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Marc Yor was also an explorer in the jungle of probability distributions, either in discovering a new species, or in landing on an unexpected simple law after a difficult trip on stochastic calculus: we remember his enthousiam after proving that

-1 is gamma distributed with shape parameter s ('The first natural occurrence of a gamma distribution which is not a chi square!'). Although the authors have been rather inclined to deal with discrete time, common discussions with Marc were about laws in any dimension. Here are some remarks -actually initially coming from financial mathematics-where the beta-gamma algebra (a term coined by Marc) has a role.

Introduction

The set of symmetric positive semi-definite matrices (r ij ) 1≤i,j≤n of order n such that the diagonal elements r ii are equal to 1 for all i = 1, . . . , n is denoted by R n . Given a random variable (X 1 , . . . , X n ) on R n with distribution µ such that the second moments of the X i s exist, its correlation matrix R(µ) = (r ij ) 1≤i,j≤n ∈ R n is defined by r ij as the correlation of X i and X j if i < j, and r ii = 1. A copula is a probability µ on [0, 1] n such that X i is uniform on [0, 1] for i = 1, . . . , n when (X 1 , . . . , X n ) ∼ µ. We consider the following problem: given R ∈ R n , does there exist a copula µ such that R(µ) = R? The aim of this note is to show that the answer is yes if n ≤ 9. The present authors believe that this limit n = 9 is a real obstruction and that for n ≥ 10 there exists R ∈ R n such that there is no copula µ such that R(µ) = R.

Section 3 gives some general facts about the convex set R n . Section 4 proves that if k ≥ 1/2, if 2 ≤ n ≤ 5 and if R ∈ R n there exists a distribution µ on [0, 1] n such that

X i ∼ β k,k (dx) = 1 B(k, k) x k-1 (1 -x) k-1 1 (0,1) (x)dx (1)
if (X 1 , . . . , X n ) ∼ µ. This is an extension of the previous statement since β k,k is the uniform distribution if k = 1. Section 5 proves the remainder of the theorem, namely for 6 ≤ n ≤ 9. Section 6 considers the useful and classical Gaussian copulas and explains why there are R ∈ R n that cannot be the correlation matrix of any Gaussian copula. The present paper is both a simplification and an extension of the arXiv paper [START_REF] Devroye | Copulas in three dimensions with prescribed correlations[END_REF].

3 Extreme points of R n

The set R n is a convex part of the linear space of symmetric matrices of order n. It is clearly closed and if R = (r ij ) 1≤i,j≤n ∈ Rc n we have |r ij | ≤ 1: this shows that R n is compact. More specifically, R n is in the affine subspace of dimension n(n -1)/2 of the symmetric matrices of order n with diagonal (1, . . . , 1). Its extreme points have been described in [START_REF] Ycart | Extreme points in convex sets of symmetric matrices[END_REF]. In particular we have Theorem 3.1: If an extreme point of R n has rank r then r(r + 1)/2 ≤ n.

We vizualize this statement: r 1 2 3 4 5 ... r(r+1) 2

1 3 6 10 15 ...

• Case n = 2. As a consequence the extreme points of R 2 are of rank one. They are nothing but the two matrices

1 1 1 1 , 1 -1 -1 1 .
This comes from the fact R ∈ R 2 of rank one has the form R = AA t where A t = (a 1 , a 2 ): since r ii = 1 this implies that a 2 1 = a 2 2 = 1.

• Case n ≥ 3. Figure 1 below displays the acceptable values of (x, y, z) when

R(x, y, z) =   1 z y z 1 x y x 1   (2) is positive definite. Its boundary is the part in |x|, |y|, |z| ≤ 1 of the Steiner surface 1 -x 2 -y 2 -z 2 + 2xyz = 0.
Proposition 3.2: Let n ≥ 3. Then R = (r ij ) 1≤i,j≤n ∈ R n has rank 2 if and only if there exists n distinct numbers α 1 , . . . , α n such that r ij = cos(α i -α j ).

Figure 1: The space of the three off-diagonal correlation coefficients of a correlation matrix is a convex subset of [0, 1] 3 .

Proof: ⇒: Since R has rank 2 there are two independent vectors A and

B of R n such that R = AA t + BB t . Wrting A t = (a 1 , . . . , a n ) and B t = (b 1 , . . . , b n ) the fact that r ii = 1 implies that a 2 i +b 2 i = 1. Taking a i = cos α i and b i = sin α i gives r ij = cos(α i -α j ). ⇐: Since only differences α i -α j appear in r ij = cos(α i -α j )
without loss of generality we take α n = 0 we define A t = (cos α 1 , . . . , cos α n-1 , 1) and B t = (sin α 1 , . . . , sin α n-1 , 1) and R = AA t + BB t is easily checked.

• Case n ≥ 6. Proposition 3.3: Let n ≥ 6. Then R = (r ij ) 1≤i,j≤n ∈ R n has rank 3 if and only if there exist v 1 , . . . , v n on the unit sphere S 2 of R 3 such that for all i < j we have r ij = v i , v j and such that the system v 1 , . . . , v n generates R 3 .

Proof:

The direct proof is quite analogous to Proposition 2.2: there exist

A, B, C ∈ R n such that R = AA t + BB t + CC t . and such that A, B, C are independent. Writing [A, B, C] =     a 1 b 1 c 1 a 2 b 2 c 2 . . . . . . . . . a n b n c n     (3) the desired vectors are v t i = (a i , b i , c i ).
The converse is similar. The following proposition explains the importance of the extreme points of R n for our problem.

Proposition 3.4: Let X = (X 1 , . . . , X n ) ∼ µ and Y = (Y 1 , . . . , Y n ) ∼ ν be two
random variables of R n such that for all i = 1, . . . , n we have X i ∼ Y i and X i has second moments and are not Dirac. Then for all λ ∈ (0, 1) we have

R(λµ + (1 -λ)ν) = λR(µ) + (1 -λ)R(ν).
Proof: X i ∼ Y i implies that the mean m i and the dispersion σ i of X i and Y i are the same. Denote D = diag(σ 1 , . . . , σ n ). Since the X i are not Dirac, D is invertible. Denote by

Σ(µ) = (E((X i -m i )(X j -m j )) 1≤i,j≤n = DR(µ)D the covariance matrix of µ. Define Z = (Z 1 , . . . , Z n ) by Z = X with probability λ and Z = Y with probability (1 -λ). Thus Z ∼ λµ + (1 -λ)ν.
Here again the mean and the dispersion of Z i are m i and σ i . Finally the covariance matrix of

Z is Σ(λµ + (1 -λ)ν) = λΣ(µ) + (1 -λ)Σ(ν) which gives R(λµ + (1 -λ)ν) = D -1 Σ(λµ + (1 -λ)ν)D -1 = λD -1 Σ(µ)D -1 + (1 -λ)D -1 Σ(ν)D -1 = λR(µ) + (1 -λ)R(ν).
Corollary 3.5: Let ν 1 , . . . , ν n a sequence of probabilities on R having second moments and denote by M the set of probabilities µ on R n such that for all i = 1, . . . , n we have X i ∼ ν i , with (X 1 , . . . , X n ) ∼ µ. Then the map from M to R n defined by µ → R(µ) is surjective if and only if for any extreme point R of R n there exists a µ ∈ M such that R = R(µ).

Proof: ⇒ comes from the definition. ⇐: Since the convex set R n has dimension N = n(n -1)/2 , the Caratheodory theorem implies that if R ∈ R n then there exists N +1 extreme points R 0 , . . . , R N of R n and non negative numbers

(λ i ) N i=0 of sum 1 such that R = λ 0 R 0 + • • • + λ N R N
From the hypothesis, for j = 0, . . . , N there exists

µ j ∈ M such that R(µ j ) = R j . Define finally µ = λ 0 µ 0 + • • • + λ N µ N
and apply Proposition 3.4, we get that R = R(µ) as desired.

Comments: With the notation of Corollary 3.5 and the result of Proposition 3.4, the map µ → R(µ) from M to R n is affine. Consider now the case where for all i = 1, . . . , n, the probability ν i is concentrated on a finite number of atoms. In this particular case M is a polytope, and therefore its image R(M ) is a polytope contained in R n . For n = 3 clearly R 3 is not a polytope (see Figure 1) and therefore there exists a R ∈ R 3 which is not in R(M ) : with discrete margins, you cannot reach an arbitrary correlation matrix.

4 The case 3 ≤ n ≤ 5 and the Gasper distribution.

In this section we prove (Proposition 4.2) that if ν 1 = . . . = ν n = β kk as defined by ( 1) and with k ≥ 1/2, if M is defined as in Corollary 2.5 and if R ∈ R n has rank 2 one can find µ ∈ M such that R = R(µ). The corollary of this Proposition 1 will be that for any R ∈ R n with 3 ≤ n ≤ 5 one can find µ such that R(µ) = R and such that the margins of µ are β kk . Proposition 4.1 relies on the existence of a special distribution Φ k,r called the Gasper distribution in the plane that we are going to describe.

Definition: Let k ≥ 1/2. Let D > 0 such that D 2 ∼ β 1,k-1 2 (if k > 1 2 ) and D ∼ δ 1 if k = 1 2 .
We assume that D is independent of Θ, uniformly distributed on (0, 2π). Let r ∈ (-1, 1) and α ∈ (0, π) such that r = cos α. The Gasper distribution Φ k,r is the distribution of (D cos Θ, D cos(Θ -α)).

Proposition 4.1: If (X 1 , X 2 ) ∼ Φ k,r then X 1 and X 2 have distribution ν k (dx) = 1 B(k,k) (1 -x 2 ) k-1 1 (-1,1) (x)dx and correlation r. Proof: Clearly X 1 ∼ -X 1 and for seeing that X 1 ∼ ν k enough is to prove that E(X 2s 1 ) = 2 1-2k B(k, k) 1 -1 x 2s (1 -x 2 ) k-1 dx (4) 
The righthand side of ( 4) is

2 2-2k B(k, k) 1 0 x 2s (1 -x 2 ) k-1 dx = 2 1-2k Γ(s + 1 2 )Γ(2k) Γ(s + 1 2 + k)Γ(k)
.

The lefthand side of ( 4) is and (1972). If k = 1 2 then Φ 1 2 ,r is concentrated on the ellipse E r = E cosα parameterized by the circle as

E(D 2s )E((cos 2 Θ) s ) = Γ(s + 1)Γ(k + 1 2 ) Γ(s + k + 1 2 ) × Γ(s + 1 2 ) √ πΓ(s + 1) . Using the duplication formula Γ(k)Γ(k + 1 2 ) = 2 1-2k √ π Γ(2k) proves (4). Since Θ is uniform one has cos(Θ -α) ∼ cos Θ and X 1 ∼ X 2 . For showing that the correlation of (X 1 , X 2 ) is r = cos α we observe that E(X 2 1 ) = E(D 2 )E(cos 2 Θ) = 1 2k + 1 E(X 1 X 2 ) = E(D 2 )E(cos Θ cos(Θ -α)) = cos α 2k + 1 .
θ → (x(θ), y(θ)) = (cos θ, cos(θ -α)) E r = {(x, y); (y -xr) 2 = (1 -x 2 )(1 -r 2 )} = {(x, y); ∆(x, y, z) = 0} where ∆(x, y, r) = det   1 r y r 1 x y x 1   = 1 -x 2 -y 2 -r 2 + 2xyr (Compare with (2). Now denote by U r = {(x, y); ∆(x, y, r) > 0} the interior of the convex hull of E r and assume that k > 1 2 . Then Gasper shows that Φ r,k (dx, dy) = 2k -1 2π (1 -r 2 ) 1 4 -k 2 ∆(x, y, r) k-3 2 1 Ur (x, y) dxdy
The Gasper distribution φ k,r appears as a Lancaster distribution (see [START_REF] Letac | Lancaster probabilities and Gibbs sampling[END_REF]) for the pair (ν k , ν k ). More specifically consider the sequence (Q n ) ∞ n=0 of the orthonormal polynomials for the weight

ν k . Thus Q n is the Jacobi polyno- mial P k-1,k-1 n normalized such that 1 -1 Q 2 n (x)ν k (dx) = 1. For 1/2 < k denote K(x, y, z) = ∞ n=0 Q n (x)Q n (y)Q n (z) Q n (1) .
This series converges if |x|, |y|, |z| < 1 and its sum is zero when (x, y) is not in the interior U r of the ellipse E r . With this notation we have

φ k,r (dx, dy) = K(x, y, r)ν k (dx)ν k (dy).
This result is essentially due to [START_REF] Gasper | Positivity and the Convolution Structure for Jacobi Series[END_REF] (with credits to Sonine, Gegenbauer and Moller). See [START_REF] Koudou | Problèmes de marges et familles exponentielles naturelles[END_REF][START_REF] Koudou | Probabilités de Lancaster[END_REF] for details.

Proposition 4.2: Let α 1 , . . . , α n which are distinct modulo π. Let R = (cos(α i -α j ) 1≤i,j≤n ∈ R n and consider the two-dimensional plane H ⊂ R n generated by c = (cos α 1 , . . . , cos α n ) and s = (sin α 1 , . . . , sin α n ). Consider the random variable X = (X 1 , . . . , X n ) concentrated on H such that (X 1 , X 2 ) ∼ Φ k, cos(α1-α2
) and denote by µ the distribution of X. Then

• For 1 ≤ i < j ≤ n we have (X i , X j ) ∼ Φ k, cos(αi-αj ) • R = R(µ).
Proof: Recall that R ∈ R n from Proposition 3.2. Since X ∈ H there exists A, B such that for all i = 1, . . . , n one has X i = A cos α i +B sin α i . From the fact that (X 1 , X 2 ) ∼ Φ k,cos(α1-α2) we can claim the existence of a (Θ, D) such that Θ is uniform on the circle and is independent of

D > 0 such that D 2 ∼ β 1,k-1 2 and such that (X 1 , X 2 ) ∼ D cos(Θ -α 1 ), D cos(Θ -α 2 ))
From an elementary calculation this leads to saying that (A, B) ∼ (D cos Θ, D sin Θ) and finally that

(X 1 , . . . , X n ) ∼ (D cos(Θ -α 1 ), . . . , D cos(Θ -α n )).
From Proposition 4.1 this proves the results.

Conclusion:

The previous proposition has shown that for k ≥ 1 2 and for any extremal point R of R n there exists a distribution µ R in (-1, 1) n with margins ν k and correlation matrix R. From Corollary 3.5 above, since an arbitrary

R ∈ R n is a convex combination R = λ 0 R 0 + • • • + λ n R n of extreme points R i of R n the distribution µ = λ 0 µ R0 + • • • + λ n µ Rn has margins ν k and correlation R.
Since ν k is the affine transformation of β k,k by u → x = 2u -1 this implies that there exists also a distribution in (0, 1) k with margins β k,k and correlation matrix R. Since β 1,1 is the uniform distribution on (0, 1) a corollary is the existence of a copula with arbitrary correlation matrix R.

Example: To illustrate Proposition 4.2 consider the case n = 3 and R ∈ R 3 defined by

R =   1 -1 2 -1 2 -1 2 1 -1 2 -1 2 -1 2 1  
which is an extreme point corresponding to α 1 = 0, α 2 = 2π/3 = -α 3 . This example is important since, as we are going to observe in Section 6, it is not possible to find a Gaussian copula having R as correlation matrix. Recall now a celebrated result:

Archimedes Theorem: If X is uniformly distributed on the unit sphere S of the three-dimensional Euclidean space E and if Π is an orthogonal projection of E on a one-dimensional line F ⊂ E then Π(X) is uniform on the diameter with end points S ∩ F.

Proof: While we learnt a different proof in 'classe de Première' in the middle of the fifties, here is a computational proof: let

Z ∼ N (0, id E ). Then X ∼ Z/ Z . Choose orthonormal coordinates (x 1 , x 2 , x 3 ) such that F is the x 1 axis. As a consequence of Z = (Z 1 , Z 2 , Z 3 ) we have X 2 1 ∼ Z 2 1 /(Z 1 1 + Z 2 2 + Z 2 3
) and since the Z 2 i are chi square independent with one degree of freedom, this implies that Figure 2: Illustration of our construction. First take a point uniformly on the surface of the ball. Project it to the plane shown (so that it falls in the circle).

The three coordinates of that point are each uniformly distributed on [-1, 1] .

X 2 1 ∼ β 1/2,1 which leads quickly to X 1 uniformly distributed on (-1, 1)since X 1 ∼ -X 1 .

Proposition 4.2 offers a construction (see Figure 2) of a distribution in C = [-1, 1] 3 with uniform margins ν 1 on (-1, 1) as a distribution concentrated on the plane P of equation x + y + z = 1. The intersection C ∩ P is a regular hexagon. Introduce the disc D inscribed in the hexagon C ∩ P and the sphere S admiting the boundary of D as one of its grand circles. Now consider the uniform distribution on S. Denote by µ its orthogonal projection µ on D. Actually any orthogonal projection of µ on a diameter of D is uniform on this diameter, from Archimedes Theorem. Apply this to the three diagonals of the hexagon C ∩ P : this proves that the three margins of µ are the uniform measure ν 1 .

5 The case 6 ≤ n ≤ 9 Proposition 5.1: Let n ≥ 6 and let A, B, C be three independent vectors of

R n such that R = [A, B, C][A t , B t , C t ] t = AA t + BB t + CC t is a correlation matrix. Let Y = (U, V, W
) be uniformly distributed on the unit sphere S 2 ⊂ R 3 and let µ be the distribution of X = AU + BV + CW in R n . Then R(µ) = R and the marginal distributions of µ are ν 1 , the uniform distribution in (-1, 1).

Proof: From Archimedes Theorem, U, V and W have distribution ν 1 . Furthermore, since the distribution of (U, V ) is invariant by rotation, then (U, V ) ∼ (D cos Θ, D sin Θ) where D = √ U 2 + V 2 is independent of Θ uniform on the circle. This implies that E(U V ) = 0. Since E(U 2 ) = 1/3 the covariance matrix of (U, V, W ) is I 3 /3. From this remark, and using the fact that AU + BV + CW is centered, the covariance matrix of AU + BV + CW is

E((AU + BV + CW )(AU + BV + CW ) t ) = R/3
and this proves R(µ) = R. Finally, using the representation (4) of the matrix [A, B, C] and denoting

v i = (a i , b i , c i ) we see that the component X i of AU + BV + CW is a i U + b i V + c i W = v i , Y . Since v i
2 = 1 the random variable X i is the orthogonal projection of Y on Rv i and is uniform on (-1,1) from Archimedes Theorem.

Comments:

The above proposition finishes the proof of the fact that for n ≤ 9, and if R is an extreme point of R n then it is the correlation of some copula. From Proposition 3.4 this completes the proof that any R ∈ R n is the correlation of a copula for n ≤ 9. The fact that this result can be extended to n ≥ 10 is doubtful, since there are R ∈ R 10 of the form AA t + BB t + CC t + DD t where A, B, C, D ∈ R 10 and the technique of the proof of Proposition 5.1 seems to indicate that it is impossible. A similar phenomenon seems to occur if we want to construct a distribution µ in R 6 such that R(µ) has rank and such that the margins of µ are β 1/2,1/2 .

Accordingly, we conjecture the existence of R ∈ R 10 which cannot be the correlation of a copula, and we conjecture the existence of R ∈ R 6 which cannot be the correlation of a distribution whose margins are the arsine distribution.

Gaussian copulas

In this section, we explore the simplest idea for building a copula on [0, 1] n with a non trivial variance: select a Gaussian random variable (X 1 , . . . , X n ) ∼ N (0, R) where R ∈ R n , introduce the distribution function

Φ(x) = 1 √ 2π x -∞
e -t 2 /2 dt of N (0, 1) and observe that the law µ of (U 1 , . . . , U n ) = (Φ(X 1 ), . . . , Φ(X n )) is a copula. A µ which can be obtained in that way is called a Gaussian copula. However its correlation R * = R(µ) is not equal to R except in trivial cases. Therefore this section considers the map from R n to itself defined by R → R * . This map is not surjective: in particular, in comments following Proposition 6.1 we exhibit a correlation matrix which cannot be the correlation of a Gaussian copula. First we compute R * by brute force (Proposition 6.1), getting a result of [START_REF] Falk | A simple approach to the generation of uniformly distributed random variables with prescribed correlations[END_REF]. We make also two remarks about the expectation of f 1 (X)f 2 (Y ) when (X, Y ) is centered Gaussian (Propositions 6.2, 6.4). Proposition 6.5 leads to a more elegant proof of Proposition 6.1 by using Hermite polynomials. Proposition 6.1: Let R = (r ij ) 1≤i,j≤n be a correlation matrix, let (X 1 , . . . , X n ) ∼ N (0, R) and let µ be the law of (U 1 , . . . , U n ) = (Φ(X 1 ), . . . , Φ(X n )). Then

R(µ) = R * = (g(r ij )) 1≤i,j≤n where g(r) = 6 π arcsin r 2 . ( 5 
)
Proof. We begin with a standard calculation. We start with (X, Y ) centered

Gaussian with covariance

Σ r = 1 r r 1 . ( 6 
)
We now compute the quadruple integral

f (r) = E(Φ(X)Φ(Y )) = R 4 e -1 2 (u 2 +v 2 + 1 1-r 2 (x 2 -2rxy+y 2 )) 1 u<x,v<y dxdydudv (2π) 2 √ 1 -r 2 .
Performing the change of variables (x, y, u, v) → (x, y, x -u, y -v) = (x, y, t, s) we get

f (r) = 1 √ 4 -r 2 ∞ 0 ∞ 0 e -1 2 (t 2 +s 2 ) g(r, t, s) dtds 2π with g(r, t, s) = 4 -r 2 1 -r 2 R 2 e xt+ys- 1 2(1-r 2 ) ((2-r 2 )x 2 -2rxy+(2-r 2 )y 2 ) dxdy 2π Consider A = 1 1 -r 2 2 -r 2 -r -r 2 -r 2 , B = 1 4 -r 2 2 -r 2 r r 2 -r 2 .
Then B = A -1 , det A = 4-r 2 1-r 2 and det B = 1-r 2 4-r 2 . Therefore g(r, t, s) is the Laplace transform of a centered random Gaussian random variable with covariance matrix B. We get

g(r, t, s) = e 1 2(4-r 2 ) ((2-r 2 )t 2 +2rts+(2-r 2 )s 2 )
and therefore

f (r) = 1 √ 4 -r 2 ∞ 0 ∞ 0 e - 1 2(4-r 2 ) (2t 2 -2rts+2s 2 ) dtds 2π 
Now we use the fact that if (T, S) is a Gaussian centered random variable with correlation coefficient cos α with 0 < α < π then Pr(T > 0, S > 0) is explicit.

For computing it, just introduce S ∼ N (0, 1) independent of T observe that (T, S) ∼ (T, T cos α + S sin α) and finally write (T, S ) = (D cos Θ, D sin Θ) where D > 0 and Θ are independent and where Θ is uniform on (0, 2π). This leads to

Pr(T > 0, S > 0) = Pr(cos Θ > 0, cos(Θ -α) > 0) = π -α 2π .
We apply this principle to the above integral which can be seen as

Pr(T > 0, S > 0) = f (r) when (T, S) ∼ N (0, 2 r r 2 
). The correlation coefficient of (T, S) is here cos α = r 2 and we finally get

f (r) = 1 2π (π -arg cos r 2 ) = 1 2 - 1 2π arg cos r 2 .
Now we consider the function

g(r) = 12E((Φ(X) -1/2)(Φ(Y ) -1/2)) = 12f (r) -3 = 6 π arg sin r 2
and the function T (x) = 2 √ 3(Φ(x)-1/2). Thus the random variables T (X) and T (Y ) are uniform on (-√ 3, √ 3) with mean 0, variance 1 and correlation g(r). This implies that the correlation between Φ(X) and Φ(Y ) is g(r). Coming back to the initial (X 1 , . . . , X n ) the correlation between Φ(X i ) and Φ(X j ) is g(r).

Comments: The function g is odd and increasing since g (r) =

6 π √ 4-r 2 . Thus we have |g(r)| < r < 1. It satisfies g(0) = 0, g(±1) = ±1, g (0) = 3 π and g (1) = 2 √ 3 π . Finally for -1 < ρ < 1 we have ρ = g(r) ⇔ r = 2 sin πρ 6 .
Calculation shows that for -1 < ρ < 1 we have 0 ≤ |2 sin πρ 6 -ρ| ≤ 0.0180... therefore the two functions are quite close. It is useful to picture g and its inverse function in Figure 3. Observe also that if ρ = -1/2 we get

r = -2 sin π 12 = - √ 3 -1 √ 2 = -0.51... < -1/2.
An important consequence is the fact that since r < -1/2 the matrix R(r, r, r) of ( 2) is not a correlation matrix and therefore the correlation matrix R(-1 2 , -1 2 , -1 2 ) cannot be the correlation matrix of a Gaussian copula. [START_REF] Falk | A simple approach to the generation of uniformly distributed random variables with prescribed correlations[END_REF] makes essentially a similar observation.

In the sequel, we proceed to a more general study of the correlation between f 1 (Y 1 ) and f 2 (Y 2 ) when (Y 1 , Y 2 ) ∼ N (0, Σ r ) as defined in (6). We thank Ivan Nourdin for a shorter proof of the following proposition: Proof: We use the fact that if f ∈ C 2 (R 2 ) then

d dr E(f (Y 1 , Y 2 )) = E( ∂ 2 ∂y 1 ∂y 2 f (Y 1 , Y 2 )) (7) 
To see this recall that if X ∼ N (0, 1) then an integration by parts gives

E(Xϕ(X)) = E(ϕ (X)). (8) 
Writing

Y 2 = rY 1 + √ 1 -r 2 Y 3
where Y 1 and Y 3 are independent N (0, 1) we get

d dr E(f (Y 1 , Y 2 )) = E((Y 1 - r √ 1 -r 2 Y 3 ) ∂ ∂y 2 f (Y 1 , Y 2 )) (9) = E(Y 1 ∂ ∂y 2 f (Y 1 , Y 2 )) - r √ 1 -r 2 E(Y 3 ∂ ∂y 2 f (Y 1 , Y 2 )) = E(Y 1 ∂ ∂y 2 f (Y 1 , Y 2 )) -rE( ∂ 2 ∂y 2 2 f (Y 1 , Y 2 )) (10) = E( ∂ 2 ∂y 1 ∂y 2 f (Y 1 , Y 2 )) (11) 
In this sequence of equalities ( 9) is derivation inside an integral, ( 10) is the application of (8

) to ϕ(Y 3 ) = ∂ ∂y2 f (Y 1 , rY 1 + √ 1 -r 2 Y 3
)) and ( 11) is the application of (8

) to ϕ(Y 1 ) = ∂ ∂y2 f (Y 1 , rY 1 + √ 1 -r 2 Y 3 )) which satisfies ϕ (Y 1 ) = ∂ 2 ∂y 1 ∂y 2 f (Y 1 , Y 2 ) + r ∂ 2 ∂y 2 2 f (Y 1 , Y 2 ).
The application of ( 7) to the proof of Proposition 1 is clear: if G 1 and G 2 are smooth enough, we take f (y 1 , y 2 ) as G 1 (y 1 )G 2 (y 2 ). If not we use an approximation. . Corollary 6.3: Given two probability distributions µ 1 and µ 2 on the real line having second moments with respective distribution functions F 1 and

F 2 . Given any r ∈ [-1, 1] consider the Gaussian random variable (Y 1 , Y 2 ) ∼ N (0, Σ r ). Then (X 1 , X 2 ) = F -1 1 (Φ(Y 1 )), F -1 1 (Φ(Y 2 )) has a correlation ρ = g µ1,µ2 (r) 
which is a continuous increasing function on [-1, 1]. In particular if g µ1,µ2 (-1) = a and g µ1,µ2

(1) = b and if a ≤ ρ ≤ b there exists a unique r = f µ1,µ2 (ρ) ∈ [-1, 1] such that (X 1 , X 2 ) has correlation ρ.

Proposition 6.4: Let (X, Y ) be a centered Gaussian variable of R 2 with covariance matrix Σ r and let f : R → R be a function such that E(f (X)) = 0 and

E(f (X) 2 ) = 1. Then E(f (X)f (Y )) = r for all -1 ≤ r ≤ 1 if and only if f (x) = ±x.
Proof: Write r = cos α with 0 ≤ α ≤ π. If X, Z are independent centered real Gaussian random variables with variance 1, then Y = X cos α + Z sin α is centered with variance 1, (X, Y ) is Gaussian and E(XY ) = cos α. Therefore we rewrite this as

cos α = R 2 f (x)f (x cos α + z sin α)e -1 2 (x 2 +z 2 ) dxdz 2π (12) = ∞ 0 ρe -ρ 2 2 1 2π π -π f (ρ cos θ)f (ρ cos(α -θ))dθ dρ (13) 
where we have used polar coordinates x = ρ cos θ and z = ρ sin θ for the second equality. This equality is established for 0 ≤ α ≤ π but it is still correct when we change α into -α. Now we introduce the Fourier coefficients for n in the set Z of relative integers:

f n (ρ) = 1 2π π -π f (ρ cos θ)e -inθ dθ.
Since f is real we have the Hermitian symmetry f -n (ρ) = f n (ρ). Expanding the periodic function (13) in Fourier series and considering the Fourier coefficients of α → cos α we get for n = ±1

∞ 0 ρe -ρ 2 2 f 2 n (ρ)dρ = 0 (14) and ∞ 0 ρe -ρ 2 2 f 2 ±1 (ρ)dρ = 1 2 .
Hermitian symmetry implies that f 2 0 (ρ) is real and since ∞ 0 ρe -ρ 2 2 f 2 0 (ρ)dρ = 0 we get that f 2 0 (ρ) = 0 for almost all ρ > 0. This is saying that for almost all ρ > 0 we have π -π f (ρ cos θ)dθ = 0 :

(15)

Since θ → f (ρ cos θ) is a real even function we have

f (ρ cos θ) ∼ ∞ n=1
a n (ρ) cos nθ and the real number a n (ρ) is equal to 2 f n (ρ) and to 2 f -n (ρ) which are therefore real numbers. Using ( 14) they are zero for all n = ±1 and we get almost everywhere that f (ρ cos θ) = a 1 (ρ) cos θ or f (ρu) = a 1 (ρ)u for all -1 ≤ u ≤ 1.

To conclude we write

a 1 (ρ)u = f (ρu) = f (ρ 1 ρ ρ 1 u) = a 1 (ρ 1 ) ρ ρ 1 u where u is small enough such that | ρ ρ1 u| ≤ 1. This implies a1(ρ) ρ = a1(ρ1)
ρ1 which is a constant c by the principle of separation of variables. Therefore f (x) = cx almost everywhere and E(f (X) 2 ) = 1 implies that c = ±1.

For computing expressions like E(f 1 (Y 1 )f 2 (Y 2 )) when (Y 1 , Y 2 ) ∼ N (0, Σ r ) we use the classical fact below: Proposition 6.5: Let (Y 1 , Y 2 ) ∼ N (0, Σ r ). Let f 1 and f 2 be real measurable functions such that E(f i (Y i ) 2 ) is finite for i = 1, 2. Consider the Hermite polynomials (H k ) ∞ k=0 defined by the generating function

e xt-t 2 2 = ∞ k=0 H k (x) t k k!
and the expansions

f 1 (x) = ∞ k=1 a k H k (x) √ k! , f 2 (x) = ∞ k=1 b k H k (x) √ k! .
Then for all -1 ≤ r ≤ 1 For this we watch the coefficient of t n in the power expansion of E(T (X)e Xt-t 2 2 )

E(f 1 (Y 1 )f 2 (Y 2 )) =
For this we need 

E(Φ(X)e Xt-t 2 2 ) = 1 -Φ(- t √ 2 ) = 1 2 + 1 2 √ π ∞ n=0 (-1) n 4 n n! t 2n+1 2n + 1 E(T (X)e Xt-
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 3 Figure 3: Graphs of ρ = g(r) = 6π arg sin r 2 and r = g -1 (ρ) = 2 sin πρ 6 .

  k (Y 1 )H m (Y 2 ))For this, we use the usual procedure and first write r = cos θ with 0 ≤ θ ≤ π. If Y 1 , Y 3 are independent centered real Gaussian random variables with variance 1, thenY 2 = Y 1 cos θ + Y 3 sin θ is centered with variance 1, (Y 1 , Y 2 ) is Gaussian and E(Y 1 Y 2 ) = cos θ. Furthermore a simple calculation using the definition of Y 2 gives E(e Y1t-t 2 2 e Y2 s-s 2 2 ) = e ts cos θ This shows that E(H k (Y 1 )H m (Y 2 )) = 0 if k = m and that E(H k (Y 1 )H k (Y 2 )) = k! cos k θ.From this we get the result.Corollary 6.6: Let p n ≥ 0 such that ∞ n=1 p n = 1 and consider the generating function g(r) = ∞ n=1 p n r n . Let R = (r ij ) 1≤i,j≤d in R n . Then R * = (g(r ij )) 1≤i,j≤d is the covariance matrix of the random variable (f (X 1 ), . . . , f (X d )) where (X 1 , . . . , X d ) is centered Gaussian with covariance R and where f We have seen an example of such a function f with f (x) = T (xp 2n = 0. For computing n we have really to compute n

  2n+1 = (-1) n .