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A new method of Hansen solubility parameters (HSPs) prediction was developed by combining the multivariate adaptive re-
gression splines (MARSplines) methodology with a simple multivariable regression involving 1D and 2D PaDEL molecular
descriptors. In order to adopt the MARSplines approach to QSPR/QSAR problems, several optimization procedures were
proposed and tested. The effectiveness of the obtained models was checked via standard QSPR/QSAR internal validation
procedures provided by the QSARINS software and by predicting the solubility classification of polymers and drug-like solid
solutes in collections of solvents. By utilizing information derived only from SMILES strings, the obtained models allow for
computing all of the three Hansen solubility parameters including dispersion, polarization, and hydrogen bonding. Although
several descriptors are required for proper parameters estimation, the proposed procedure is simple and straightforward and does
not require a molecular geometry optimization. The obtained HSP values are highly correlated with experimental data, and their
application for solving solubility problems leads to essentially the same quality as for the original parameters. Based on provided

models, it is possible to characterize any solvent and liquid solute for which HSP data are unavailable.

1. Introduction

Modeling of physicochemical properties of multicomponent
systems, as, for example, solubility and miscibility, requires
information about the nature of interactions between the
components. A comprehensive and general characteristics of
intermolecular interactions was introduced in 1936 by Hil-
debrandt [1]. This approach is based on the analysis of sol-
ubility parameters § defined as the square root of the cohesive
energy density, which can be estimated directly from enthalpy
of vaporization, AH,,, and molar volume (Eq. (1)):

5= M (1)
' Vi

Since the cohesive energy is the energy amount necessary
for releasing the molecules’ volume unit from its sur-
roundings, the solubility parameter can be used as a measure
of the affinity between compounds in solution. In his his-
torical doctoral thesis [2], Hansen presented a concept of
decomposition of the solubility parameter into dispersion
(d), polarity (p), and hydrogen bonding (HB) parts, which
enables a much better description of intermolecular in-
teractions and broad usability [3, 4]. By calculating the
Euclidean distance between two points in the Hansen space,
one can evaluate the miscibility of two substances according
to the commonly known rule “similia similibus solvuntur.”
There are many scientific and industrial fields of Hansen
solubility parameters application, including polymer materials,
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paints, and coatings (e.g., miscibility and solubility [5-9], en-
vironmental stress cracking [10, 11], adhesion [12], plasticizers
compatibility [13], swelling, solvent diffusion, and permeation
[14, 15], and polymer sensors designing [16], pigments and
nanomaterials dispersibility [3, 17-20]), membrane filtration
techniques [21], and pharmaceutics and pharmaceutical tech-
nology (e.g., solubility [22-27], cocrystal screening [28, 29],
drug-DNA interaction [30], drug’s absorption site prediction
[31], skin permeation [32], drug-nail affinity [33], drug-polymer
miscibility, and hot-melt extrusion technology [34-37]).

Due to the high usability of HSP, many experimental and
theoretical methods of determining these parameters were
proposed. For example, HSP can be calculated utilizing the
equation of state [38] derived from statistical thermodynamics.
Alternatively, models taking advantage of the additivity con-
cept, such as the group contribution method (GC) [25, 39-41]
is probably the most popular one. Despite the simplicity and
success of these approaches, there are some important limi-
tations. First of all, the definition of groups is ambiguous which
leads to different parameterization provided by different au-
thors [39]. Besides, the same formal group type can have
varying properties, depending on the neighborhood and
intramolecular context. As an alternative, molecular dynamics
simulations were used for HSP values determination
[16, 42-44] even in such complex systems as polymers. In-
terestingly, quantum-chemical computations were rarely used
for predicting HSP parameters. However, the method com-
bining COSMO-RS sigma moments and artificial neural
networks (ANN) methodology [45] deserves special attention.
Noteworthy, much better results were obtained using ANN
than using the linear combination of sigma moments [45].

The application of nonlinear models is a promising way
of HSP modeling. In recent times, there has been a signif-
icant growth of interest in developing QSPR/QSAR models
utilizing nonlinear methodologies, like support vector ma-
chine [46-50] and ANN [51-55] algorithms. The attrac-
tiveness of these methods lies in their universality and
accuracy. However, many are characterized by complex
architectures and nonanalytical solutions. An interesting
exception is the multivariate adaptive regression splines
(MARSplines) [56]. This method has been applied for
solving several QSPR and QSAR problems including crys-
tallinity [57], inhibitory activity [58, 59], antitumor activity
[60], antiplasmodial activity [61], retention indices [62],
bioconcentration factors [63], or blood-brain barrier passage
[64]. Interestingly, some studies suggested a higher accuracy
of MARSplines when compared to ANN [57, 58, 65]. An
interesting approach is the combination of MARSplines with
other regression methods. As shown in the research on
blood-brain barrier passage modeling, the combination of
MARSplines and stepwise partial least squares (PLS) or
multiple linear regression (MLR) gave better results than
pure models [64]. The MARSplines model for a dependent
(outcome) variable y and M + 1 terms (including intercept)
can be summarized by the following equation:

M
Y= FO + Z Fm : Hkm(xv(k,m))’ (2)

m=1
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where summation is over M terms in the model, while F, and
F,, are the model parameters. The input variables of the
model are the predictors x,, ;. ,,) (the kth predictor of the mth
product). The function H is defined as a product of basis
functions (h):

K
Hyg(%6m)) = l_[ hkm(xv(k,m))7 (3)
=1

where x represents two-sided truncated functions of the
predictors at point termed knots. This point splits distinct
regions for which one of the formula is taken, (t — x) or (x — t);
otherwise, the respective function is set to zero. The values of
knots are determined from the modeled data.

Since nonparametric models are usually adaptive and
with a high degree of flexibility, they can very often result in
overfitting of the problem. This can lead to poor perfor-
mance of new observations, even in the case of excellent
predictions of the training data. Such inherent lack of
generalizations is also characteristic for the MARSplines
approach. Hence, additionally to the pruning technique used
for limiting the complexity of the obtained model by re-
ducing the number of basis functions, it is also necessary to
augment the analysis with the physical meaning of obtained
solutions.

The purpose of this study is to test the applicability of the
MARSplines approach for determining Hansen solubility
parameters and to verify the usefulness of the obtained
models by solubility predictions. Hence, an in-depth ex-
ploration was performed, including resizing of the models
combined with a normalization and orthogonalization of
both factors and descriptors. Also, a comparison with the
traditional multivariable regression QSPR approach was
undertaken. Finally, the obtained models were used for
solving typical tasks for which Hansen solubility parameters
can be applied, in order to document their reliability and
applicability.

2. Methods

2.1. Data Set and Descriptors. In this paper, the data set of
experimental HSP collected by Jarvas et al. [45] was used for
QSPR models generation. This diverse collection comprises
a wide range of nonpolar, polar, and ionic compounds
including hydrocarbons (e.g., hexane, benzene, toluene, and
styrene), alcohols (e.g., methanol, 2-methyl-2-propanol,
glycerol, sorbitol, and benzylalcohol), aldehydes and ke-
tones (e.g., benzaldehyde, butanone, methylisoamylketone,
and diisobutylketone), carboxylic acids (e.g., acetic acid,
acrylic acid, benzoic acid, and citric acid), esters (isoamyl
acetate, propylene carbonate, and butyl lactate), amides
(N,N-dimethylformamide, formamide, and niacinamide),
halogenated hydrocarbons (e.g., dichloromethane, 1-chlor-
obutane, chlorobenzene, 1-bromonaphthalene), ionic lig-
uids, and salts (e.g., [bmim]PF6, [bmim]Cl, sodium salts of
benzoic acid, p-aminobenzoic acid, and diclofenac). These
data were obtained from the original HSP database [39, 66]
and several other reports [67, 68]. After removing the
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repeating cases from the original collection, a set of 130
compounds, for which experimental data of HSP are
available, was used.

Using information encoded in canonical SMILES,
PaDEL software [69] offers 1444 descriptors of both 1D and
2D types. Not all of them can be used in modeling, and those
descriptors which are not computable for all compounds or
with zero variance were rejected from further analysis. The
remaining 886 parameters were used for models definition.

2.2. Computational Protocol. Model building was conducted
using absolute values of descriptors or orthogonalized data.
Since there are different criteria for selecting independent
variables from the pool of mutually related ones, two specific
criteria were applied. The first one relied on the direct
correlation with modeled HSP data if R* > 0.01. The second
one used ranking offered by Statistica [70], tailored for
regression analysis. These parameters were considered as
nonorthogonal ones for which the Spearman correlation
coefficient was higher than 0.7 (R* > 0.49). These different
methods of orthogonalization led to different sets of de-
scriptors used during application of QSPR or MARSplines
approaches. Types of performed computations are sum-
marized on Scheme 1.

2.3. QSPR Approach. The development of QSPR models and
internal validation of the multiple linear regression (MLR)
approach was conducted using QSARINS software 2.2.2
[71, 72]. The genetic algorithm (GA) for variable selection
was applied during the generation of the models, which were
defined with no more than 20 variables. The following fitting
quality parameters were used for the model evaluation:
determination coefficient (R), adjusted determination co-
efficient (Radj)z, Friedman’s “lack of fit” (LOF) measure,
global correlation among descriptors (K,,) [73, 74], root-
mean-square error, and mean absolute error (RMSE,, and
MAE,,) calculated for the training set and F (Fisher ratio).
Also, the following internal validation parameters were used:
leave-one-out validation measure (Qy.,)> cross-validation
root-mean-square error, and mean absolute error (RMSE,,
and MAE,,).

3. Results and Discussion

Since the aim of this paper is the verification of the efficiency
of predicting Hansen solubility parameters based on models
derived using the MARSplines approach, two alternative
procedures were adopted. The first one relies directly on the
solution coming from application of the MARSplines pro-
cedure. The resulting factors were then used for assessment
of p, d, and HB parameters. Alternatively, in the second step,
the obtained factors were used as new types of descriptors
and applied in the standard QSPR modeling along with the
ones obtained from PaDEL. The premise of such attempt
relied on the assumption that new factors, accounting for
nonlinear contributions, combined with descriptors raise
the accuracy of the model. The consistency of the models was
checked using an internal validation procedure and

additionally by applying them for solving some typical tasks
that utilize Hansen solubility parameters. Particularly, the
classification of polymers as soluble and nonsoluble ones in a
set of solvents was compared with the original values of
Hansen parameters. Similarly, the prediction of preferential
solubility of some drugs was tested.

3.1. MARSplines Models. Several models were computed
using the whole set of 886 available descriptors (runl and
run2). Typically, the size of the problem was restricted to 25
or 30 basis functions with the number of interactions in-
creasing from 2 up to 10. For example, the simplest model
restricted to 25 basis functions with no more than double
interactions is denoted as (25, 2). For each model, the re-
gressions were analyzed in two manners. Firstly, the direct
application of the set of factors obtained from MARSplines
was performed for solving regression equations. Since some
of the generated factors have shown an apparent linear
correlation, the orthogonalization of the factors was un-
dertaken according to the two mentioned approaches. This
resulted in two alternative models, usually of lower
complexity.

3.2. MARSplines Modeling of Parameter d. Hansen solubility
parameter d is the measure of interaction energy via dis-
persion forces. As other contributions to Hansen solubility
space, it is expressed as the density of cohesive energy.
Among all three descriptors, this one seems to be the most
difficult to predict. Fortunately, the MARSplines procedure
performed quite well even in this case. The details of all
developed models are provided in Figure 1, which offers
several interesting conclusions. First of all, the models with
satisfactory descriptive potential are quite complex, re-
quiring several factors. Fortunately, the actual number of
descriptors is usually much lower since many factors utilize
the same molecular descriptors. Besides, models relying on
the absolute values of descriptors outperform models con-
structed using normalized descriptors. This seems to be
surprising since normalization should not lead to any
change in the model quality; however, in the case of
MARSplines, there is a significant gain in using absolute
values. This can be attributed to the very nature of
MARSplines, which is strictly a data-driven nonparametric
procedure. Another interesting conclusion comes from
inspection of trends indicated by the solid black lines. The
rise of the number of interactions does not seriously improve
the quality of predictions. Although the d(30,10) model is
slightly better than d(25,2), it comes at a cost of additional
three factors. This is a fortunate circumstance, suggesting
that developing simpler models can be quite sufficient. In
the case of the d(25,2) model, the value of the adjusted
correlation coeflicients (Radj)2 is as high as 0.94. The
formal mathematical formula of the MARSplines-derived
model is analogical to a typical QSPR equation, although
instead of descriptors, the MARSplines factors are present.
In the case of the d(25,2) model, Eq. (4) defines the
mathematical formula for computation of the d parameter.
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runl” Without both orthogonalization and normalization
run2” Without orthogonalization but with normalization
run3 Without normalization but with orthogonalization™" separately for each parameter
run4 With both normalization and orthogonalization™” separately for each parameter
*In this modeling, the whole set of available parameters was used (886 descriptors) for each parameter.
*Two rankings of descriptors were used. First one (A) was done according to direct correlation with modeled
data that provided R?> 0.01. Application of first type of orthogonalization and exclusion of theparameters with
R?<0.01 reduced the number of descriptors down to127 in the case of the d parameter, 134 for p parameter and 128
the most appropriate for the HB parameter. The second one (B) used ranking offered by Statistica, selecting the most
suitable parameters for regression analysis. Application of the first type of orthogonalization and excluding
parameters with R?< 0.01 reduced the number of descriptors down to 118 in the case of d and HB parameters, and
down to 124 for the p parameter.
ScHEME 1: Summary of MARSplines and QSPR runs.
0.96 equation, some can actually be consolidated as one. For
example, F1 appears in definitions of F3, F4, F17, and
092 F18. It seems to be rational to consolidate them into one
' by extraction of F1 and redefining the factors by mul-
tiplication of the sum of the remaining parts by F1. This
., 088 in fact does not change the size of the problem, which
= should be attributed to the number of descriptors used in
o iy .
= 0.84 definition of MARSplines factors rather than factors. In
. the case of Eq. (4), twelve PaDEL descriptors are used.
o The majority of them (ATSCli, AATS2e, AATS2p,
080 . ATSC3p, AATSC6v, ATSClv, ATS4m, and GATS6c)
, belongs to 2D autocorrelation descriptors [75]. One
0.76 - descriptor VE3_Dzi is of the Barysz matrix type [75].
d(25,2) d(25, 3) d(25, 5) d(30, 10) . .
ARSI o Besides, atom-type electrotopological state 2D de-
pline mode scriptors (SsOH and minHCsats) were also included in
—o— MARSpline --m- Ort1(N) the model [76-78]. Finally, the wvalues of the
~© MARSpline(N) —#— Ort2 nHBDon_Lipinski descriptor are also used in the model,
—— Ortl & Ort2(N)

FIGURE 1: Results of predicting the values of the d descriptor, based
on a series of d(b, i) MARSplines models characterized by number
of initial basis functions (b) and allowed maximum interactions (i).
Provided numbers represent amounts of factors used in the final
regression function with statistically significant contributions. Grey
lines represent results obtained after normalization of each of the
descriptor distributions, while black lines correspond to models
built on absolute values of descriptors.

Factors definitions, along with their contributions, were
summarized in Table 1:
19
d(25,2)=Fy+ ) a;-F, (4)

i=1

The values of coefficients come from the internal
validation procedure performed using the QSARINS
default algorithm. It is a typical many-leave-out pro-
cedure rejecting 30% of the data. The correlation between
experimental and computed values of the d solubility
parameter is plotted in Figure 2. Both data for d(25,2)
and d(30, 1) models were provided. It is quite visible that
the gain of the extended model is not very impressive,
and for further applications, the d parameter will be
computed according to model defined by Eq. (4). Al-
though formally there are nineteen factors in this

and this parameter represents simply the number of
hydrogen bond donors.

As it was mentioned beforehand, the construction of the
models using MARSplines factors can in some cases lead to
apparent mutual linear correlation between these factors. In
all observed cases, these dependencies were really superficial
and resulted from the fact that the basis functions used knots
for splitting values below and above the given threshold. In
such situation, the correlation, even if mathematically de-
tectable, has no significant meaning and is artificial. From
the formal point of view, it is possible to rearrange such
factors in the regression function, consolidating them into
one and removing these apparent correlations. However, it
was interesting to observe if it is possible to reduce the
number of factors in the model by eliminating these ap-
parently nonorthogonal ones. For this purpose, two types of
orthogonalization were performed, and the results are
presented in Figure 2. First of all, the models were signifi-
cantly worse compared to the original ones. This is not
surprising, since after orthogonalization, fewer factors were
used in the final regression function, which resulted not only
from elimination of apparently related ones but also from
the fact that correlation coefficients in new regressions were
not statistically significant. Indeed, the reduction of the
d(25,2) model by orthogonalization based on Statistica
ranking led to a model with 16 factors and corresponding
(Raaj)* =0.92.
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TABLE 1: Regression factors along with their weights defining the d(25,2) MARSplines model in Eq. (4).

Factor a; £ SD Mathematical relationships

FO 16.6638 + 0.1485

F1 0.0092 +0.0015 max(0; ATSClv + 144.0547)

F2 0.0648 £ 0.0050 max(0; —6.51036-ATSC11)

F3 —0.0002 + 0.0001 F1-max(0; SsSOH-7.94125)

F4 0.0015 + 0.0001 F1-max(0; 7.94125-SsOH)

F5 1.5234 +0.3405 max(0; AATS2e-7.54442)

F6 —3.4184 +0.3990 max(0; 7.54442-AATS2e)

F7 —1.2270 + 0.2402 F5-max(0; minHCsats-4.17191)

F8 —6.0944 + 0.5530 F5-max(0; 4.17191-minHCsats)

F9 0.2519 + 0.0682 max(0; AATS2p-1.25641)

F10 —6.6966 + 1.3720 max(0; 1.25641-AATS2p)

F11 —-0.0192 £ 0.0036 max(0; ATS4m-2039.674)-F10

F12 0.0021 + 0.0006 max(0; 2039.6739-ATS4m)-F10

F13 1.5646 + 0.2463 max(0; nHBDon_Lipinski-2.00000)-F5

F14 0.3218 £ 0.1429 max(0; 2.00000-nHBDon_Lipinski)-F5

F15 0.0208 + 0.0037 max(0; —144.0547-ATSC1v)-max(0; VE3_Dzi +
1.57191)

F16 —-0.1155+0.0211 max(0; ATSC1i + 6.51036)-max(0; 1.00111-GATS6¢)

F17 —0.0008 + 0.0002 F1-max(0; ATSC3p + 0.63792)

F18 —0.0031 £ 0.0006 F1-max(0; —0.63792-ATSC3p)

F19 0.2626 £0.0721 max(0; 0.00000-AATSC6v)-max(0; AATS2p-1.25641)

Model statistics: fitting criteria: N =130, R*=0.947, Ridj:0.938, F=103.39, and LOF=0.368; internal validation criteria: LMO (30%), Q%,,=0.860,

RMSE =0.697, and MAE =0.431.

26.0

24.0
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dMARSpline
[3=]
(=}
(=}

,_.
*®
o

16.0

24.0 26.0

o d(25,2)
e d(30,10)

FIGURre 2: The correlation between experimental and computed
values of parameter d prediction is done using Eq. (1). The quality
of the chosen optimal d(25, 2) model is characterized by the fitting
criteria: R*=0.9470, (R,qj)”=0.9378, LOF =0.3680, Ky, =0.4341,
RMSE,, = 0.4293, MAE,, = 0.3239, F=103.3872, and N =130, and
fulfils the following internal validation criteria: (Qioo)* = 0.8601,
RMSE,, = 0.6973, and MAE,, =0.4309 [71, 72].

3.3. MARSplines Modeling of Parameter p. Series of models
for computing the polarity descriptor was also developed,
and their predictive powers are summarized in Figure 3. The
quality of the correlation between experimental values and
the ones predicted using the best models is illustrated in
Figure 4.

As one can infer from Figure 3, the best model with
orthogonal factors is p(30, 10). However, it is characterized
by a high degree of descriptors interaction. Therefore, the

0.97
0.95
0.93
Z 001
&
0.89
0.87
10
0.85
p(25,2) p(25,3) p(25,5) p(30, 10)
MARSpline model
—e— MARSpline --m- Ortl(N)
@ MARSpline(N) —— Ort2
—— Ortl & Ort2(N)

FIGURE 3: Results of predicting the values of the p descriptor, based on a
series of p(b, i) MARSplines models. Notation is the same as in Figure 1.

most optimal one seems to be p(25,3). This model is
expressed by Eq. (5), and the factors descriptions along with
their contributions are summarized in Table 2. This model
utilizes descriptors belonging to several classes, namely,
information content (IC0 and ZMIC2) [75], autocorrelation
(AATS2m, GATSle, GATS2e, GATS5m, AATSCS5i,
ATSC5e, and MATS1v) [75], molecular linear-free energy
relation (MLFER_S) [79], mindssC [76-78], and Petitjean
topological and shape indices (PetitieanNumber) [80]. The
reduction of variables achieved using the genetic algorithm
does not always guarantee that descriptors with clear
meaning will be selected. Nevertheless, among descriptors
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30.0

20.0

15.0

MARSpline
P P!

10.0

o p(25,3)
o p(30, 10)

15.0 20.0 25.0 30.0

FIGURE 4: The correlation between experimental and computed values of parameter p prediction is done using Eq. (1). The quality of the
chosen optimal p(25, 3) model is characterized by fitting criteria: R*=0.9425, (Radj)2 =0.9325, LOF =4.4911, K, =0.3758, RMSE,, = 1.4998,
MAE,, =1.1902, F=94.8671, and N=130, and fulfils the following internal validation criteria: (Qioo)? = 0.9100, RMSE,, = 1.8765, and

MAE,, =1.4655 [71, 72].

TaBLE 2: MARSplines p(25,3) model regression factors along with their weights.

Factor a; £ SD Mathematical relationships
FO 3.0017 £0.2777
F1 13.0874 + 1.3342 max(0; 1C0-1.14332)
F2 -9.0702 +2.4982 max(0; 1.14332-1C0)
F3 18.0918 +1.7520 max(0; PetitjeanNumber-0.46154)
F4 —0.8421 +£0.2724 max(0; 60.09146-AATS2m)-F1
F5 —25.2410 + 3.4481 max(0; 0.75379-GATS2e)-F1
Fe6 51.6379 +5.0897 F5-max(0; AATSC5i-0.48388)
F7 73.5427 + 8.2229 F5-max(0; 0.48388-AATSC5i)
F8 8.5172+0.8475 max(0; MLFER_S-0.54800)
F9 —0.1257 £0.0262 max(0; ZMIC2-16.19833)
F10 0.7386 + 0.0940 max(0; 16.19833-ZMIC2)
F11 —20.5206 + 3.2197 F8-max(0; MATS1v + 0.17725)
F12 —16.5968 +2.2740 F8-max(0; —0.17725-MATS1v)
F13 28,6245 + 41609 max(0; GATS5m-0.5461 11):-;nax(0; GATS2e-0.75379)-
Fl4 483050 + 7.0216 max(0; O.54611—GATSSm1):-;naX(O; GATS2e-0.75379)-
F15 67,3423 + 17.0712 max(0; —0.26841'-.ATSC5e)-max(0; 0.46154-
PetitjeanNumber)
max(0; 60.09146-AATS2m)-max(0; mindssC +
Fl16 4.7141 £1.0570 0.24537)-F1
F17 2.0457 + 0.4563 max(0; 60.09146—A.AT52m)'max(0; —0.24537-
mindssC)-F1
F18 82.5944 + 16.2082 max(0; GATSZe—O.75379)F~11naX(0; GATSl1e-0.84779)-
F19 1161381 + 25.4572 max(0; GATS2e—O.75379)F~r1naX(0; 0.84779-GATSle)-

Model statistics: fitting criteria: N =130, R*=0.954, Rzadj:0.945, F=122.2, and LOF=3.533; internal validation criteria: LMO (30%), Q,,=0.935,

RMSE =1.771, and MAE =1.247.

which appeared in the p(23, 3) model, IC0 and MLFER_S are
quite simple to interpret in the context of polarity HSP since
ICO index expresses the diversity (heterogeneity) of atomic
types [81], while MLFER _S is associated with the dipolarity/

polarizability features of molecules [57, 82, 83]. Also au-
tocorrelation descriptors GATSle, GATS2e, and MATS1v
deserve for special attention. In general, autocorrelation
indices do not have a clear interpretation. Nevertheless, their
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appearance seems to be understandable since these de-
scriptors were applied in different solubility prediction
models reported previously [84-86]:

19
p(25,3)=Fy+ Y a;-F,. (5)

i=1

3.4. MARSplines Modeling of Parameter HB. Analogously to
the previously discussed parameters, the model corre-
sponding to the hydrogen bonds interactions was developed
and optimized. The results are summarized in Figures 5
and 6.

As it can be observed in the abovementioned figures, the
HB(25,2) model is characterized by the highest correlation
between experimental and predicted values, comparing to
previously discussed d(25,2) and p(25,3) models. The re-
gression equation of HB(25,2), along with factors de-
scriptions, is defined as follows (Eq. (6); Table 3):

22
p(25,2)=Fy+ ) a;-F, (6)
i=1

The HB(25,2) model consists of 22 factors. However, it
turned out, based on the QSPR methodology, that two of
them (F4 and F5) have a zero contribution. The factors in the
HB(25,2) model were generated using the following de-
scriptors: atom-type electrotopological state (SHBd) [76-
78], information content (SIC1) [75], autocorrelation
(GATS2e, AATSC1i, AATSC2i, and ATSC1v) [75], eccentric
connectivity (ECCEN) [87], extended topochemical
(ETA_dEpsilon_D) [88, 89], weighted path (WTPT-4) [90],
Barysz matrix-based (VE3_DzZ) [75], and Crippen’s
(CrippenLogP) parameters [91]. Noteworthy, SHBd,
ETA_dEpsilon_D, and CrippenLogP molecular descriptors
that appeared in the above model are quite intuitive in the
context of HB parameter interpretation. The SHBd de-
scriptor is simply the sum of all E-States corresponding to
hydrogen bonds donors [76-78]. ETA_dEpsilon_D pa-
rameter is also associated with hydrogen bonds donating
abilities. Thus, both SHBd and ETA_dEpsilon_D descriptors
have been used for QSAR protein binding/inhibition
problems solving [92-95]. The appearance of Crippen-
LogP, being a part of the F3 factor, is understandable since
more polar molecules are usually more likely to form strong
hydrogen bonds. Noteworthy, LogP, which is probably one
of the most popular polarity parameters, was used for the
Yalkowsky model [96, 97], which confirms its usability in the
HSP approach. Based on the F3 definition (Table 3), an
interesting observation can be made; when CrippenLogP
values are lower than about —2.34, the polarity is extremely
high and so it does not affect the ability to form hydrogen
bonds. This treatment of variables, associated with the de-
termination of their scope of application, is characteristic for
the MARSplines methodology. Similarly, as in case of other
HSP models, autocorrelation descriptors play an important
role. These molecular measures are related to the basic
atomic properties such as Sanderson electronegativities
(GATS2e), ionization potential (AATSCli and AATSC2i),
and van der Waals volume (ATSCl1v).
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FIGURE 5: Results of predicting the values of the HB descriptor,
based on a series of HB(b, i) MARSplines models. Notation is the
same as in Figure 1.
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FiGure 6: The correlation between experimental and computed
values of parameter HB. Prediction is done using Eq. (1). The
quality of the chosen optimal HB(25,2) model is characterized by
the fitting criteria: R*=0.9812, (R,q)*=0.9773, LOF =2.4449,
Ky« =0.4654, RMSE,, = 1.0344, MAE,, =0.8222, F=253.5683, and
N=130, and fulfils the following internal validation criteria:
(Quo)® = 0.9670, RMSE,, = 1.3696, and MAE,, = 1.0381 [71, 72].

3.5. QSPR Models. QSARINS software [71, 72] offers a
straightforward method for regression analysis, especially
efficient in the case of large QSPR problems. In such cases,
the complete exploration of all possible combinations of
descriptors is prohibited by too large numbers of potential
arrangements of the variables. In such situation, the genetic
algorithm [98] offers a rational way of exploration of the
most promising regions of QSPR solution space. Here, all
QSPR models were built based on orthogonal sets of de-
scriptors, that is denoted as run3 and run4, according to two
different ways of orthogonalization (Scheme 1). Besides,



TaBLE 3: MARSplines HB(25,2) model regression factors along
with their weights.

Factor a; + SD Mathematical relationships
FO 12.6280 + 0.4535

F1 5.5560 £ 0.7079 max(0; SHBd-0.84757)

F2 —10.4070 + 1.0496 max(0; 0.84757-SHBd)

F3 1.0900 +0.1333 max(0; 2.3406-CrippenLogP)
F4 0.0000 £ 0.0000 max(0; ECCEN-20.00000)-F2
F5 0.0000 £ 0.0000 max(0; 20.00000-ECCEN)-F2
Fo —4.0810 £ 0.4901 max(0; GATS2e-0.92565)

F7 —4.9500 £ 0.5455 max(0; 0.92565-GATS2e)

F8 —0.1460 £ 0.0470 max(0; WTPT-4-2.32775)

F9 —1.5640 +0.1466 max(0; 2.32775-WTPT-4)
F10 —62.8000 +7.3785 F1-max(0; SIC1-0.59306)

F11 —20.6450 £ 5.3855 F1-max(0; 0.59306-SIC1)
F12 21.0280 +3.0488  max(0; ETA_dEpsilon_D-0.05394)
F13 79.3130 +£ 14.5139  max(0; 0.05394-ETA_dEpsilon_D)
F14 —-0.3920+£0.0593 max(0; VE3_DzZ + 3.00162)-F8
F15 —88.4270+13.1857 max(0; AATSCIi + 0.83463)-F13
F16 —100.3560 + 19.2748  max(0; —0.83463-AATSC1i)-F13
F17 3.4670 £0.5511 max(0; AATSC7i-0.42042)
F18 3.1050 + 0.6674 max(0; 0.42042-AATSC71)
F19 0.1370 £ 0.0591 max(0; ATSClv + 23.64635)-F12
F20 0.2160 +£0.0470 max(0; —23.64635-ATSC1v)-F12
F21 1.8170 £0.7239 F2-max(0; AATSC2i + 0.09514)
F22 6.9340 £1.5981 F2-max(0; —0.09514-AATSC2i)

Model statistics: fitting criteria: N =130, R*=0.974, Ridj =0.970, F=216.6,
and LOF =2.955; internal validation criteria: LMO (30%), Q%0 = 0.960,
RMSE = 1.509, and MAE =1.150.

additional QSPR runs were performed with factors aug-
menting the pool of descriptors. Orthogonalization was
performed within the extended set of descriptors favoring
MASRpline factors, which ensured that factors were not
directly correlated with original descriptors, what is of
course possible. The results of these series of computations
are presented in Figures 7-9.

The results of computing the dispersion parameter are
provided in Figure 7. The developed models are of varying
size, starting from 2 up to 20 parameters. However, QSPR
models are fairly saturated starting from nine parameters.
The most important message coming from Figure 7 is that
the classical QSPR formalism leads to modes which are
significantly less accurate compared to MARSplines. Even
models with several parameters do not reach the quality of
description offered by the model defined by Eq. (4). In-
clusion of all MARSplines factors into the pool of descriptors
leads to a serious improvement of linear regression approach
but is still far from the best solution. It seems that, in the case
of the d parameter, there is no gain in combination of
MARSplines factors with PaDEL descriptors and searching
for the solution via the QSPR approach. Similar conclusion
can be drawn based on plots provided in Figure 8, doc-
umenting the accuracy of the models developed for com-
puting the p parameter. However, since in this case, thereis a
serious discrepancy between the original MARSplines model
and the reduced one, and some QSPR models exceed the
accuracy of the latter. Only 20-parameter regression func-
tions reach similar accuracy as the MARSplines model
defined by Eq. (5). Finally, similar analysis was performed
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for modeling of the HB parameter. This time a quite different
set of data was obtained, as documented in Figure 9. Quite
satisfying accuracy can be achieved even when 4 factors are
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used in the QSPR equation. Besides, there is a much steeper
growth of the (Radj)2 parameter compared to d and p HSP
models, which are less sensitive to the pool of descriptors.
Also, in the case of HB parameter, the solution obtained by
application of the MARSplines approach offers the highest
accuracy.

3.6. Applications of MARSplines Models. One of the most
often used and direct applications of Hansen solubility
parameters is the selection of appropriate solvent for sol-
ubilization or dispergation of different solids and materials
including drugs [22-26], polymers [5-9], herbicides [7],
pigments and dyes [3, 18], and biomaterials [99]. It is
typically done by computing HSP parameters based on a
series of solubility measurements. Typically, 20-30 solvents
are used for covering a broad range of Hansen parameters
space [20, 39, 100, 101]. Alternatively, mixtures of two
solvents are prepared in such a way that the broad range of
HSP is covered by solutions [102-106]. The formal pro-
cedure of solvents classification utilizes some threshold of
solubility for distinguishing soluble cases from nonsoluble
ones. Different criteria may be applied, but very often, the
dissolution of the solid solute below 1mg per 100ml is
considered as insoluble [107-110]. Hence, the solubility
measurements can be reduced to the list of good and bad
solvents, which resembles strong or weak interactions of the
tested media with considered substance or material. The
collection of three HSP parameters for all the solvents is
plotted in a 3-dimensional space providing the location of
solubility spheres. Additionally, empirical parameter de-
fining the size of the sphere is computed for maximizing the
classification for highest prediction rate of experimentally
derived binary solubility data. This minimization protocol

can be done using dedicated software, as, for example,
HSPiP (Hansen solubility parameters in practice) [66].
However, it is also possible to take advantage of the defi-
nition of the contingency table or confusion matrix often
used to describe the performance of a classification model.
Here, this strategy was adopted for the solubility classifi-
cation by using the straightforward procedure of maxi-
mizing the values of balanced accuracy (BACC = (TP/
P+ TN/N)/2), where TP and TN denote true positives and
negatives, while P and N represent all positive and negative
cases, respectively. This measure is one of the most com-
monly used ways of quantification of binary classifiers. It
seems to be a natural adaptation of this terminology for
rating the solubility as a mathematically coherent approach.
Besides, no dedicated software is necessary, and any solver-
like algorithms can be applied. The results provided below
were computed using the evolutionary algorithm imple-
mented in Excel.

3.7. Application of HSP Models to Polymers Dissolution.
The collection of the polymer solubility data was taken from
the literature [39]. The experimentally measured data were
originally classified on a scale described by the following
qualifiers: (1) soluble, (2) almost soluble, (3) strongly swollen
and slight solubility, (4) swollen, (5) little swelling, and (6)
no visible effect. This list was converted into binary data by
assuming polymer solubility only in the first case and
treating other situations as nonsoluble polymers. For the
whole set of 33 polymers for which solubility was de-
termined in 85 solvents, the classification was done by
optimization of all three HSP, as well as R, for each polymer.
The solubility was predicted based on the classical formula of
the distance in HSP space as follows:

R= \j4(5§—5§)2 w(OE-8) +(oh-8),

where the subscript P denotes the polymer and S the solvent.
Four sets of solvent parameters were tested. They corre-
sponded to (a) our model provided this paper in Egs.
(4)-(6), (b) original set of parameters collected in Table Al
of “Hansen solubility parameters: a user’s handbook. Ap-
pendix A” [39], (c) collection provided by Jarvas et. al [45],
and (d) HSP parameters from the green solvent set [111].
Following the Hansen concept, the relative energy difference
(RED) is defined by the following ratio:

RED = X (8)
&

where R, denotes the tolerance radius of a given polymer. In
this approach, the material characterized by the model as
RED > 1 is considered to be resistant to a solvent, whereas
cases for which RED < 1 are regarded as soluble. During the
procedure of solubility classification, the HSP values char-
acterizing the solvent were kept intact and only the pa-
rameters for the polymer were adjusted for maximizing BAC
for the whole set. The results of these computations are
summarized in Table 4.

In all cases, the identification of true positive and true
negative cases was higher than 90%. The misclassification of



10

TaBLE 4: Results of the solubility classification of 33 polymers in 85
solvents [39].

Data

set” TP TN FP FN
A 90.8% +7.2% 91.6%+7.0% 9.2% +7.2% 8.4% +7.0%
(p=1.00) (p=1.00) (p=1.00) (p=1.00)
B 91.1% +6.9% 92.4%+7.0% 8.9% +6.9% 7.6%+7.0%
(p=0.88) (p=0.66)  (p=0.88) (p=0.66)
C 93.7% +5.7% 921%+6.9% 6.3%+5.7% 7.9% +6.9%
(p=0.08) (p=0.80) (p=0.08)  (p=0.80)
D 93.0% +6.0% 92.3%+6.6% 7.0%+6.0% 7.7% +6.6%
(p=0.20) (p=0.70) (p=020) (p=0.70)

*A, MARSplines (25,2) model; B, [39]; C, [45]; D, [111].

soluble pairs as insoluble ones and vice versa was always
lower than 10%. Although the results of classification using
our models are somewhat worse, the difference is not sta-
tistically significant, and all approaches lead to the same
quality of polymers solubility classification.

3.8. Application of HSP Models to Drug-Like Solids
Dissolution. As the second type of external validation of the
proposed model via application of the HSP procedure, the
classification of solubility of drug-like solid substances was
undertaken. Solubilities of benzoic acid, salicylic acid,
paracetamol, and aspirin were taken from Stefanis and
Panayiotou paper [25]. Again, maximizing of BACC was
done by adopting HSP parameters. The results of the per-
formed classification are collected in Table 5. In the third
column of Table 5, there is provided the success rate ob-
tained based on HSP values computed using the proposed
model (Egs. (4)-(6)), confronted with the success rate of the
HSP approach adopted by Stefanis and Panayiotou [25] in
the second column. It is worth mentioning that these au-
thors used four parameters by splitting the hydrogen
bonding part into donor and acceptor contributions. As it is
documented in Table 5, the solubility predictions are almost
of the same quality. In the case of benzoic acid and salicylic
acid, a slightly lower quality of prediction was achieved. On
the contrary, in the case of paracetamol, the success rate of
the MARSplines model is higher.

The predictions based on the HSP, presented in the
Tables 4 and 5, are characterized by quite good accuracy.
However, it should be taken into account that, there are also
other approaches which were successfully used for solubility
prediction, classification, and ranking such as linear sol-
vation energy relationship (LSER) models including the
Abraham equation [112, 113] and the partial solvation
parameters (PSPs) approach [114, 115], conductor-like
screening model for real solvents (COSMO-RS) [116-
118], UNIFAC [119-121], and finally (modified separation
of cohesive energy density) MOSCED methodology
[122, 123] which is an interesting extension of the HSP
method. Nevertheless, HSP are, due to their universality, still
very popular in solving many solubility and miscibility
problems. In addition, it is also worth noting that, the
proposed MARSplines model is characterized by a relatively
high accuracy, although it was based only on the simplest 1D
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TABLE 5: Results of classification of API solubilities.

[25] This paper TP (%) TN (%) BACC

Benzoic acid 18 of 29 17 of 29 81.30 30.80 0.56
Salicylic acid 13 0of 19 11 0f19 3640  87.50  0.62
Paracetamol 14 of 24 18 of 24 50.00 92.90 0.71
Aspirin 14 of 23 14 of 23 46.20 80.00 0.63

and 2D structural information retrieved from the SMILES
code. Therefore, the model can be extended with more
complex molecular descriptors, such as quantum-chemical
indices.

4. Conclusions

MARSplines has been found to be a very effective way of
generating factors suitable for prediction of three Hansen
solubility parameters. The most important factor is pre-
serving the formal linear relationship typical for QSPR
studies and extending the model with nonlinear contribu-
tions. These come from the basis function definition and
splitting the variable range into subdomains separated by
knots values. Besides, factors used in the definition of the
regression equations are constructed by multiplication of
some number of basis functions that is referred to as the level
of interactions. It is possible to formulate models with ac-
ceptable accuracy and user-defined complexity in terms of
the number of basis functions and the level of interactions. It
has been found that, for all three HSP parameters studied
here (p, d, and HB), a promising precision was provided by
quite simple models. The initial number of basis functions
limited to 25 was found to be sufficient along with at most
binary or ternary interaction levels. The internal validation
of these models proved their applicability. The combination
of descriptors with factors was also tested, but the obtained
solutions were discouraging. Typical QSPR procedure re-
lying on genetic algorithms for selecting the most adequate
descriptors failed in finding models of the quality compa-
rable with MARSplines. Only in the case of HB parameters,
the result of the best QSPR models reached accuracy close to
the MARSplines approach. Hence, it is not advised to
combine traditional QSPR approaches by augmenting the
pool of descriptors with factors derived in MARSplines. The
observed supremacy of the latter in the case of HSP pre-
diction suggests using it as a standalone procedure, espe-
cially since it offers a similar formal equation as traditional
QSPR.

The application of the HSP models derived using
MARSplines for typical solubility classification problems
leads to essentially the same predictions as for the experi-
mental sets of HSP. This conclusion is a promising cir-
cumstance for further development of multiple linear
regression models augmented with nonlinear contributions.
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