and apply Proposition 3.4, we get that R = R(u) as desired. O

Comments: With the notation of Corollary 3.5 and the result of Proposition
3.4, the map p — R(u) from M to R, is affine. Consider now the case where
for all i = 1,...,n, the probability v; is concentrated on a finite number of
atoms. In this particular case M is a polytope, and therefore its image R(M) is
a polytope contained in R,,. For n = 3 clearly Rj is not a polytope (see Figure
1) and therefore there exists a R € R3 which is not in R(M) : with discrete
margins, you cannot reach an arbitrary correlation matrix.



4 The case 3 < n <5 and the Gasper distribu-
tion.

In this section we prove (Proposition 4.2) that if vy = ... = v, = By as defined
by (1) and with & > 1/2, if M is defined as in Corollary 2.5 and if R € R,
has rank 2 one can find g € M such that R = R(u). The corollary of this
Proposition 1 will be that for any R € R,, with 3 <n <5 one can find p such
that R(u) = R and such that the margins of u are Sy;. Proposition 4.1 relies
on the existence of a special distribution @4, called the Gasper distribution in
the plane that we are going to describe.

Definition: Let k > 1/2. Let D > 0 such that D*> ~ 8, ;_1 (if k > §) and

D~é ifk= % We assume that D is independent of ©, uniformly distributed
on (0,27). Let r € (—1,1) and a € (0,7) such that r = cosa. The Gasper
distribution ® , is the distribution of (D cos©, D cos(© — «)).

Proposition 4.1: If (X1, X5) ~ @, then X; and X, have distribution vy (dz) =
B(,i (1= 2%)¥=11_1 1y(z)dz and correlation 7.

Proof: Clearly X; ~ —X; and for seeing that X; ~ vy enough is to prove that

1-2k 1
E(X?) = 732(&@ /_1 2% (1 — o)k da (4)

The righthand side of (4) is
22—2k

1
2s 1 _ 2 k—l — 21—2k
73(16,/6)/0 x°%( )" dx

['(s + $)I'(2k)
[(s+ % +k)I(k)

The lefthand side of (4) is

T(s+ DT(k+ 1) y L(s+3)
D(s+k+1) Val(s+1)

E(D?**)E((cos? ©)°) =

Using the duplication formula I'(k)['(k + &) = 2'72%/7 '(2k) proves (4). Since
© is uniform one has cos(© — «) ~ cos © and X; ~ X5. For showing that the
correlation of (X7, X3) is r = cos « we observe that

E(X?) = E(D*E(cos’0) = T

E(X1Xs) = E(D*E(cosOcos(© —a)) = cosa

.0
2k+1

Comments: It is worthwhile to say a few things about this Gasper distribution.
It is essentially considered in two celebrated papers by George Gasper (1971)



and (1972). If k =  then Py
parameterized by the circle as

- is concentrated on the ellipse E, = Egpsqa

0 — (x(6),y(0)) = (cosb,cos(d — a))

By ={(z,y)i(y —2r)? = 1 —2*)(1 = r*)} = {(z,); Az, y, 2) = 0}

where

1 r vy
Alz,y,r)=det | 7 1 o | =1-2"—y* —r® + 2uyr
y z 1

(Compare with (2). Now denote by U, = {(z,y); A(z,y,r) > 0} the interior of

the convex hull of E, and assume that k& > % Then Gasper shows that

2k —1
27

NG
(Ve

D, 1, (dz, dy) = (1= 5 A,y 1) 2 1y, (2, y) dedy

The Gasper distribution ¢, appears as a Lancaster distribution (see Letac
(2008)) for the pair (v, vk ). More specifically consider the sequence (@)%, of
the orthonormal polynomials for the weight v4. Thus @,, is the Jacobi polyno-

mial P¥~1k=1 normalized such that

1
[1 Q2 (z)vp(dx) = 1.

For 1/2 < k denote

K(z,y,2) = ZO Qn(m)g:g))Qn(z)

This series converges if |z], |y, |2| < 1 and its sum is zero when (z,y) is not in
the interior U, of the ellipse E,.. With this notation we have

G r(de, dy) = K(x,y,m)ve(de)vg(dy).

This result is essentially due to Gasper (1971) (with credits to Sonine, Gegen-
bauer and Moller). See Koudou (1995) and (1996) for details.

Proposition 4.2: Let a1, ..., a, which are distinct modulo 7. Let
R = (cos(@i — aj)1<ij<n € Rn

and consider the two-dimensional plane H C R” generated by ¢ = (cos aq, ..., cosay,)
and s = (sinay,...,sinay,). Consider the random variable X = (Xq,...,X,)
concentrated on H such that (X, X5) ~ D cos(a1—as) and denote by g the
distribution of X. Then

e For 1 <i < j <n wehave (Xi, Xj) ~ Pk cos(a;—ay)



e R=R(u).

Proof: Recall that R € R,, from Proposition 3.2. Since X € H there exists

A, B such that for alli = 1,...,n one has X; = A cos a; + B sin «;. From the fact

that (X1, X2) ~ @4 cos(as—as) We can claim the existence of a (0, D) such that

© is uniform on the circle and is independent of D > 0 such that D? ~ B k-1

and such that ’
(X1, X2) ~ Dcos(© — ay), Dcos(O — as))

From an elementary calculation this leads to saying that (A, B) ~ (D cos ©, D sin ©)
and finally that

(X1,...,Xn) ~ (Dcos(® —ay),...,Dcos(® — ay)).
From Proposition 4.1 this proves the results. [

Conclusion: The previous proposition has shown that for k > % and for any
extremal point R of R,, there exists a distribution pg in (—1,1)™ with margins vy
and correlation matrix R. From Corollary 3.5 above, since an arbitrary R € R,
is a convex combination R = A\gRy + - - - + A, R, of extreme points R; of R,, the
distribution g = Aoptr, + - + Anptr, has margins v, and correlation R.

Since vy, is the affine transformation of By, by v +— x = 2u — 1 this implies
that there exists also a distribution in (0, 1)* with margins S, and correlation
matrix R. Since (1 is the uniform distribution on (0,1) a corollary is the

existence of a copula with arbitrary correlation matrix R.

Example: To illustrate Proposition 4.2 consider the case n = 3 and R € R3
defined by

1 -1 -1
R = _1 1 _i
i1 g
-3 3 1
which is an extreme point corresponding to a3 = 0,y = 27/3 = —ag. This

example is important since, as we are going to observe in Section 6, it is not
possible to find a Gaussian copula having R as correlation matrix. Recall now
a celebrated result:

Archimedes Theorem: If X is uniformly distributed on the unit sphere S of
the three-dimensional Euclidean space E and if II is an orthogonal projection
of E on a one-dimensional line F' C E then II(X) is uniform on the diameter
with end points SN F.

Proof: While we learnt a different proof in ’'classe de Premiere’ in the middle of
the fifties, here is a computational proof: let Z ~ N(0,idg). Then X ~ Z/||Z]|.
Choose orthonormal coordinates (x1,zq,23) such that F is the x; axis. As a
consequence of Z = (Zy, Zs, Z3) we have X? ~ Z2/(Z} + Z3 + Z3) and since
the Z? are chi square independent with one degree of freedom, this implies that



Figure 2: Illustration of our construction. First take a point uniformly on the
surface of the ball. Project it to the plane shown (so that it falls in the circle).
The three coordinates of that point are each uniformly distributed on [—1, 1]

X2 ~ By /2,1 which leads quickly to X; uniformly distributed on (—1,1)since
X ~-X;.0

Proposition 4.2 offers a construction (see Figure 2) of a distribution in C =
[—1,1]® with uniform margins v, on (—1,1) as a distribution concentrated on
the plane P of equation x + y + z = 1. The intersection C' N P is a regular
hexagon. Introduce the disc D inscribed in the hexagon C'N P and the sphere
S admiting the boundary of D as one of its grand circles. Now consider the
uniform distribution on S. Denote by p its orthogonal projection g on D.
Actually any orthogonal projection of p on a diameter of D is uniform on this
diameter, from Archimedes Theorem. Apply this to the three diagonals of the
hexagon C'N P : this proves that the three margins of p are the uniform measure
V.

5 The case 6 <n<9

Proposition 5.1: Let n > 6 and let A, B,C be three independent vectors of
R™ such that R = [A, B,C|[A!, B!, C']' = AA' + BB! + CC" is a correlation
matrix. Let Y = (U, V, W) be uniformly distributed on the unit sphere S C R3
and let p be the distribution of X = AU + BV + CW in R™. Then R(u) = R
and the marginal distributions of y are vy, the uniform distribution in (-1, 1).



Proof: From Archimedes Theorem, U,V and W have distribution ;. Further-
more, since the distribution of (U, V) is invariant by rotation, then (U, V) ~
(Dcos®, Dsin®) where D = +/U? + V2 is independent of © uniform on the
circle. This implies that E(UV) = 0. Since E(U?) = 1/3 the covariance matrix
of (U, V,W) is I5/3. From this remark, and using the fact that AU + BV +CW
is centered, the covariance matrix of AU + BV + CW is

E((AU + BV + CW)(AU + BV + CW)") = R/3

and this proves R(u) = R. Finally, using the representation (4) of the matrix
[A, B,C] and denoting v; = (a;,b;,c;) we see that the component X; of AU +
BV + CW is a;U + b;V + ¢;W = (v;,Y). Since |[v;]|> = 1 the random variable
X; is the orthogonal projection of Y on Rv; and is uniform on (-1,1) from
Archimedes Theorem. [

Comments: The above proposition finishes the proof of the fact that for n <9,
and if R is an extreme point of R, then it is the correlation of some copula.
From Proposition 3.4 this completes the proof that any R € R, is the correlation
of a copula for n < 9. The fact that this result can be extended to n > 10 is
doubtful, since there are R € Ry of the form AA! + BB! + CC* + DD" where
A,B,C,D € R and the technique of the proof of Proposition 5.1 seems to
indicate that it is impossible. A similar phenomenon seems to occur if we want
to construct a distribution p in R® such that R(u) has rank 3 and such that the
margins of u are (31/21/2-

Accordingly, we conjecture the existence of R € Rqp which cannot be the
correlation of a copula, and we conjecture the existence of R € Rg which cannot
be the correlation of a distribution whose margins are the arsine distribution.

6 Gaussian copulas

In this section, we explore the simplest idea for building a copula on [0, 1]™ with a
non trivial variance: select a Gaussian random variable (X7,...,X,) ~ N(0, R)
where R € R, introduce the distribution function

1 T
@(x) = E/ e_tz/th

of N(0,1) and observe that the law p of (Uy,...,U,) = (®(X1),...,9(X,)) is
a copula. A p which can be obtained in that way is called a Gaussian copula.
However its correlation R* = R(u) is not equal to R except in trivial cases.

Therefore this section considers the map from R, to itself defined by R —
R*. This map is not surjective: in particular, in comments following Proposition
6.1 we exhibit a correlation matrix which cannot be the correlation of a Gaussian
copula. First we compute R* by brute force (Proposition 6.1), getting a result
of Falk (1999). We make also two remarks about the expectation of f1(X)f2(Y)
when (X,Y) is centered Gaussian (Propositions 6.2, 6.4). Proposition 6.5 leads
to a more elegant proof of Proposition 6.1 by using Hermite polynomials.



Proposition 6.1: Let R = (r;j)1<i j<n be a correlation matrix, let
(X1,...,Xn) ~N(0,R)
and let p be the law of (Uy,...,U,) = (®(X1),...,®(X,)). Then
R(p) = R* = (9(rij))1<ii<n

where 6
r
= arcsin - 5
g(r) —arcsin 5 (5)

Proof. We begin with a standard calculation. We start with (X,Y") centered

Gaussian with covariance
S, = [ ! ) ] : (6)

We now compute the quadruple integral

7l(u2+112+ 1 (r272rmy+y2)) dxdydudv
r)=E(®(X)P(Y)) = e 2 1-r2 1u z,v .
) = E@(X)2(V) = [ —

Performing the change of variables (z,y,u,v) — (x,y,x —u,y — v) = (x,y,t,5)
we get
dtds

1 ° > 142 2
— —5(t7+s%) t
1) \/m/o /0 CE ey

srntos) = [T [ et (st v oort) dady
Y 1—72 Jpo 27

Consider

1 —rz - 1 _ g2
A - {21" r}7B: {27‘ r

with

1—1r2 —r  2—7? 4 —r2

Then B = A~1, det A = 4= and det B = %. Therefore g(r,t,s) is the

1—r2
Laplace transform of a centered random Gaussian random variable with covari-

ance matrix B. We get

g0 t,5) = T BTN s o))

and therefore

(22 —2rts+252) dtds

1 Rl e S
r) = — e 2(4—r2)
£0) = —— / / v

Now we use the fact that if (T, S) is a Gaussian centered random variable with
correlation coefficient cos o with 0 < a < 7 then Pr(7 > 0,5 > 0) is explicit.
For computing it, just introduce S’ ~ N(0, 1) independent of T observe that

10



(T,S) ~ (T,Tcosa + S’sine) and finally write (T,S5") = (D cos©, Dsin©)
where D > 0 and © are independent and where © is uniform on (0,27). This
leads to

T—
2T

We apply this principle to the above integral which can be seen as

Pr(T > 0,5 > 0) = f(r)

Pr(T > 0,5 > 0) = Pr(cos© > 0, cos(© — ) > 0) =

r
2
cosa = 5 and we finally get

when (T,S5) ~ N(0, ). The correlation coefficient of (7,S) is here

r

1
flr)y= %(W—argcos 5) =35

Now we consider the function

r
arg cos —.
2

g(r) =12E((®(X) — 1/2)(®(Y) —1/2)) =12f(r) —3 = 6 argsing
T

and the function T(x) = 2v/3(®(x) —1/2). Thus the random variables T'(X) and

T(Y) are uniform on (—+/3,/3) with mean 0, variance 1 and correlation g(r).

This implies that the correlation between ®(X) and ®(Y) is g(r). Coming back

to the initial (X1,...,X,,) the correlation between ®(X;) and ®(X;) is g(r). O

Comments: The function g is odd and increasing since ¢'(r) = - f—ﬂ‘ Thus
we have [g(r)| < r < 1. It satisfies g(0) = 0, g(£1) = +1, ¢'(0) = 2 and

g1) = % Finally for —1 < p < 1 we have

ng(r)@ersin%.

Calculation shows that for —1 < p < 1 we have 0 < [2sin 7 — p| < 0.0180...
therefore the two functions are quite close. It is useful to picture g and its

inverse function in Figure 3. Observe also that if p = —1/2 we get

—1
PP L Sk S TR ~1/2.

12 NG

An important consequence is the fact that since r < —1/2 the matrix R(r,r,r) of
(2) is not a correlation matrix and therefore the correlation matrix R(—3, -3, —3)

cannot be the correlation matrix of a Gaussian copula. Falk (1999) makes es-
sentially a similar observation.

In the sequel, we proceed to a more general study of the correlation between
f1(Y1) and f2(Y2) when (Y7,Y2) ~ N(0,%,) as defined in (6). We thank Ivan
Nourdin for a shorter proof of the following proposition:

11



Figure 3: Graphs of p = g(r) = S argsin% and r = g~!(p) = 2sin ZL.

Proposition 6.2: Given any r € [—1, 1] consider the Gaussian random variable
(Y1,Y2) ~ N(0,%,). Consider two probabilities v; and v on R with respective
distribution functions G; and G3. Then the correlation of G1(Y7) and Go(Y3)
is a continuous increasing function of r.

Proof: We use the fact that if f € C?(R?) then

d 0?

—E(f(Y1,Y2)) = E(m

= F(4,¥2)) ™)

To see this recall that if X ~ N(0,1) then an integration by parts gives

E(Xp(X)) = E(¢'(X)). (8)
Writing Yo = rY; +v/1 — r2Y3 where Y7 and Y3 are independent N (0, 1) we get
d r 0
%E(f(YI,YQ)) = E(M1 - ﬁy3)%f(yl,y2)) (9)
0 r 0
= E(Y1@f(Y1,Y2)) - ﬁE(Y?,afny(YhYz))
0 02
= EM any(Yl,Yz)) - TE(aTéf(YuYz)) (10)
82
— By (V) (1)

12



In this sequence of equalities (9) is derivation inside an integral, (10) is the appli-
cation of (8) to p(Y3) = 6%2]"(}/1, rY1 ++v1—1r2Y3)) and (11) is the application

of (8) to p(¥Y71) = 8%2]"(}/1, rY1 + v 1 —r2Y3)) which satisfies

, 9?2 0?2
Yy) = Y1, Ya) 4 1 F(Y1,Ya).
¢'(Y1) 8y16y2f( 1,Y2) 8y§f( 1,Y2)

The application of (7) to the proof of Proposition 1 is clear: if G; and G are
smooth enough, we take f(y1,y2) as G1(y1)G2(y2). If not we use an approxima-
tion. O.

Corollary 6.3: Given two probability distributions @1 and po on the real line
having second moments with respective distribution functions F; and Fs. Given
any r € [—1, 1] consider the Gaussian random variable (Y7, Y3) ~ N(0,X,). Then
(X1, X) = F, 1 (®(V1)), Fy 1 (®(Y2)) has a correlation

p= gﬂh#z (T)

which is a continuous increasing function on [—1, 1]. In particular if g,,, ., (—1) =
a and g, 4, (1) = band if a < p < b there exists a unique r = f,,, .., (p) € [-1,1]
such that (X7, X2) has correlation p.

Proposition 6.4: Let (X,Y) be a centered Gaussian variable of R? with co-
variance matrix 3, and let f : R — R be a function such that E(f(X)) = 0
and E(f(X)?) = 1. Then E(f(X)f(Y)) = r for all =1 < r < 1 if and only if
f(z) = .

Proof: Write r = cosa with 0 < a < 7. If X, Z are independent centered
real Gaussian random variables with variance 1, then ¥ = X cosa + Zsina is
centered with variance 1, (X,Y) is Gaussian and E(XY') = cos a. Therefore we
rewrite this as

: dzd
cosa = (m)f(xcosoHrzsina)efé(“"zﬂaﬂ
R2 2T

[ o (o [ stocostisipeosta—onas) o (13

-7

(12)

where we have used polar coordinates x = pcos# and z = psin6 for the second
equality. This equality is established for 0 < o < 7 but it is still correct when
we change « into —a. Now we introduce the Fourier coefficients for n in the set
Z of relative integers:

s

-~ 1 )
fulp) = — f(pcos@)edp.
2 J_,

Since f is real we have the Hermitian symmetry f_n(p) = fn(p) Expanding the
periodic function (13) in Fourier series and considering the Fourier coefficients

13



of a+— cosa we get for n # +1

>

/O pe=" P2(p)dp = 0 (14)

and fooo pe= T f2 21(p)dp = %. Hermitian symmetry implies that J?OQ(p) is real and
2

since [ pe~ T f2(p)dp = 0 we get that f2(p) = 0 for almost all p > 0. This is

saying that for almost all p > 0 we have

! f(pcos@)dd =0: (15)

—T

Since 6 — f(pcos@) is a real even function we have
f(pcos®) Z an(p) cosnd

and the real number a, (p) is equal to 2fn(p) and to 2f,n(p) which are therefore
real numbers. Using (14) they are zero for all n # +1 and we get almost
everywhere that f(pcosf) = ai(p)cosé or f(pu) = ai(p)u for all =1 < u < 1.
To conclude we write

= u) = 1£’U/ = ai1(p1 ﬁu
ar(p)u = f(pu) = f(p o ) (p )p1

where u is small enough such that |-£-u| < 1. This implies '“T(p) = % which
is a constant ¢ by the principle of separation of variables. Therefore f(x) = cx
almost everywhere and E(f(X)?) = 1 implies that ¢ = 1. O

For computing expressions like E(f1(Y1)f2(Y2)) when (Y7,Y2) ~ N(0,%,) we
use the classical fact below:

Proposition 6.5: Let (Yl,Yg) ~ N(0,%,). Let fi and fo be real measurable
functions such that E(f;(Y;)?) is finite for i = 1,2. Consider the Hermite poly-
nomials (Hy)p2, defined by the generating function

It—— Z Hk

and the expansions

o0 oo

zakﬂk e z
k=1 k'

Then for all -1 <r<1

E(fi1(Y1)f2(Y2)) Zakbld"

14



Proof: Let us compute

E( Ylt—— Ygs—— Z Z k,i

For this, we use the usual procedure and first write » = cosf with 0 < 0 < «. If
Y1,Y5 are independent centered real Gaussian random variables with variance
1, then Y5 = Y7 cos € + Y3 sin 6 is centered with variance 1, (Y1, Y2) is Gaussian
and E(Y1Y3) = cosf. Furthermore a simple calculation using the definition of
Ys gives

E(H,(Y1)Hm(Y2))

3\3

2 2
]E(eYlt—%ng s—%) _ etscosG

This shows that E(Hy(Y1)Hp,(Y2)) = 0 if k # m and that E(Hy(Y1)Hk(Y2)) =
k!cos® 6. From this we get the result. O

Corollary 6.6: Let p, > 0 such that Zfbozlpn = 1 and consider the gen-
erating function g(r) = Y07 pur™. Let R = (rij)1<ij<a in Ry,. Then R* =
(9(7i5))1<i,j<d is the covariance matrix of the random variable (f(X1),..., f(Xq))
where (X1,...,Xy) is centered Gaussian with covariance R and where

@)= 3 envin )

n=1

with fixed ¢,, = £1.

Example: We have seen an example of such a function f with f(z) = T(z) =

2v/3(®(x) — 1/2) and

6 .r 3 1
g(r) = o aresmy = *2(2)

n=0

1 2n+1

"4npl o+ 1 +1°

Thus pop+1 = %(%)nﬁﬁlﬂ and ps,, = 0. For computing ¢,, we have really to

compute

VPn _ H,(X)

For this we watch the coefficient of " in the power expansion of
2
E(T(X)eX'™7)

For this we need

o0

e t.1 1 (=1 ¢2n+1
E(®(X)eX'™7)=1-®(——) = =
(@(X)e™7) =% 2+2\/7?n§::0 4rnl 2+ 1

xt \/> n t2n+1
E(T Tz
(T Z 4”71' 2n+1
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Therefore

€2n,
Y Jen+ )

which shows that eg,,11 = (—=1)"

N \/3 (=) 1
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