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Dirichlet and Quasi Bernoulli laws for perpetuities

Paweł Hitczenko∗, Gérard Letac †

Abstract

Let X, B and Y be three Dirichlet, Bernoulli and beta independent random variables such
that X ∼ D(a0, . . . , ad), such that Pr(B = (0, . . . , 0, 1, 0, . . . , 0) = ai/a with a =

∑d
i=0 ai and such

that Y ∼ β(1, a). We prove that X ∼ X(1− Y ) +BY. This gives the stationary distribution of a
simple Markov chain on a tetrahedron.

1 Introduction
In a recent paper [1], Ambrus, Kevei and Vígh make the following interesting observation: If V, Y,W
are independent random variables such that V ∼ 1

π ( 1
4 −v

2)−1/21(−1/2,1/2)(v)dv, Y is uniform on (0, 1)

and Pr(W = 1) = Pr(W = −1) = 1/2 then V ∼ V (1 − Y ) + W
2 Y. Random variables V satisfying

V ∼ VM + Q where the pair (M,Q) is independent of V on the right-hand side are often called
perpetuities. Thus, another way of stating the observation from [1] is that an arcsine random variable
on (−1/2, 1/2) is a solution of perpetuity equation with (M,Q) ∼ (1−Y,WY/2). Part of the reason we
found it interesting is that there are relatively few examples of exact solutions to perpetuity equations
in the literature. We will generalize this result, and our generalization will provide more example of
perpetuities, including power semicircle distributions (see [2]).

To carry out the generalization, we reformulate this result on (0, 1) by writing X = V + 1
2 and

B = (1 + W )/2. Clearly X,Y,B are independent with X ∼ β(1/2, 1/2), B ∼ 1
2 (δ0 + δ1) and X ∼

X(1− Y ) + BY. In Theorem 1 below, we give a generalization of the result in [1] expressed in terms
of X,Y and B.

We will need the following notation. The natural basis of Rd+1 is denoted by e0, . . . ed. If p0, . . . , pd
are positive numbers with sum equal to one, the distribution

∑d
i=0 piδei of B = (B0, . . . , Bd) ∈

Rd+1 is called a Bernoulli distribution. It satisfies Pr(B = ei) = pi and B0 + . . . + Bd = 1. If
a0, . . . , ad are positive numbers the Dirichlet distribution D(a0, . . . , ad) of X = (X0, . . . , Xd) is such
that X0 + · · ·+Xd = 1 and the law of (X1, . . . , Xd) is

Γ(a0 + . . .+ ad)

Γ(a0) . . .Γ(ad)
(1− x1 − · · · − xd)a0−1xa1−11 . . . xad−1d 1Td

(x1, . . . , xd)dx1, . . . dxd

where Td is the set of (x1, . . . , xd) such that xi > 0 for all i = 0, 1, . . . , d, with the convention x0 =
1− x1 · · · − xd. For instance, if the real random variable X1 has the beta distribution β(a1, a0)(dx) =

1
B(a1,a0)

xa1−1(1− x)a0−11(0,1)(x)dx then (1−X1, X1) ∼ D(a0, a1).

Theorem 1: Let a0, . . . , ad be positive numbers. Denote a = a0 + · · · + ad. Let X, Y and B be
three Dirichlet, beta and Bernoulli independent random variables such that X ∼ D(a0, . . . , ad) and
B ∼

∑d
i=0

ai
a δei are valued in Rd+1 and such that Y ∼ β(1, a). Then X ∼ X(1− Y ) +BY.

Comments. Considering each coordinate, Theorem 1 says that for all i = 0, . . . , d we have Xi ∼
Xi(1 − Y ) + BiY. Since 1 =

∑d
i=0Xi =

∑d
i=0Bi the statement for i = 0 is true if it is verified for

i = 1, . . . , d. For instance for d = 1 a reformulation of Theorem 1 is
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Theorem 2: Let a0, a1 > 0. Let X1, Y, B1 be three independent random variables such that X1 ∼
β(a1, a0), Y ∼ β(1, a0 + a1), B1 ∼ a0

a0+a1
δ0 + a1

a0+a1
δ1. Then X1 ∼ X1(1− Y ) +B1Y.

Therefore the initial remark contained in [1] is a particular case of Theorem 1 for d = 1 and a0 = a1 =
1/2. More generally, the case d = 1 and a0 = a1 covers the power semicircle distributions discussed in
[2] (with θ = a0 − 3/2). In particular, a0 = a1 = 3/2 is the classical semicircle distribution.

One can prove Theorem 2 by showing E(X1(1−Y )+B1Y )n) = E(Xn
1 ) for all integers n. Our proof

of the more general Theorem 1 is somewhat linked to this method of moments.

2 A Markov chain on the tetrahedron
This section gives an application of Theorem 1. Consider the homogeneous Markov chain (X(n))n≥0
valued in the convex hull Ed+1 of (e0, . . . , ed) with the following transition process: GivenX(n) ∈ Ed+1

choose a vertex B(n + 1) randomly among {e0, . . . , ed} such that Pr(B(n + 1) = ei) = ai/a and a
random number Yn+1 ∼ β(1, a). Now draw the segment (X(n), B(n+ 1)) and take the point

X(n+ 1) = X(n)(1− Yn+1) +B(n)Yn+1

on this segment. Theorem 1 says that the Dirichlet distribution D(a0, . . . , ad) is a stationary distri-
bution for the Markov chain (X(n))n≥0. Recall the following principle (see [3] Proposition 1):

Theorem 3: If E is a metric space and if C is the set of continuous maps f : E → E let us fix a
probability ν(df) on C. Let F1, . . . , Fn, . . . be a sequence of independent random variables of C with
the same distribution ν. Define Wn = Fn ◦ . . . ◦ F2 ◦ F1 and Zn = F1 ◦ . . . ◦ Fn−1 ◦ Fn. Suppose that
almost surely Z = limn Zn(x) exists in E and does not depend on x ∈ E. Then

1. The distribution µ of Z is a stationary distribution of the Markov chain (Wn(x))n≥0 on E;

2. if X and F1 are independent and if X ∼ F1(X) then X ∼ µ.

Choose E = Ed+1. Apply Theorem 3 to the distribution ν of the random map F1 on Ed+1 defined by
F1(x) = (1 − Y1)x + Y1B(1) where Y1 ∼ β(1, a) and B(1) ∼

∑d
i=0

ai
a δei are independent. If the Fn

defined by Fn(x) = (1− Yn)x+ YnB(n) are independent with distribution ν, clearly

Zn(x) = (

n∏
j=1

(1− Yj))x+

n∑
k=1

k−1∏
j=1

(1− Yj)

YkB(k)

converges almost surely to the sum of the following converging series

Z =

∞∑
k=1

k−1∏
j=1

(1− Yj)

YkB(k) (1)

and therefore hypotheses of Theorem 3 are met. As a consequence the Dirichlet law D(a0, . . . , ad) is
the unique stationary distribution of the Markov chain (X(n))n≥0 and is the distribution of Z defined
by (1). Finally recall the definition of a perpetuity [5] on an affine space A. Let ν(df) be a probability
on the space of affine transformations f mapping A into itself. We say that the probability µ on A is
a perpetuity (relatively to ν) if X ∼ F (X) when F ∼ ν and X ∼ µ are independent. If the conditions
of Theorem 3 are met for ν, there is exactly one perpetuity relative to ν. Theorem 1 says that the
Dirichlet distribution is a perpetuity for the random affine map F (x) = (1− Y )x+ Y B on the affine
hyperplane A of Rd+1 containing e0, . . . , ed.
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3 Proof of Theorem 1
If f = (f0, . . . , fd) and x = (x0, . . . , xd) we write 〈f, x〉 =

∑d
i=0 fixi. We need a lemma:

Lemma 4. Suppose that ai > 0 for all i = 0, . . . , d and denote a =
∑d
i=0 ai. Let X be valued in the

convex hull Ed+1 of (e0, . . . , ed). The three following conditions are equivalent

1. The random variable X has the Dirichlet distribution D(a0, . . . , ad);

2. for all f = (f0, . . . , fd) such that fi > 0 we have E(〈f,X〉−a) =
∏d
i=0 f

−ai
i ;

3. for all f = (f0, . . . , fd) such that fi > 0 we have E(〈f,X〉−a−1) =
(∏d

i=0 f
−ai
i

)∑d
i=0

ai
afi
.

Proof of Lemma 4. 1 ⇔ 2 is standard (see for instance Proposition 2.1 in [4]). Statement 3 ⇒ 1
is proved in the same way as 2 ⇒ 1 by observing that if X satisfies 3, then X has the moments of
D(a0, . . . , an). A short way to prove 2 ⇒ 3 is to differentiate the formula in 2 with respect to fi,
obtaining

−aE(Xi〈f,X〉−a−1) = −ai
fi

(
d∏
i=0

f−aii

)
.

Summing these equalities for i = 0, . . . , n and using
∑n
i=0Xi = 1 gives 3. �

We now prove Theorem 1. Fixing fi > 0 for i = 0, . . . , dwe can write

E(〈f,B〉−1) =

d∑
i=0

ai
afi

. (2)

Observe also that for −∞ < t < 1 we have

E((1− tY )−a−1) = (1− t)−1. (3)

One way to see this is to apply formula 2 of the Lemma to the Dirichlet random variable (1− Y, Y ) ∼
D(a, 1) and to f0 = 1 and f1 = 1− t. Denote X ′ = X(1− Y ) +BY . We now write

E
(

1

〈f,X ′〉a+1

)
= E

(
(〈f,X〉 − Y 〈f,X −B〉)−a−1

)
= E

(
〈f,X〉−a−1E

(
[1− Y 〈f,X −B〉

〈f,X〉
]−a−1|X,B

))
(4)

= E
(
〈f,X〉−a−1[1− 〈X −B〉

〈f,X〉
]−1
)

= E
(
〈f,X〉−a〈f,B〉−1

)
(5)

=

(
d∏
i=0

f−aii

)
d∑
i=0

ai
afi

= E
(

1

〈f,X〉a+1

)
. (6)

Equation (4) is obtained by conditioning using the independence of X,Y,B; Equality (5) comes from
(3) applied to t = 〈f,X − B〉/〈f,X〉 which is indeed < 1; Equality (6) comes from the independence
of X and B, from (2)and from parts 1 ⇒ 2, 3 of the Lemma. From part 3 ⇒ 1 we get that X ′ ∼ X. �

4 Extension to the quasi Bernoulli distributions
In this section, Theorem 6 generalizes Theorem 1. This choice of order of exposition comes from the
fact that this extension of Theorem 1 is somewhat complicated. We need for this to define in Theorem 5
below the quasi Bernoulli distributions of order k on the tetrahedron Ed+1 with parameters a0, . . . , ad.

3



On the open set Ud+1 = {f = (f0, . . . , fd) ; fi > 0 ∀i} we define the function T (f) =
∏d
i=0 f

−ai
i and

the differential operator

H =

d∑
i=0

∂

∂fi
.

In the following statement (a)k is the Pochhammer symbol (a)0 = 1 and (a)k+1 = (a+ k)(a)k.

Lemma 5. Let X be a random variable of Ed+1 let a0, . . . , ad be a sequence of positive numbers and
let k be a non negative integer. Then X ∼ D(a0, . . . , ad) if and only if for all f ∈ Ud+1 we have

(−1)k(a)kE(〈f,X〉−a−k) = Hk(T )(f). (7)

Proof. The if part is proved by induction. The case k = 0 comes from [4] Proposition 2.1. If it is
correct for k we apply H to both sides of (7) and we use the fact that X0 + . . .+Xd = 1 for claiming
that HE(〈f,X〉−a−k) = −(a + k)E(〈f,X〉−a−k−1). This extends the induction hypothesis to k + 1.
The only if part is proved by the same moment method used in [4] Proposition 2.1 in the particular
case k = 0. �

Formula (7) is crucial for defining our quasi Bernoulli distributions. For simplicity denote L = log T .
Then

H(T ) = TH(L), H2(T ) = TH(L)2 + TH2(L), H3(T ) = TH(L)3 + 3TH2(L)H(L) + TH3(L),

H4(T ) = T (H(L))4 + 6H2(L)(H(L))2 + 4TH3(L)H(L) + 3T (H2(L))2 + TH4(L).

More generally an easy induction on k shows T−1Hk(T ) is a polynomial Pk with respect to Hj(L)
with j = 1, . . . , k with non negative integer coefficients ck(α1, . . . , αk) such that ck(α1, . . . , αk) 6= 0
implies α1 + 2α2 + · · ·+ kαk = k :

T−1Hk(T ) = Pk(H(L), . . . ,Hk(L)) =
∑

α1,...,αk

ck(α1, . . . , αk)H(L)α1 · · · (Hk(L))αk . (8)

Now we observe that for j > 0 we have

Hj(L) = (−1)j(j − 1)!
d∑
i=0

ai

f ji
. (9)

The next theorem defines the quasi Bernoulli distribution Bk(a0, . . . , ad).

Theorem 5. Let a0, . . . , ad > 0 with a =
∑d
i=0 ai. Fix a positive integer k. Then there exists a

unique probability distribution Bk(a0, . . . , ad) for the random variable B on Ed+1 such that for all
fi > 0, i = 0 . . . , d we have

E(〈f,B〉−k) =
1

(a)k

∑
α1,...,αk

ck(α1, . . . , αk)

k∏
j=1

(
(j − 1)!

k∑
i=0

ai

f ji

)αj

(10)

=
1

(a)k

∑
b0,...,bd∈N;b0+···+bd=k

k!

b0! . . . bd!

d∏
i=0

(ai)bi
f bii

. (11)

In particular, if X ∼ D(a0, . . . , ad) we have

E(〈f,X〉−a−k) = E(〈f,X〉−a)E(〈f,B〉−k) (12)

Proof. The uniqueness is easily proved by moments. For proving the existence it is worthy to explain
the idea first by considering the cases k = 1 and k = 2. The case k = 1 gives the familiar Bernoulli
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distribution since for B ∼
∑d
i=0

ai
a δei equality (2) holds. For k = 2 formula (10) becomes

E(〈f,B〉−2) =
1

a(a+ 1)

(
(

d∑
i=0

ai
fi

)2 +

d∑
i=0

ai
f2i

)
=

1

a(a+ 1)

 d∑
i=0

ai(ai + 1)

f2i
+

∑
0≤i<j≤d

2aiaj
fifj

 . (13)

We now make the two observations

• If 0 ≤ i < j ≤ d and if B ∼ λij which is the uniform probability on the edge (ei, ej) of the
tetrahedron Ed+1 we have E(〈f,B〉−2) = 1/fifj .

• The second observation is that 1
a(a+1)

(∑d
i=0 ai(ai + 1) +

∑
0≤i<j≤d 2aiaj

)
= 1.

Therefore we see that B2(a0, . . . , ad) is the mixture

1

a(a+ 1)

 d∑
i=0

ai(ai + 1)δei +
∑

0≤i<j≤d

2aiajλij

 .

We now pass to the general case of an arbitrary k. We slightly extend the definition of a Dirichlet
distribution D(a0, . . . , ad) by allowing ai ≥ 0 instead of ai > 0 while keeping a =

∑d
i=0 ai > 0.

For such a sequence (a0, . . . , ad) we define T = {i ; ai > 0} and D(a0, . . . , ad) has the Dirichlet
distribution concentrated on the tetrahedron ET generated by (ei)i∈T with parameters (ai)i∈T . If
X ∼ D(a0, . . . , ad) the formula E(〈f,X〉−a) =

∏d
i=0 f

−ai
i still holds. If T contains only one element

i0 then D(a0, . . . , ad) is simply δei0 and does not depend on a.
To finish the proof of the theorem, we observe that putting fi = 1 for all i = 0, . . . , d in (8) gives

(−1)k on the left hand side. As a consequence, putting fi = 1 for all i = 0, . . . , d in (10) on the right
hand side gives 1. The right hand side of (10) can be considered as a homogeneous polynomial of
degree k with respect to the variables 1/fi, namely

∑
b1,...,bd

wk(b0, . . . , bd)

d∏
i=0

1

f bii
.

In fact, it will follow from (11) that wk(b0, . . . , bd) = 1
(a)k

k!
b0!...bd!

∏d
i=0(ai)bi and hence they satisfy∑

b1,...,bd

wk(b0, . . . , bd) = 1.

Therefore, once we establish (11) we can claim that Bk(a0, . . . , ad) exists and is the following mixture
of extended Dirichlet distributions

Bk(a0, . . . , ad) =
∑

b1,...,bd

wk(b0, . . . , bd)D(b0, . . . , bd).

To prove (11) recall that (8) and (9) imply that

Hk(T ) = (−1)kT
∑

α1,...,αk

ck(α1, . . . , αk)

k∏
j=1

(
(j − 1)!

k∑
i=0

ai

f ji

)αj

.

Alternatively, applying Hk(T ) directly to the product
∏d
i=0 f)i−ai we see that Hk(T ) is the sum over

all possible choices of k applications of partial derivatives ∂
∂fi

, i = 0, . . . , d to T . If ∂
∂fi

is applied bi
times, i = 0, . . . , d with

∑
bi = k then the result is

(−1)k
d∏
i=0

(ai)bi
fai+bii

= (−1)kT

d∏
i=0

(ai)bi
f bii

.
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Since there are
(

k
b0,...,bd

)
ways of applying ∂

∂fi
bi times for i = 0, . . . , d it follows that

Hk(T ) = (−1)kT
∑

b0,...,bd

k!

b0! . . . bd!

d∏
i=0

(ai)bi
f bii

,

which proves (11).
Finally, formula (12) is a consequence of Lemma 4 and (10). �

Comments. The complexity of Hk(T ) makes the general combinatorial description of Bk(a0, . . . , ad)
difficult. However it is worthwhile to write the details when d = 1 for small values of k. Observe first
that if B = (1−B1, B1) ∼ D(b0, b1), or E(〈f,B〉−b0−b1) = f−b00 f−b11 then B1 ∼ δ0 if b1 = 0, B1 ∼ δ1 if
b0 = 0 and B1 ∼ β(b1, b0) if b0, b1 > 0. As a consequence, if B = (1−B1, B1) has the quasi Bernoulli
distribution Bk(a0, a1), the distribution of B1 has the form

B1 ∼
(a1)k
(a)k

δ0(dx) + gk(x)dx+
(a0)k
(a)0

δ1(dx)

where the function gk is zero outside of (0, 1). The first values of gk(x) on (0, 1) are the following

g1(x) = 0, g2(x) =
2a0a1
a(a+ 1)

, g3(x) =
6a0a1
(a)3

(a0 + 1 + (a1 − a0)x).

??????????????????????? Pawel, here we should put more examples.

Theorem 6. Let a0, . . . , ad > 0 with a =
∑d
i=0 ai.Fix a positive integer k. Consider three independent

random variables X ∼ D(a0, . . . , ad), Y ∼ β(k, a) and B ∼ Bk(a0, . . . , ad). Then X ∼ (1−Y )X+Y B.

Proof. It is quite similar to the proof of Theorem 1. Denote X ′ = (1− Y )X + Y B and take fi > 0.
Then

E(〈f,X ′〉−a−k) = E
(
〈f,X〉−a−k[1− Y 〈f,X −B〉

〈f,X〉
]−a−k

)
(14)

= E
(
〈f,X〉−a−kE

(
[1− Y 〈f,X −B〉

〈f,X〉
]−a−k|X,B

))
(15)

= E
(
〈f,X〉−a−k[1− 〈f,X −B〉

〈f,X〉
]−k
)

= E
(
〈f,X〉−a〈f,B〉−k

)
(16)

= E(〈f,X〉−a−k). (17)

Step (16) comes from the fact that E((1 − tY )−a−k) = (1 − t)−kapplied to t = 〈f,X−B〉
〈f,X〉 < 1. The

proof comes from Lemma 4 part 2 applied to d = 1, (1− Y, Y ) ∼ D(a, k) and f0 = 1 and f1 = 1− t.
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