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WEIGHTED LITTLE BMO AND TWO-WEIGHT INEQUALITIES FOR JOURNE
COMMUTATORS

IRINA HOLMEST, STEFANIE PETERMICHLS, AND BRETT D. WICK*

ABSTRACT. We characterize the boundedness of the commutators [b, T] with biparameter Journé operators
T in the two-weight, Bloom-type setting, and express the norms of these commutators in terms of a weighted
little bmo norm of the symbol b. Specifically, if © and X\ are biparameter A, weights, v := ul/p)\’l/p is
the Bloom weight, and b is in bmo(v), then we prove a lower bound and testing condition [|bllpmo() S
sup||[b, Rf R?] : LP(u) — LP()\)||, where R} and R? are Riesz transforms acting in each variable. Further,
we prove that for such symbols b and any biparameter Journé operators T the commutator [b, T : LP(u) —
LP()) is bounded. Previous results in the Bloom setting do not include the biparameter case and are
restricted to Calderén-Zygmund operators. Even in the unweighted, p = 2 case, the upper bound fills a gap
that remained open in the multiparameter literature for iterated commutators with Journé operators. As a
by-product we also obtain a much simplified proof for a one-weight bound for Journé operators originally
due to R. Fefferman.
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1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

In 1985, Bloom [2] proved a two-weight version of the celebrated commutator theorem of Coifman,
Rochberg and Weiss [3]. Specifically, [2] characterized the two-weight norm of the commutator [b, H| with
the Hilbert transform in terms of the norm of b in a certain weighted BMO space:

I[b; H] = LP (1) = LPN)| = (bl Barow).

where p1, A are A, weights, 1 < p < 0o, and v := pul/PA=1/P Recently, this was extended to the n-dimensional
case of Calderén-Zygmund operators in [11], using the modern dyadic methods started by [19] and continued
n [12]. The main idea in these methods is to represent continuous operators like the Hilbert transform in
terms of dyadic shift operators. This theory was recently extended to biparameter singular integrals in [14].

In this paper we extend the Bloom theory to commutators with biparameter Calderén-Zygmund operators,
also known as Journé operators, and characterize their norms in terms of a weighted version of the little
bmo space of Cotlar and Sadosky [4]. The main results are:
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Theorem 1.1 (Upper Bound). Let T be a biparameter Journé operator on R® = R™ @ R"2, as defined in
Section 7.1. Let i and \ be A,(R™) weights, 1 < p < oo, and define v := p'/PA=Y/P. Then

[[6, T L () = LM S [16llomo(v)»
where ||b]|pmo() denotes the norm of b in the weighted little bmo(v) space on R™.

We make a few remarks about the proof of this result. At its core, the strategy is the same as in [11], and
may be roughly stated as:

(1) Use a representation theorem to reduce the problem from bounding the norm of [b, T to bounding
the norm of [b, Dyadic Shift].
(2) Prove the two-weight bound for [b, Dyadic Shift] by decomposing into paraproducts.

However, the biparameter case presents some significant new obstacles. In [11], T was a Calderén-Zygmund
operator on R™, and the representation theorem was that of Hytonen [12]. In the present paper, T is a
biparameter Journé operator on R” = R™ ® R™? (see Section 7.1) and we use Martikainen’s representation
theorem [14] to reduce the problem to commutators [b, $p|, where $p is now a biparameter dyadic shift.
These can be cancellative, i.e. all Haar functions have mean zero, (defined in Section 7.3), or non-cancellative
(defined in Section 7.4). The strategy is summarized in Figure 1.

The main difficulty arises from the structure of the biparameter dyadic shifts. At first glance, the can-
cellative shifts are “almost” compositions of two one-parameter shifts $p, and $p, applied in each variable
— if this were so, many of the results would follow trivially by iteration of the one-parameter results. Unfor-
tunately, there is no reason for the coefficients ap, g, r, P,0,r, in the biparameter shifts to “separate” into a
product ap,Q,r, * @P,Q;R,, a5 would be required in a composition of two one-parameter shifts. Therefore,
many of the inequalities needed for biparameter shifts must be proved from scratch.

Even more difficult is the case of non-cancellative shifts. As outlined in Section 7.4, these are really
paraproducts, and there are three possible types that arise from the representation theorem:

(1) Full standard paraproducts;
(2) Full mixed paraproducts;
(3) Partial paraproducts.

These methods were considered previously in [17] and [18] for the unweighted, p = 2 case. In [17] it was
shown that

1o, 7] = L(R™) = LART)| < Ibllpmown),

where T is a paraproduct-free Journé operator. This restriction essentially means that all the dyadic shifts
in the representation of T are cancellative, so the case of non-cancellative shifts remained open. This gap
was partially filled in [18], which treats the case of non-cancellative shifts of standard paraproduct type.
So the case of general Journé operators, which includes non-cancellative shifts of mixed and partial type
in the representation, remained open even in the unweighted, p = 2 case. These types of paraproducts are
notoriously difficult — see also [15] for a wonderful discussion of this issue. We fill this gap in Section 7.4,
where we prove two-weight bounds of the type

b, $p] : L7 (1) = LPN) S [1bllomo()s

where $p is a non-cancellative shift. The same is proved for cancellative shifts in Section 7.3.

At the backbone of all these proofs will be the biparameter paraproducts, developed in Section 6, and a
variety of biparameter square functions, developed in Section 3. For instance, in the case of the cancellative
shifts, one can decompose the commutator as

b, 8B = P, $B1f+ > [po, 851 f + Ry 5 /-

Here Py, runs through nine paraproducts associated with product BMO, and py, runs through six paraproducts
associated with little bmo, so we are dealing with fifteen paraproducts in total in the biparameter case.
Some of these are straightforward generalizations of the one-parameter paraproducts, while some are more
complicated “mixed” paraproducts. Two-weight bounds are proved for all these paraproducts in Section 6,
building on two essential blocks: the biparameter square functions in Section 3, and the weighted H' — BM O
duality in the product setting, developed in Section 4. In fact, Section 4 is a self-contained presentation of
large parts of the weighted biparameter BMO theory.
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| 15,71 = L) = PO S [Bllomor

~

Martikainen representation theorem

I, 851 = LP(w) = L2V S [bllomo)

~

with at most polynomial bounds in 1, j.

Cancellative Shifts: Two-weight bounds
for paraproducts:
Theorem 7.2 . i
Section 6
Non-Cancellative
Shifts

Full standard paraproduct:
Theorem 7.3

Full mixed paraproduct:
Theorem 7.4

Partial paraproduct:
Theorem 7.5

FIGURE 1. Strategy for Theorem 1.1

Once the paraproducts are bounded, all that is left is to bound the so-called “remainder term” RU’ f, of
the form Ilg ¢b — $SII#b, where one can no longer appeal directly to the paraproducts. At this point however,
things become very technical, so bounding the remainder terms is no easy task. To help guide the reader,
we outline below the general strategy we will employ. This applies to Theorem 7.2, and in large part to
Theorems 7.3, 7.4, and 7.5:

1. We break up the remainder term into more convenient sums of operators of the type O(b, f), involving
both b € bmo(v) and f € LP(u). We want to show [|O(b, f) : LP () — LP(N)|| < [1bllbmo(w)- Using duality
this amounts to showing that

1{O®, £),9) | S bl Barow) 1 f e llgll e -

2. Some of these operators O(b, f) involve full Haar coefficients b(Q; x Q2) of b, while others involve a
Haar coefficient in one variable and averaging in the other variable, such as (b, hg, x 1g,/|Q2]). Since,
ultimately, we wish to use some type of H! — BMO duality, the goal will be to “separate out” b from
the inner product (O(b, f),g). If O(b, f) involves full Haar coefficients of b, we use duality with product
BMO and obtain

{OW, £),9)| < Ibllsar00) 1506 )20,
where ¢(f, g) is the operator we are left with after separating out b, and Sp is the full biparameter dyadic
square function. If O(b, f) involves terms of the form (b, hg, x Llg,/|Qz2|), we use duality with little bmo,
and obtain something of the form

| <O(ba f)vg> | S Hbemo(V)”SDld)(fv g)”Ll(V)?

where Sp, is the dyadic square function in the first variable. Obviously this is replaced with Sp, if the
Haar coefficient on b is in the second variable.
3. Then the next goal is to show that

Spo(f,9) < (01£)(O29),

where Oy o will be operators satisfying a one-weight bound of the type LP(w) — LP(w). These operators
will usually be a combination of the biparameter square functions in Section 3. Once we have this, we
are done.
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In Theorem 7.2, dealing with cancellative shifts, the crucial part is really step 1. At first glance, the
remainder term R~ -f seems intractable using this method, since it involves average terms (b) 01X Qs instead
of Haar coefﬁments of b. So they key here is to decompose these terms in some convenient form.

In Section 7.4, dealing with non-cancellative shifts, the proofs follow this strategy in spirit, but deviate
as we advance through the more and more difficult operators. The main issue here is that we are are really
dealing with terms of the form | (O(a,b, f),g)|, where now the operator O involves a function b in the
weighted little bmo(v), and a function a in unweighted product BMO. In the most difficult case of partial
paraproducts, a is even more complicated, because it is essentially a sequence of one-parameter unweighted
BMO functions. In all these cases, the creature ¢ in the last step is really ¢(a, f,g). While in the previous
case involving @(f, g) it was straightforward to see the correct operators 07 2 to achieve step 5, in this case
nothing straightforward seems to work.

There are two key new ideas in these cases: one is to combine the cumbersome remainder term with a
cleverly chosen third term, which will make the decompositions easier to handle. The other is to temporarily
employ martingale transforms — which works for us because this does not increase the BMO norms. We
briefly describe the three situations below. As above, we will be rather non-rigorous about the notations in
this expository section. There is plenty of notation later, and the purpose here is just to explain the main
ideas and guide the reader through the technical proofs in Section 7.4.

1. The full standard paraproduct — Theorem 7.3. This case only requires simple martingale transforms
(ar and g, which have all non-negative Haar coeflicients), and otherwise follows the strategy outlined
above. However, we already start to see the operators O; 2 becoming strange compositions of “standard”
operators and unweighted paraproducts, such as

Sp¢ < (MsIL, _g-)(Spf).

2. The full mized paraproduct — Theorem 7.4. Here we introduce the idea of combining the remainder term
IIg b — $11b with a third term T, and we analyze (Ilgb—T') and (T' — $I1b) separately. This allows us
to express the remainder as

ST Paplf + TV F TGV S,

a sum of commutators of paraproduct operators, and a new remainder term. The new remainder has no
cancellation properties, so we prove separately that the Ty, operators satisfy

[(Tanf, 90 | S Nollomoq) 1 £ o) 191 o (xr)-

Here is where we employ the strategy outlined earlier, combined with a martingale transform a, applied
to a. Interestingly, this transform depends on the particular argument f of [b, $p]f. This will be absorbed
in the end by the BM O norm of the symbol for $p, so ultimately the choice of f will not matter.

3. The partial paraproducts — Theorem 7.5. Here we again combine the remainder terms with a third term
T, and this time end up with terms of the form ppF', where F' is a term depending on a and f. So we are
done if we can show that || F||zs(,) < [|fllzr(n). Without getting too technical about the notations, we
reiterate that here a is not one function but rather a sequence apgr of one-parameter unweighted BMO
functions. So the difficulty here is that the inner products look something like

(Fg) = > (W0 )

where each summand has its own BMO function! The trick is then to write this as Y (apgr, ¢ror(f,9))-
The happy ending is that these functions apgr have uniformly bounded BMO norms, so at this point
we apply unweighted one-parameter H! — BM O duality and we are left to work with ||Spe(f, Dl wny;
this is manageable. In one case, we do have to work with F; instead, which is again obtained by applying
martingale transforms chosen in terms of f — only this time to each function apgr.

Finally, we see no reason why this result cannot be generalized to k-parameter Journé operators. The
main trouble in such a generalization should be strictly computational, as the number of paraproducts will
blow up.

In section 8 we recall the definition of the mixed BMOz classes in between Chang-Fefferman’s product
BMO and Cotlar-Sadosky’s little BMO. In the same way as in [17] we deduce a corollary from Theorem 1.1:
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Theorem 1.2 (Upper bound, iterated, unweighted case). Let us consider [RJ, d= (di,...,ds) with a partition

T = (Is)1<s<i of {1,...,t}. Let b € BMOz(R?) and let Ty denote a multi-parameter Journé operator acting
on function defined on ®kels R . Then we have the estimate

”[Tlv s [Tlv b] . ']”LP(RJ)‘)LP(RJ) S HbHBMoI(RJ)'

Coming back to the Bloom setting, we prove the lower estimate below, via a modification of the unweighted
one-parameter argument of Coifman-Rochberg-Weiss.

Theorem 1.3 (Lower Bound). Let i, A be A,(R™ x R™) weights, and set v = p*/PA=Y/P. Then

16llbmo() S | Sup 16, RER7 || Lo ()27 (A

<k,I<n
where R} and R? are the Riesz transforms acting in the first and second variable, respectively.

This lower estimate allows us to see the tensor products of Riesz transforms as a representative testing
class for all Journé operators.

We point out that in our quest to prove Theorem 1.1, we also obtain a much simplified proof of the
following one-weight result for Journé operators, originally due to R. Fefferman:

Theorem 1.4 (Weighted Inequality for Journé Operators). Let T be a biparameter Journé operator on
R? = R™ @ R"2. Then T is bounded LP(w) — LP(w) for all w € A,(R"), 1 < p < co.

A version of Theorem 1.4 first appeared in R. Fefferman and E. M. Stein [6], with restrictive assumptions
on the kernel. Subsequently the kernel assumptions were weakened significantly by R. Fefferman in [7], at
the cost of assuming the weight belongs to the more restrictive class A, 5. This was due to the use of his
sharp function T# f = Ms( f2)1/ 2, where My is strong maximal function. Finally, R. Fefferman improved
his own result in [8], where he showed that the A, class sufficed and obtained the full statement of Theorem
1.4. This was achieved by an involved bootstrapping argument based on his previous result [7].

Our proof in Section 7.5 of Theorem 1.4 is significantly simpler. This may seem like a “rough sell” in
light of the many pages of highly technical calculations that precede it. However, our proof of Theorem 7.5
is only based on one-weight bounds for the biparameter dyadic shifts, of the form

(1.1) I8« LP(w) — LP(w)]| < 1.

These had to be proved along the way, as part of our proof of the two-weight upper bound for commutators,
Theorem 1.1. These one-weight bounds are useful in themselves, and their proofs are not that long: the
proof for cancellative shifts, given in (7.2), is easy, and the proof for the non-cancellative shifts of partial
paraproduct type is given in Proposition 7.6. Once we have (1.1), the proof of Theorem 1.4 follows imme-
diately from Martikainen’s representation theorem — just as in the one-parameter case, a weighted bound
for Calderén-Zygmund operators follows trivially from Hytonen’s representation theorem, once one has the
one-weight bounds for the one-parameter dyadic shifts.

The paper is organized as follows. In Section 2 we review the necessary background, both one- and bi-
parameter, and set up the notation. In Section 3 we set up the types of dyadic square functions we will
need throughout the rest of the paper. In Section 4, we discuss the weighted and Bloom BMO spaces in the
biparameter setting, and use some of these results in Section 5 to prove the lower bound result. Section 6 is
dedicated to biparameter paraproducts, which will be crucial in the final Section 7, which proves the upper
bound by an appeal to Martikainen’s [14] representation theorem. Finally, we prove Theorem 1.4.

2. BACKGROUND AND NOTATION

In this section we review some of the basic building blocks of one-parameter dyadic harmonic analysis on
R™, followed by their biparameter versions for R” := R"* ® R™2.

2.1. Dyadic Grids on R". Let Dy := {27%([0,1)" +m) : k € Z,m € Z™} denote the standard dyadic grid
on R™. For every w = (w;);jez € ({0,1}")% define the shifted dyadic grid D,

D, = {Q-Fw:QEDO}, whereQ—i—w:zQ—i— Z 27w,
3277 <U(Q)
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and [(Q) denotes the side length of a cube Q. The indexing parameter w is rarely relevant in what follows:
it only appears when we are dealing with £, — expectation with respect to the standard probability measure
on the space of parameters w. In fact, an important feature of the (by now standard) methods we employ in
this paper is obtaining upper bounds for dyadic operators that are independent of the choice of dyadic grid.
The focus therefore is on the geometrical properties shared by any dyadic grid D on R™:

e PNQ e {P,Q,0} for every P,Q € D.
e The cubes Q € D with [(Q) = 27%, for some fixed integer k, partition R™.

For every (Q € D and every non-negative integer k£ we define:

e Q) — the k" generation ancestor of Q in D, i.e. the unique element of D which contains @ and has
side length 2%1(Q).

e (Q)1. — the collection of k" generation descendants of @ in D, i.e. the 2*" disjoint subcubes of Q
with side length 27%1(Q).

2.2. The Haar system on R". Recall that every dyadic interval I in R is associated with two Haar

functions:

1 1
hY = —=(1;- — 11,) and hj :=

VI VI
the first one being cancellative (it has mean 0). Given a dyadic grid D on R”, every dyadic cube @ =
Iy x ... x I, where all I; are dyadic intervals in R with common length [(Q), is associated with 2" — 1
cancellative Haar functions:

]]-17

ho(@) = By e (e, wn) = [ 07 (@),
=1

where € € {0, 1}"\ {(1,...,1)} is the signature of hy,. To simplify notation, we assume that signatures are
never the identically 1 signature, in which case the corresponding Haar function would be non-cancellative.
The cancellative Haar functions form an orthonormal basis for L?(R"). We write

F=> F@)hy,

QeD

where f(QE) = <f, hEQ>, (f,g) = f[R" fgdz, and summation over € is assumed. We list here some other
useful facts which will come in handy later:

e h5%(x) is constant on any subcube @ € D, Q C P. We denote this value by h%(Q).
e The average of f over a cube Q € D may be expressed as:

(2.1) No= Y. FPII5Q).
PeD,P2Q
e Then, if Q C Re D:

o~

(2.2) o= (Hr= D FPI(Q).
PED:QCPCR
e For Q € D:

~

(2.3) Lo(f = (Nlg)= Y. F(P)S%.

PeD:PCQ

e For two distinct signatures € # ¢, define the signature € + § by letting (¢ + §); be 1 if ¢; = §; and 0
otherwise. Note that e+ 4 is distinct from both € and 8, and is not the identically 1 signature. Then

1 1
hohdy = —=hg, if € # 8, and hhg = —2.
¢ Vo Q)
Again to simplify notation, we assume throughout this paper that we only write hz;"s for distinct
signatures € and 9.
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Given a dyadic grid D, we define the dyadic square function on R™ by:

Spf(x) = ( > |f(Q€)I21Q—(x)>1/2.

P Q]
Then || f]l, > ||Spfl|p for all 1 < p < co. We also define the dyadic version of the maximal function:
Mp f(z) = sup (|f])q Lo(x)-
QeD
2.3. Ap(R™) Weights. Let w be a weight on R™, i.e. w is an almost everywhere positive, locally integrable
function. For 1 < p < oo, let LP(w) := LP(R™;w(z) dz). For a cube @ in R™, we let

w(Q) = /Qw(a:) dr and (w)q = %

We say that w belongs to the Muckenhoupt A,(R™) class provided that:
p—1

[w]a, = sup (w)g <w1"">Q < o0,

where p’ denotes the Holder conjugate of p and the supremum above is over all cubes @ in R™ with sides
parallel to the axes. The weight w' := w'™?" is sometimes called the weight “conjugate” to w, because
w € A, if and only if w’ € Ay .

We recall the classical inequalities for the maximal and square functions:

M fll Loy S 112wy and || fll o) =2 1SDfI Le(w)s

for all w € Ap(R™), 1 < p < oo, where throughout this paper “A < B” denotes A < ¢B for some constant ¢
which may depend on the dimensions and the weight w. In dealing with dyadic shifts, we will also need to
consider the following shifted dyadic square function: given non-negative integers ¢ and j, define

syre= [T (X Fe) (3 ey

ReD Pe(R); QE(R);

It was shown in [11] that
(2.4) 1S3« LP(w) — LP(w)]| S 250,

for all w € A,(R™), 1 < p < 0.
A martingale transform on R™ is an operator of the form

frfri= Y R (PR,
PeD

where each 7§ is either +1 or —1. Obviously Spf = Spf-, so one can work with f, instead when convenient,
without increasing the LP(w)-norm of f.

2.4. The Haar system on R”. In R” := R™ ® R"?, we work with dyadic rectangles
DZ:D1 XDQZ{R:leQQIQiEDi},

where each D; is a dyadic grid on R™. While we unfortunately lose the nice nestedness and partitioning
properties of one-parameter dyadic grids, we do have the tensor product Haar wavelet orthonormal basis for
L?(R™), defined by

h%(:vl,:vg) = h2211 (Jil) & h;;)22 ($2)a
forall R=0Q1 x Q2 € D and €= (€1, €2). We often write

f= > JQF xQe)hg, @ h3,,

Q1XQ2

short for summing over @)1 € Dy and @2 € Ds, and of course over all signatures, where

FQ % Q) = (108, @G,) = | Flor w2, (e, (22) dan d
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While the averaging formula (2.1) has a straightforward biparameter analogue:

Naoxa. = 2. FPF x PSR (Qu)hE,(Q2),

P12Q1; P22Q2

the expression in (2.3) takes a slightly messier form in two parameters: for any R = Q1 X Q2

Le(f = (f)p) = > F(P* x Ps)hi @ h%
P1CQ1
P,CQ2

1 1
(2.5) + Y <f, ﬁ ® hp> Lo, ®h% + Y. <f, hg ® |QQ;| > hg © 1,
P,CQ2 PiCQa
= > (P x P @ b + Lrlmg, f(w2) — (f) gl + Lrlme, f(21) = (£)4),

P1CQ1
P>CQ2

where for any cubes @Q; € D;:

1
— ,22) das.
Q2] Jo, flo,22) da

As we shall see later, this particular expression will be quite relevant for biparameter BMO spaces.

(2.6) mq, f(z2) = L f(z1,x2) dz1, and mgq, f(x1) :=
Q1] Ja,

2.5. A,(R") Weights. A weight w(x1,22) on R™ belongs to the class A,(R™), for some 1 < p < oo, provided
that

[wla, = sup w) . <w1*p,>R_ < 0,

where the supremum is over all rectangles R. These are the weights which characterize L?(w) boundedness
of the strong maximal function:

Ms f(21,72) = sup (1f1) g Lr(21, 72),

where the supremum is again over all rectangles. As is well-known, the usual weak (1,1) inequality fails for
the strong maximal function, where it is replaced by an Orlicz norm expression. In the weighted case, we

have [1] for all w € A, (R7):
(LY (1 g LY

Moreover, w belongs to A,(R™) if and only if w belongs to the one-parameter classes A,(R™) in each
variable separately and uniformly:

(2.7) w{z € R" : Mgf(x) > A} < /[Rﬁ

(W] 4, (r7) ~ max { esssup(w(z1, -)]a, (rr2), esssup[w(-, ¥2)]a, rm) }

x1ER™1 xo€R™2
It also follows as in the one-parameter case that w € A,(R7) if and only if v’ := w'™? € A, (R7), and
LP(w)* ~ L¥ (w'), in the sense that:
(2.8) £l 2oy = sup{| (f.9) | - g € L (W), llgll Lo 0y < 1}-

We may also define weights mq, w and mg,w on R”> and R™, respectively, as in (2.6). As shown below,
these are then also uniformly in their respective one-parameter A, classes:

Proposition 2.1. If w € A,(R"), 1 < p < oo, then mg,w € A,(R™) and mg,w € A,(R™) for any cubes
Qi C R™, with uniformly bounded A, constants:

(Mm@, w]a, &) < [W]a, &)

for all Q; CR™, i€ {1,2},i+#j.
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Proof. Fix a cube Q1 C R™. Then for every x5 € R™2,

1/p 1/p'
Q1] :/ ldzy < (/ w(I17$2>dI1> </ w’(m,xz)dl‘l) )

(ma,w) (x2) = (mg,w)' ™ () < mg,w' (x2).
Then for all cubes Q2 C R™2,

and so

-1 -1
<mQ1w>Q2 <(mQ1w)/>pQ2 < <w>Q1 X Q2 <w/>gl X Q2 < [w]AP([Rﬁ)u
proving the result for mg, w. The other case follows symmetrically. O

Finally, we will later use a reverse Holder property of biparameter A, weights. This is well-known to
experts, but we include a proof here for completeness.

Proposition 2.2. If w € A,(R"), then there exist positive constants C,e,6 > 0 (depending only on i, p,
and [w]y (g)), such that

i). For all rectangles R C R",

1 e
— | w(x)tdx < —/ w(x) dz
|R|/R ) Bl Jr

ii). For all rectangles R C R™ and all measurable subsets E C R,

s <o)

Proof. Note first that ii). follows easily from ). by applying the Holder inequality with exponents 1+ € and
= in w(E) = [pw(x)de. This gives ii). with § = 5.
In order to prove i ) we first recall a more general statement of the one-parameter reverse Holder property
of A, weights (see Remark 9.2.3 in [9]):
For any 1 < p < oo and B > 1, there exist positive constants

(29) D:D(napo) andﬂ:ﬂ(n,p,B)
such that for all v € Ap(R™) with [v] 4, gn) < B, the reverse Hélder condition

1 ()18 v D v
(2.10) (|Q|/Q ) dt) < 1o /. v

holds for all cubes Q C R™.
It is easy to see that if a weight v satisfies the reverse Holder condition (2.10) with constants D, 3, then it
also satisfies it with any constants C,e with C > D and € < .
Now let w € A,(R"™), set B := [w] 4, (r7), and for i € {1,2} let D; := D(n;,p, B) and B; := B(n;,p, B) be
as in (2.9). Fix a rectangle R = Q1 X @2, a measurable subset E C R, and set

C? := max(D, Dy) and € := min (8, B2).

For almost all z; € R™, the weight w(wz1,-) € A,(R"?) with [w(x1,-)]a, &) < B, so w(x1,-) satisfies reverse
Holder with constants Ds, 82 — and therefore also with constants v/C,e. So

1
YFede = — (—w(zl,xg)He dxg) dx
|R] / Q1] Jo, \ Q2]

1 \/6 >1+e
< — — w(zy1,T2) dx dx
<1 o, (i [, vovaaen) o
O(1+e)/2

=T [ (mguu(a) e day.

Q11 Jo,
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By Proposition 2.1, the weight mg,w € A,(R™) with [mq,w]a,®n1) < B, so this weight satisfies reverse
Hélder with constants Dy, 31 — and therefore also with constants v/C, e. Then the last inequality above gives

that
1/ 1+ )H C C/
— [ w(x) " dx < — mg,w(x1)dr; = — [ w(z)dz.
CIRE Qul Jo, ") =1 [ )

3. BIPARAMETER DYADIC SQUARE FUNCTIONS

Throughout this section, fix dyadic rectangles D := D; x Dy on R”. The dyadic square function associated
with D is then defined in the obvious way:

Lr(x1,x2) 1/2
Spf(z1,22) (Z |F(R))P =2 )

oD IRl

We also want to look at the dyadic square functions in each variable, namely

)\ /2 SN2
Souferee)i= (3 G I@PIT) s snu () = (X 1 @0PR ) |

Q1€D, |Q1| Q2€Ds |Q |

where for every @; € D; and signatures ¢;, we denote

Hy f(x2) = - [, 22)hg (1) ds He, f(21) = - f(@1, 22)hg, (22) dos.

Then for any w € A,(R"?):
I fll ey = 15D fllLew) = 19Dy fllLow) = 19D, fll Lo (w)

More generally, define the shifted biparameter square function, for pairs i = (i1,12) and j = (j1,j2) of
non-negative integers, by:

s s[5 (5 ) (2 o)

R1€D,y P E(R )w Q E(R )
R2€D2  pye(Ry) Qse(Ra)

We claim that:

(3'2) ”5%3 . Lp(w) N Lp(w)H < 2%(%’14—]‘1)2%(1’2-‘:-]’2),

for all w € A,(R"), 1 < p < co. This follows by iteration of the one-parameter result in (2.4), through the
following vector-valued version of the extrapolation theorem (see Corollary 9.5.7 in [9]):

Proposition 3.1. Suppose that an operator T satisfies | T : L*(w) — L*(w)| < AC,[w]a, for all w €
As(R™), for some constants A and C,,, where the latter only depends on the dimension. Then:

1/2 max(1,—L-) 1/2
(DTJ;F) < AC[u] 37 (zw) |
J LP(w) J LP(w)

or allw € A,(R™), 1 <p < oo and all sequences {f;} C LP(w), where C’ is a dimensional constant.
P J n

Proof of (3.2). Note that (S f)2 = Y. cp. (S92 Fi, )2, where

Froe)= ¥ (5 Ifer ) (% 1%(31))1/2@%(:62)-

PoeDo P1€(R1)il Q1€(R1)]‘1

IS8 1= [ (
R™1 R7™2

Then

p/2
e J2FRI (3:1,3:2))2> w(x1,x2) drg dry.
Ry ED
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For almost all fixed z1 € R™, w(zx1,-) is in A,(R™) uniformly, so we may apply Proposition 3.1 and (2.4)
to the inner integral and obtain:

I8 <2200 [ ] (5
R™1 R"2

Now, we can express the integral above as

p
/ / < S g ( x1,x2)> w(y, w2) day dey 272 | P,
R™2 R™1

p/2
|Fr, (xl,x2)|2) w(xy, x2) dre day.
R1€Dy

where fr =) p . p, |f(P61 x Py?)|h ® hi, is just a biparameter martingale transform applied to f, and
therefore || f | Lrw) = || f+]|Lr(w) by passing to the square function. O

3.1. Mixed Square and Maximal Functions. We will later encounter mixed operators such as:

1/2
SM ) i= | 3 (ato, (1) 222 )
Q1€D,
1/2
MStena) = | 3 (Mo N e) 272

Q26D

Next we show that these operators are bounded LP(w) — LP(w) for all w € A,(R™). The proof only relies
on the fact that the one-parameter maximal function satisfies a weighted bound. So we state the result in
a slightly more general form below, replacing Mp, and Mp, by any one-parameter operator that satisfies a
weighted bound.

Proposition 3.2. Let T denote a (one-parameter) operator acting on functions on R™ that satisfies ||T :
L?(v) — L2(v)|| < C for all v € A2(R™). Define the following operators on R™:

1/2

[ST]f(z1,22) = Z (T(Hglf)(l‘2))2 ]1(»|2é2(1$|1) ,
Q1€D,

- 1/2

s = | 2 (T0gne) )
Q2€D>

where T acts on R™ in the first operator, and on R™ in the second. Then [ST]| and [TS] are bounded
LP(w) — LP(w) for all w € Ay(R").

Proof.
c I, (21))*)""?
71 = [ [ (3 (10306 2 ) ) o) doa o
R™ JR™2 N\ g, €D, @ |Q1|
1 p/2
/ / ( H81)2(x2) Ql(xl)) w(x1,x2) drs dry
R™1 JR™2 Q.€D: |Q1|
= ||SD1fH]Zp(w) S HfHLp( )

where the first inequality follows as before from Proposition 3.1. The proof for [T'S] is symmetrical. 0

More generally, define shifted versions of these mixed operators:
1/2

[ST]il’jlf($1,$2) = Z ( Z T(H;f)(x2)> Z ]l(fé?(jl) )

Ri€D1 *Pie(R1)i Q1€(R1)j,
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1/2
2
_ 1o, (x
[TS]”’DJC(‘TM‘TQ) = Z ( Z Hez )> Z (Tz?( |2)
R2€D2 ~ P2€(R2)4, Q26€(R2)j, 2
Under the same assumptions on 7', it is easy to see that
(83)  [ISTI™ : LP(w) — LP(w)]| S 2% G+ and ||[TS]7 : L7 (w) — LP(w)]| § 25 (2+2),

for all w € A,(R™). Specifically,

ISTI 1y = [ 1S5 For ) o, where Flay,2) = Y T 1) w2)hi o),
P eDy

so [[STT9 oy S 272 OHID| F|| Loy Now, [|Fl| Loy 2= 150, Fllowy = IISTIf o) S 1l Lo

4. BIPARAMETER WEIGHTED BMO SPACES

Given a weight w on R™, a locally integrable function b is said to be in the weighted BMO(w) space if
lssonn = sup oo | 160) = g o < o0

where the supremum is over all cubes @ in R™. If w = 1, we obtain the unweighted BM O(R") space. The
dyadic version BMOp(w) is obtained by only taking supremum over @ € D for some given dyadic grid D
on R™. If the weight w € A,(R™) for some 1 < p < 0o, Muckenhoupt and Wheeden show in [16] that

1/p’
(4.1) 18]l 531000y = 16l at0wrr = ( / b= () ¥ dw>,

where w’ is the conjugate weight to w. Moreover, if w € A3(R™), Wu’s argument in [21] shows that
BMOp(w) ~ H}(w)*, where the dyadic Hardy space Hj,(w) is defined by the norm
91l e, () = 15D O L1 (1) -
Then
(4.2) 16 0) | S 16l A0 () | 9D L1 ), for all w € Ap(R™).

Now suppose g and A are A,(R™) weights for some 1 < p < oo, and define the Bloom weight v :=
p'/PA=1/P As shown in [11], the weight v € A3(R™), which means we may use (4.2) with v. A two-weight
John-Nirenberg theorem for the Bloom BMO space BMO(v) is also proved in [11], namely

16l Brrow) = 1Bl Bro(uap) = 10l BAroO 0 91

1/p
15l 3r00enp) = ( = / b— () I” dx) ,

1/p’
16l BMO( ) = SU p(/\, / |b— le du> )

We now look at weighted BMO spaces in the product setting R” = R™ ® R™2. Suppose w(z1, ) is a
weight on R”. Then we have three BMO spaces:

where

e Weighted Little bmo(w): is the space of all locally integrable functions b on R” such that

Hbemo(w) Sup / |b R | dx < 00,

where the supremum is over all rectangles R = Q1 x Q2 in R”. Given a choice of dyadic rectangles
D = Dy x Ds, we define the dyadic weighted little bmop(w) by taking supremum over R € D.
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e Weighted Product BMOp(w): is the space of all locally integrable functions b on R™ such that:

1/2
1 ~ 1
||b||BMOD(w) =Sup | —A5 Z |b(R)|2— < o0,
o \w(©) RCQ:ReD (W) g

where the supremum is over all open sets Q C R” with w(Q) < oc.
o Weighted Rectangular BM Op grec(w): is defined in a similar fashion to the unweighted case — just
like product BMO, but taking supremum over rectangles instead of over open sets:

1/2
] - 1
b — - bTé 2—
TP P—— sgp<w<R>Z'( ) <w>T> |

TCR

where the supremum is over all rectangles R, and the summation is over all subrectangles T' € D,
T CR.

We have the inclusions
bmop(w) € BMOp(w) € BMOp, gec(w).

Let us look more closely at some of these spaces.

4.1. Weighted Product BMOp(w). As in the one parameter case, we define the dyadic weighted Hardy
space Hip(w) to be the space of all ¢ € L'(w) such that Sp¢ € L'(w), a Banach space under the norm
912y (wy = [1SDA L1 (w)- The following result exists in the literature under various forms, but we include
a proof here for completeness.

Proposition 4.1. With the notation above, Hi(w)* = BMOp(w). Specifically, every b € BMOp(w)
determines a continuous linear functional on Hi(w) by ¢ — (b, ¢):

(4.3) [(0, D) S 1Bl BArOD () [1SD PN L1 (10 5
and, conversely, every L € Hi(w)* may be realized as Lo = (b, ¢) for some b € BMOp(w).

Proof. To prove the first statement, let b € BMOp(w) and ¢ € Hi(w). For every j € Z, define the set
Uj == {z € R" : Spé(z) > 27}, and the collection of rectangles R; := {R € D : w(RNU;) > tw(R)}.
Clearly Uj+1 C Uj and Rj+1 C Rj. Moreover,
(4.4) > Yw(U;) = [1Sp6| 11 (),
Jj€z

which comes from the measure theoretical fact that for any integrable function f on a measure space (X, p):
[l ~ 2 jez 2 pf € X2 |f(2)] > 27}

As shown in Proposition 2.2, there exist C,d > 0 such that w(B) < C’(

w(R)
measurable subsets F C R. Define then for every j € Z the (open) set:

1E|

s
I RI) , for all rectangles R and

1/6
V= {x c R - Ms]lUj (;C) > 9}, where 0 := (%) .

First note that if R € R;, then

< ’LU(RQUJ) SC(|RQUJ|

P
1
2 w(R) |R| > ’Soe<<]lUj>R§MS]lUj(:1?),for all z € R.

Therefore

(4.5) U rcv,.
RER;

Using (2.7), we have that

1 1\ k-1
(4.6) w(V;) S /U o <1 +log™ 5) dw ~ w(U;).
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Now suppose R € D but R ¢ |J;c, Rj. Then w(R N {Sp¢ < 27}) > jw(R) for all j € Z, and so
w(RN{Spop=0}) =w | (| RN{Spp <277} | > Su(R).
j=1

Then {Sp¢ =0} > |[RN{Sp¢p = 0} > 0|R| > 0, and we may write

~ ~ 1 1
R 2: R 2 R d < — S 2d :O
9| /{s,,¢_0} Ly e :v_e/{sw_o}( o)’ do
So

(4.7) #(R)=0,forall ReD, R ¢ | J R;.
jez

Finally, if R € ..z R;, then

jeZ
=w(RN{Spp = oc}) = lim w(RN{Spp > 27}) > %w(R),
J—00

a contradiction. In light of this and (4.7),

> b(R)|6(R oY pR)e®R)

ReD JEZ RERJ'\R]'+1

S % |3<R>|2ﬁ SRR (w)y

JEZ \RER;j\R;+1 RER;\Rj+1

IN

To estimate the first term, we simply note that

3 b(R)|?—— < 3 (R > IZ(R)IQﬁ <0l B a0 ()@ (V)

RER;\R; 41 RER; >R RCVj;RED

where the second inequality follows from (4.5). For the second term, remark that any R € R;\ R ;41 satisfies
R C Vj and w(R\ Uj31) > 2w(R). Then

SRR (w)y

RER]'\R]'+1 RERj\Rj+1

2/V 3 |<>||R|d

i\Uj+1 RER;\Rj+1

< 2 / (Spd)? dw < 25w(V;),
Vi\Uj+1

2 3 ettt

IN

since Sp¢ < 2771 off U;41. Finally, we have by (4.6):
> BR)GR) S bl saonw) Y 2w(Vi) = bl smopw) D 2w(U;).
ReD JjEZ JjeZ

Combining this with (4.4), we obtain (4.3).
To see the converse, let L € Hi(w). Then L is given by Lo = (b, ¢) for some function b. Fix an open set
Q with w(Q) < co. Then

1/2
2 1 N

S p®P——] < sw > b(R)G(R)|,

w
RCO,RED (W) g 181h2(0,uw) <1 | RCQ,RED

where [|9]12(q,.) = 2 rco,reD |6(R)|2 (w) . By a simple application of Hélder’s inequality,

> RGBS LNl Dl wy < ILI ()2 (18 ]li2 (0,0

RCQ,RED
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30 [|bll Brrop (w) S 1L
|

4.2. Weighted little bmop(w). In this case, we also want to look at each variable separately. Specifically,
we look at the space BMO(wy,x2): for each xo € R™2, this is the weighted BMO space over R™*, with
respect to the weight w(-, z2).

BMO(w1,z2) := BMO(w(-,z2); R"), for each zo € R™2.
The norm in this space is given by
1
(Ql, T2

160 22) | BAO (w1 ,20) = SUP

)/ b(z1, 22) — M@, b(z2)| dx1,

where

1
w(Q1,x2) :z/ w(x1,z2)dzr and mg,b(zg) := —— b(xy1,z2) day.
1 |Q1| Q1

The space BMO(w2, x1) and the quantities w(Q2, z1) and mq,b(z1) are defined symmetrically.

Proposition 4.2. Let w(z1,x2) be a weight on R™ = R™ ® R"2. Then b € L}, (R") is in bmo(w) if and
only if b is in the one-parameter weighted BMO spaces BMO(w;, ;) separately in each variable, uniformly:

1161l 6mo(w) ~ max {GSS sup [|b(z1, )| BMO(ws,z1); €SSSUDP ||b('7332)||BMO(w1,12)} :
xr1€ER™1 ro€ER™2

Remark 4.3. In the unweighted case bmo(R"), if we fixed 72 € R"2, we would look at b(-,z2) in the space
BMO(R™) — the same one-parameter BMO space for all x5. In the weighted case however, the one-parameter
space for b(-, z2) changes with x2, because the weight w(-,z2) changes with xs.

Proof. Suppose first that b € bmo(w). Then for all cubes Q1, Qa:

Blonocr > wirsgm o 110022 = (g, cg dezden
m/@ b1, 22) — (B, xq, d7a| d1,
o
(48) [ maubten) = G, qu e < 2L ol

Now fix a cube Q2 in R™2 and let fg,(z1) := fQ [b(x1, 22) — m@g,b(x1)| dze. Then for any Q1:

Uada, < i o [ 1ena2) — Baualdet o [ ] imasbie) - (Bg,q. e

Wllbllbmom) + I%: Im@,b(21) = (b)g, xq, | 421

< 2200 ) = 2 0(Qa. g, Pl

where the last inequality follows from (4.8). By the Lebesgue differentiation theorem:
faQ. (.%'1) = Q}iinzl <fQ2>Q1 < 2Hb||bm0(w) Q}iinml <w(Q27 ')>Q1 = 2||b||bmo(w)w(Q2u 1),

for almost all z; € R™, where Q1 — x1 denotes a sequence of cubes containing x; with side length tending
to 0.

We would like to say at this point that [|b(z1,")||Brro(ws,er) = SUPg, mf@ (21) is uniformly (a.a.
21) bounded. However, we must be a little careful and note that at this point we really have that for every
cube @2 in R™2, there is a null set N(Q2) C R™ such that

f@a (1) < 2[b|lpmo(w)w(Q2, x1) for all z1 € R™ \ N(Q2).
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In order to obtain the inequality we want, holding for a.a. x1, let N := UN (@/2) where Q\/Q are the cubes
in R™ with rational side length and centers with rational coordinates. Then N is a null set and f@; (x1) <

2Hb||bmo(w)w(@/2, x1) for all z; € R"*\ N. By density, this statement then holds for all cubes Q2 and z1 ¢ N,
SO

€SS sup ||b($1, ')”BMO(wQ,ml) < 2||b||bmo(w)
x1 ER™1

The result for the other variable follows symmetrically.
Conversely, suppose

||b($1, ')”BMO(wg,;El) S Cl for a.a. I, and ||b('ax2)||BMO(w1,;E2) S CQ for a.a. Zo.

Then for any R = @1 X Q2:
Jp=nlar < [ ] pa) —mauelde s [ 1Qulmaben) ~ Blo, s,
1 2 1
/ CQU)(QQ,Il)dI1 —|—/ / |b({E1,I2) —leb(I2)|d{E2 dxl
Ql 1 2

IN

IN

Cow(R) + 0 Crw(Q1, x2) dxy
= (C1+Cw(R),

SO

”b”bmo(w) < 2max {ess sup ||b(:E1, ')HBMO(wz,m); €88 ?Qup ||b(7 "E2)||BMO(w1,x2)} :
x2€ER™2

z1€R™1L
|
Corollary 4.4. Let w € A3(R™) and b € bmop(w). Then
| <b7 ¢> | S ||b||bmoD(w)HS'D1'¢||L1(U;)7
for all i € {1,2}.
Proof. This follows immediately from the one-parameter result in (4.2) and the proposition above:
.01 < [ 106 e [ do
n1
S [ I ai0m, oo 12201010
n1
S [10lbmo(u) 15D Bl 1 ()
and similarly for Sp, . O

We now look at the little bmo version of (4.1).

Proposition 4.5. If w € A,(R") for some 1 < p < oo, then

1 , 1/17/
Bllomotur 2 [1Bllbmouwnr = — =) .
Blmsnr = Pty =500 (i [ o= 00 ')

Proof. By Proposition 4.2 and (4.1):

16/l mo(w) = max {ess sup [[b(z1, )| BMO(w (a1, );p); €sssup [[b(, wz)IIBMow(-,mz);p/)} :
x1ER™1 xro ER™2

Suppose first that b € bmo(w;p’). Note that for some function g on R” and a cube Q2 in R"2, we have

’

p

/ 1
Py dxo > __
/2 |g(z1, 22)|P W' (21, 2) dxo > w(Qa,z1)P 1

/ g(x1,x2) dxo
Q2
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Then

1 1
> b — (b d d
H Hbmo (w;p') = w(R) /Ql w(Q%xl)p/,l , ($17$2) < >Q1><Q2 T2 1

o1 v Q|
=@ J, resie) ~ Voo g,

> ﬁ /Q1 ‘szb(:m) = (0) g, x0, ’

where the last inequality follows from

YA S L CACIIR) [
R T

Now fix Q2 and consider fg, (1) : fQ b(z1, 29) — m@,b(x1)|P w' (21, x2) dza. Then

W' (Q2, 1) day,

P

<fQ2>Q1 < @ / ) /2 <|b(:v1,:vz) - <b>Q1><Q2 |p, + |mQ2b($1) - <b>Q1><Q2 |p,>w’($17$2) dxo dxy

& %| bl o) + Q1] Jo [mQub(e1) = (B) g, xq, I (Q2, 1) da
MH b|[?
~ |Q1| bmo(w;p’)

Then for almost all z1:

_ . w(Qr X Q2) P
fq.(z1) = Q}lmml (fQilg, Q}linml TH Hbmo (wpry = W(Q2, Tl o)

Taking again rational cubes, we obtain

1 1/Pl
16(21, ) BAMO(w(ar,)ip) = Sup( Gz )fQ2(331)) S Bllbmo(w:p)

for almost all x7.
Conversely, if b € bmo(w), then there exist C; and C5 such that

16(z1, M BMO(w(ay )y < C1 a.a. @1, and [|b(+, 22)|| BMO(w(- 22)1p) < C2 a.a. o

Then
/ |b— (b |p dw' </ / b(x1,x2) — M, (x1)|p "(21,12) dzo day
1 2

+/ / ImQ,b(z1) = (0) g, x @, P (21, 2) das day .
1 2

The first integral is easily seen to be bounded by

| 101 00,0y 0(Qac) o < CF w(Q1 x Q)

1

The second integral is equal to:

[ maub(en) — B)g g, o (@a1) oy

< /1 %(/2 [b(1, 22) — mq, b(x2)] dw?)p/ dzy

wl , L)W y L -l /
< / (Q2 1|)Q2(|§2 1) / [b(21, 2) — Mm@, b(x2)|” w' (21, x2) v dzy .
1 2

17
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We may express the first term as (w'(z1,))q, (w(z1,- )>Q2_1 < w ]Ap_l for almost all 1. Then, the integral
is further bounded by

/ w(Q1, z2)|1b(-, Z2) | BMO(w(- 22)p) T2 S CF w(Q1 X Q2).
2

Finally, this gives
6lmo(wipy S < (O + CEYYP < max(Ch, Cy) =~ 15[l bmo(w)-
O

We also have a two-weight John-Nirenberg for Bloom little bmo, which follows very similarly to the proof
above.

Proposition 4.6. Let i, A € A,(R") for 1 < p < oo, and v := pt/PA=YP . Then

”b”bmo(u) = Hbemo(u)\,p) = Hbemo(X,u’,p/)a

1/p
16llmoe 0 :=sup( Tl |d)\) ,

/v
10llbmo(nr ) = ( 10 /|b by [P’ du) :

Remark that it also easily follows that v € Ay(R")

where

5. PROOF OF THE LOWER BOUND

Proof of Theorem 1.3. To see the lower bound, we adapt the argument of Coifman, Rochberg and Weiss [3].
Let {Xk(x)} and {Yi(y)} both be orthonormal bases for the space of spherical harmonics of degree n in R™
respectively. Then Y, | Xy (z)|? = c,|z[*" and thus

Xi(x — ')
- Z I2n k(.I—I/)
" e |

and similarly for Y.
Furthermore Xy (z —2') = 32,4 5/=n (5)90 2'% and equally for ¥;. Remember that

b(z,y) € bmo(v) <= |bllomo(r) = sup / [b(z,y) — (b)gldzdy < oo.

Here, @ =1 x J and I and J are cubes in R™. Let us define the function

FQ(xa y) = Sign(b(xvy) - <b>Q)1Q(Ia y)
So

b(z,y) = (b)ellQe(x, y)
= (b(z,y) = (0)Q)|QT(x,y)

- /Q (b(z,y) — b(z',y' )T @, y)da'dy’

~ Z/ (b(z,y) — b(2', y’))%)(k(x - x’)%}ﬁ(y —y\To(x,y)ds'dy

(:L'/ y/) ! /
= X — i — .
Z/[Rzn x—x’|2”|y Y oz el —y)

k) o !
Z x((lﬁ):v z'? Z y,(ygyvy"sl"Q(:v, y)1lg(a',y')da'dy'.
lo]+[B]=n [v|+16|=n
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Note that

b — bz
/ (z,y) (z 7%) Xk(ac—:c’)Yl(y—y/) 'w’ﬁy"le(x’,y’)dx’dy’
R

oo Jo = @y = /P
=[b, i) (2" 1 (2", y/")).
Here T}, and T; are the Calderén-Zygmund operators that correspond to the kernels

() 4 YY)

|| lyl>

Observe that these have the correct homogeneity due to the homogeneity of the X; and Y;. With this
notation, the above becomes

b(z,y) — (b)ollQ1q(z,y)
=2 2 Z x02°y Yy T (2, 9) b, T T (Y * 1 (' y)) (2, ).

kL Jel+|Bl=nvI+16]=

Now, we integrate with respect to (z,y) and the measure A. Now let us assume for a moment that both I
and J are centered at 0 and thus () centered at 0. In this case, since I'g and 1 are supported in @), there
is only contribution for z,z’,y,y" in Q.

([ bl - thorare.n) v

k) « l

<Y ¥ Z Hx(ga: Yy T o, y) b, T (@ 10(2' ) (2, 9) o
kL Jal+|8|=n |v|+|6]=

DD Z Db, TeTi] (2" 10 (2!, y ) oy
kU |a|+|B|=n |y|[+|d|=

DYDY Z DN, Tl Loy 2o oo 12?5 10 (&) | o
kU |a|+|B|=n |y|[+|d]|=

DYDY Z DN b, T 2o () s Loy (@) P

kl Jel+|Bl=n|vI+16]=

We disregarded the coefficients of the X and Y at the cost of a constant.
Notice that the T} and T} are homogeneous polynomials in Riesz transforms. Therefore the commutator
[b, T T] writes as a linear combination of terms such as M([b, R} R}]N where M and N are compositions of

Riesz transforms: in a first step write [b, T}, T;] as linear combination of terms of the form [b, R?n)Rén)] where
Ry = H R
(k)

is a composition of n Riesz transforms acting in the variabe 1 with a choice i®) = (iy")"_; € {1,...,n}"
for each k and similar for R (n) acting in variable 2. Then, for each term, apply [AB,b] = A[B,b] + [A,b]B
successively as follows. Use A = Rl R2 and B of the form Ré“ )Rén_l) and repeat. It then follows that
for each k, 1 the commutator [b, Tle] writes as a linear combination of terms such as M([b, R} R}]N where M
and N are compositions of Riesz transforms. It is decisive that T} and T; are homogeneous polynomials in
Riesz transforms of the same degree. We required that all commutators of the form [b, R}RJZ] are bounded,
we have shown the bmo estimate for b for rectangles Q whose sides are centered at 0. We now translate b in
the two directions separately and obtain what we need, by Proposition 4.6:

1/p
16]l6mo(r) = 10llmo(u,a,p) = < /|b R|pd)‘> < osup |6 BB Lo () Lo (0.

1<k, I<n
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6. BIPARAMETER PARAPRODUCTS

Decomposing two functions b and f on R™ into their Haar series adapted to some dyadic grid D and
analyzing the different inclusion properties of the dyadic cubes, one may express their product as
bf =1 f + 11 f + T f + 1140,

where

~

7= 3 0@ (Do h: TS = 30 HQIAQ)E and Tof == 30 HQOFQ) |1Q|h€+‘?
QeD QeD QeD

In [11], it was shown that, when b € BMO(v), the operators II,, II%, and T, are bounded LP(u) — LP()\).
6.1. Product BMO Paraproducts. In the biparameter setting D = D; XD, we have fifteen paraproducts.

We treat them beginning with the nine paraproducts associated with product BMO. First, we have the three
“pure” paraproducts, direct adaptations of the one-parameter paraproducts:

If = > b(QS x Q) (o, wa, hS, ® hE,.

Q1XQ2
* T e ry 1 1
Hbf:: Z ( IIXQ ) ( )|Ql|®|52|a
Q1XQ2 2

Dof = 3 BQE x Q9@ x Q) ————hg ! @ hG 1% =T .
Q1xQ2 |Q1 | |Q2|
Next, we have the “mixed” paraproducts. We index these based on the types of Haar functions acting on f,
since the action on b is the same for all of them, namely 3(@1 X Q2) — this is the property which associates
these paraproducts with product BMOp: in a proof using duality, one would separate out the b function
and be left with the biparameter square function Sp. They are:

7 €1 €1 ]]' 1 L €2
Hb;(O,l)f5: Z ( 1 XQ )<f,h |Q2|> |51|®hQ2

Q1xQ2

0 ]]'Ql 62 €1 ]]'QZ *

Oy0f = Y. bQS |Q ® ®hE ) hG ® 0.~ I 0.1)

Q1XQ2 2

~ ]l 1 . 6

fi= Zb( < Q2> |Q|h1+61®h2
Q1XQ2
1 €1+01 1o,

D7 B x QP)F(QY x QF)

ey @' Tl
N7 31 € ]]-Ql > €1 62+52
= b h h h
/ Q§22(1><Q2)<f|Q|® i @
1

T/ e €2\ 7 ]]-Ql e2+6
_ E b 1 h2 2
f Q1XQ2 ( i Q ) ( 2 \/|62—2 |Q1 ¥

Proposition 6.1. If v := p/PA=1/? for Ap([Rﬁ) weights p and X, and Py denotes any one of the nine
paraproducts defined above, then

(6.1) 1Py = LP (1) = LYV S 16l Br 0o (1)
where ||b]| avrop () denotes the norm of b in the dyadic weighted product BMOp(v) space on R™.

Proof. We first outline the general strategy we use to prove (6.1). From (2.8), it suffices to take f € LP(u)
and g € L¥ (') and show that:
[ (Pof.9) | S ol Brron) L lLe 19l Lo (ary-

1. Write Py, 6) = (b, 6), where ¢ depends on f and g. By (4.3), | (Po/,9) | S Ibll 5atone) |Sp6l21 (-
2. Show that Sp¢ < (01 f)(O2g), where Oy and Oz are operators satisfying a one-weight bound LP(w) —
LP(w), for all w € A,(R™) — these operators will usually be a combination of maximal and square functions.
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3. Then the L!(v)-norm of Sp¢ can be separated into the LP(x) and LP' (X') norms of these operators O,
by a simple application of Holder’s inequality:

15Déll 1wy S NOLf Loy 1029l Lor 3y S N 2oy |91 27 a0y

and the result follows.

Remark also that we will not have to treat the adjoints P} separately: interchanging the roles of f and g
in the proof strategy above will show that Py is also bounded L¥'(X') — L? (u/), which means that P is
bounded LP(u) — LP(A).

Let us begin with II, f. We write

Iy f, g) = (b, ¢) , where ¢ := Z <f>Q1><Q2 9(QF x Qez)hel h82.
Q1XQ2

Then

~ € € ]]' 1 ]]' 2
(SD¢)2 S Z <|f|>él X Q2 |g( 11 X 22)|2|62Ql| 02y |C;22| S (Msf)2 ! (SDg)Qa
Q1XQ2

SO
| Mo f,9) | S 10l Brion ) 1M fll Lo 19Dl Lo 3y S 110 Brr0n @) 1f |LeGa 191 Lo (a9 -

Note that if we take instead f € L? (\') and g € LP(y), we have
[ (o f, 9) | S bl Bron ) [Ms fll Lo any 15Dl Lo (uy S 10l Baos @) | f Lo o 19l o)
proving that [T, : L7 (V) = LY (u/)| = [T : LP() = LP(V)I| S [bmarop)- For T

61 +51 ® h€2 +02

R ~ 11
(Tyf,g) = (b,$), where ¢ := lexégz QY x Q9)7(Q x Q%) o] |Q2|

from which it easily follows that Sp¢ < Spf - Spg.
Let us now look at ITy, (g 1). In this case:

1g 1g >
= ,hél 2 , LRh22 YRS @ he2 .
0= 2 <f |Q2|><9 Qu e ) ey @ ha,

Q1xQ2

)

Then

11 2 1 2 1
S 6)? — 7 Q2> < Qo pea > & Lo
(520" = 3 <f “121) \"1 2" ) Tl € el

Q1xQ2
_ o 2 1, Lo,
- 3 {m, Do (B9}, 1852 168
€1 2:17 ]]‘Ql(xl) € 2:E ]]'Q2('r2)
< (;(MmHQlf) ( 2)7|Q1| )(%;(MDIH%Q) (x1) 0] )
=[SM]*f - [MS]*g

where [SM] and [M S] are the mixed square-maximal operators in Section 3.1. Boundedness of I,y then
follows from Proposition 3.2. By the usual duality trick, the same holds for Il (1 o). Finally, for T'(o,1):

L. s
¢ = <H51 f g(Qil"F 1y ng)hfl ® he2 |

so Sp¢ < [SM]f - Spg. Note that I'y,(1 gy works the same way, except we bound Sp¢ by [MS]f - Spg, and
the remaining two paraproducts follow by duality. O
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6.2. Little bmo Paraproducts. Next, we have the six paraproducts associated with little bmo. We denote
these by the small greek letters corresponding to the previous paraproducts, and index them based on the
Haar functions acting on b — in this case, separating out the b function will yield one of the square functions
Sp, in one of the variables:

o o le Lo, o pe \ pe e
7Tb;(071)f = Z <b, thl ® |Q22|> <f7 |Q11| ® h$? >thl QRh 22

€ ]]'Q Tre ]]'Q €
7Tb,(O,l)f'_ Z <bh11®@>f( 1 X 2)|Q1|®h2
Q1XQ2
lg e ¢ 1g, \ ;. e
7Tb;(1,0)f = Z <b |Q11| ® hg > <f7 thl |Q22| > th1 @h 22
Q1XQ2
f _ Z b ]]- he2 A( €1 XQ€2)h€1 ® ]]‘QQ
"h.0) Tl © Q2]
Q1XQ2
51 ]]'QZ T €1 €2 1 €1+01 *
Vos0,0)f = Z b, hg, ® 0| (@7 x Q%) 0 |h ® hg, = Vo 01)f
Q1xQ2 1
]]‘Ql [ e € 1 € +6 *
”Yb;(l,o)f = Z <b, ® th > QY ) —— . ® h ] ’Yb;(1,o)f-
e, V@l VG

Proposition 6.2. If v := p'/?PA\=YP for Ap([Rﬁ) weights 1 and A, and pp denotes any one of the six
paraproducts defined above, then

lIpo = LP () = LEN) S 1bllomon )
where ||b]|pmop(v) denotes the norm of b in the dyadic weighted little bmop(v) space on R™.

Proof. The proof strategy is the same as that of the product BMO paraproducts, with the modification that
we use one of the Sp, square functions and Corollary 4.4. For instance, in the case of m,(0,1) we write

€ €1 €27, €1 1 2
(Tyon)fr9) = (b, 8) , where ¢ := QI%KHQJ}@ 9@ < QhG, ® 5

Then
52 ]]-Qz L2 €1 2 ]]-Qz(x2)) ]]‘Ql (‘Tl)
(50:9) Z(§<H Mg, 1onte e )(QZ Vo0 ) Ta
62 ]]'Q2 T2 >< A € 2]]'Q1(x1) ]]'Q2(I2))
M?Z H
<Z bHG ) g ) L L@ < @ =g e S
= [MSP*f - Spy,
and so

| (00 f:9) | S Nollbmon @) 15D 0l 21wy S 10llomon ) | F Lo 191 Lo a0y
The proof for 71,0y is symmetrical — we take Sp,¢, which will be bounded by [SM]f - Spg. The adjoint
paraproducts F;;(O,l) and W;;(Lo) follow again by duality. Finally, for 7y,0,1):

1
(Qil"t‘(sl ~ Q52)h51 ® Q2

Q%zf \/ Q2|

from which it easily follows that Sp,¢ < Spf - Spg. The proof for v,,(1 0y is symmetrical. O

7. COMMUTATORS WITH JOURNE OPERATORS

7.1. Definition of Journé Operators. We begin with the definition of biparameter Calderén-Zygmund
operators, or Journé operators, on R := R™ ® R"2, as outlined in [14]. As shown later in [10], these
conditions are equivalent to the original definition of Journé [13].
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I. Structural Assumptions: Given f = f1® fy and g = g1 ®ga, where f;, g; : R™ — C satisfy spt(f;)Nspt(g;) =
() for i = 1,2, we assume the kernel representation

w9 = [ [ K@iy

The kernel K : R7 x R?\ {(x,y) € R® x R" : 1 = y; or 23 = ya} — C is assumed to satisfy:

1. Size condition:
1 1

C .
|1 — y1|™ |22 — y2|"2

K (z,y)| <

2. Holder conditions:

2a. If ly1 — yi| < 3@ — y1] and |y, — yh| < $|@e — yal:
= wil® g2 — sl
|1 — g2 |19 g — yo|n2 o

}K(Iay) - K(:Ea (ylayé)) - K(:Ea (yiayQ)) + K(:an/)| < c

2b. If |z — 24| < §lo1 — y1| and |22 — 2b| < Yoo — 2l

1 — 24 [° |wo — )’

‘K(xvy) - K((‘Tlvx/z)’y) - K((x/l’@)’y) + K(a:’,y)‘ = Ol:m —yp |1t |y — yo|r2td’

2c. If [yy — yi| < 3@y —yu] and |2y — 2| < Lzn — 4ol

°lwa -

ly1 — ¥4
‘K(.’L’,y) - K((xlaxé)uy) - K($, (yllqu)) + K((xlu‘ré)u (y/17y2))| S C|I1 _ y1|7111+5 |$2 _ y2|n2+5'

2d. If |z — 2| < §lz1 — 1] and |yo — yh| < 3|z2 — yal:

K (2,9) = K (2, (41 8)) — K ((@h,2), ) + K (@, 22), ()| < o=l =9l
|o1 — Y1110 |z — yo|m2t

3. Mixed size and Holder conditions:
|z — 2} ]° 1

1
3a. If |xq — 2| < =|z1 — then |K — K ((=} <C .
a |$1 $1| = 2|I1 y1|a en | ($7y> (($1,$2),y)| = |.’IJ1 — y1|n1+(5 |(E2 — y2|n2

1 ly1 — yi[° 1
3b. If ly; — )| < Z|zq — then |K - K ! <C L )
ly1 — 91l < 5lr —wul, then [K(x,y) — K(z, (41,92))| < PR TES A e—

1 |2 —:10’2|‘s

1
3c. If |zy — 2| < =|zo — yol, then |K -K ’ <C :
C |$2 $2| =~ 2|fL'2 y2|7 en ‘ (:I:7y) ((:L'laxg)u y)‘ = |$1 _ y1|n1 |$2 _ y2|n2+5

1 ly2 — y5°
lx1 — y1|™ 2o — yo|m2to

1
3. If |y2 — yo| < Slwz — yol, then |K (z,y) — K(z, (y1,95))| < C

4. Calderén-Zygmund structure in R™* and R™? separately: If f = fi ® fo and g = g1 ® g2 with spt(f1) N
spt(g1) = 0, we assume the kernel representation:

(Tf,g) = /R [ Kpmlor i) ) (o) dor i,
ny ny

where the kernel Ky, ¢, : R™ x R™\ {(z1,y1) € R™ X R™ : z1 = y1 } satisfies the following size condition:
1
1K f.95 (21, 91)] < C(fm@)m,
and Holder conditions:
w1 — 24[°

1
If |2y — 2| < §|$1 — 1|, then |Ky, g, (v1,91) — Ky, g, (2], 91)| < C(f%Qz)ma

1 — 41

1
Iy =yl < Sler =yl then [Kpy g (21,91) = Koo (21, 91)] < O(fz,gz)m-

We only assume the above representation and a certain control over C(f2, g2) in the diagonal, that is:

C(]lev ]le) + C(]lequz) + C(”Qz? ]le) < C|Q2|7
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for all cubes Q2 C R™ and all “@Q2-adapted zero-mean” functions ug, — that is, spt(ug,) C Q2, lug,| <1,
and [ug, = 0. We assume the symmetrical representation with kernel Ky, 4, in the case spt(fa) N

spt(gz) = 0.
I1. Boundedness and Cancellation Assumptions:

1. Assume T'1,7*1,Ty(1) and T} (1) are in product BMO(R™), where T} is the partial adjoint of T', defined

by (T1(f1 ® f2), 91 ® g2) = (T'(91 ® f2), f1 @ ga).

2. Assume | (T'(1g, ® 1g,), Lo, ® Lg,) | < C|Q1]|Q2|, for all cubes Q; C R™ (weak boundedness).

3. Diagonal BMO conditions: for all cubes @; C R™# and all zero-mean functions ag, and bg, that are Q1—
and Q2— adapted, respectively, assume:

| <T(aQ1 ® ]]-Qz)? ]]'Ql ® ]]'Qz> | < C|Q1||Q2|7 | <T(]]-Q1 ® 1@2)7(1@1 ® ]]-Q2> | < C|Q1||Q2|7
| <T(]]-Q1 ® sz)’ ]]'Ql ® ]]'Qz> | < C|Q1||Q2|7 | <T(]]-Q1 ® ]]-Q2)7 ]]‘Ql ® bQ2> | < C|Q1||Q2|
7.2. Biparameter Dyadic Shifts and Martikainen’s Representation Theorem. Given dyadic rectan-

gles D = D; x Dy and pairs of non-negative integers i = (i1,12) and j= (J1,J2), a (cancellative) biparameter
dyadic shift is an operator of the form:

a? y € € 5

(71) $Djf = Z Z Z AP Q1R1P2Q2Ro f(})l1 X P22) h ) ® hQ2’
R1€Dy P E(Rl)wl Q1 E(Rl)Jl
R>€Ds Py€(R2)iy Q2€(R2)4,

where

VIPHIU VIR Qs _ o =21 (1) =32 (ia i)

| R | | Ra| '
We suppress for now the signatures of the Haar functions, and assume summation over them is understood.
We use the simplified notation

|aP1Q1R1P2Q2R2| <

~

S%Jf = aGPQR f(P1 X PQ) th X hQ2

for the summation above.
First note that

2
z ~ 1 1
Jf E : § : < E AP Q1R1P2Q2R> f(Pl X PQ)) |62Qll| ® |C§)22|
RixX Rz Q1€(R1);; ~P1€(R1)i,
Q2€(R2)]‘2 PgG(R2)i2

LoN2
< 9—mi(i1+i1)9—na(iz+s2) (S'Zﬁ]f> ,
where S’,Z;g; is the shifted biparameter square function in (3.1). Then, by (3.2):

—ng

222092 S fll o) S I o),

(7'2) HS Jf”LP(u;) <9 21(11"1']1)

for all w € A,(R™).
Next, we state Martikainen’s Representation Theorem [14]:

Theorem 7.1 (Martikainen). For (if)ipammeter singular integral operator T’ as defined in Section 7.1, there
holds for some biparameter shifts 375 that:
(Tf,g) = CrEu, Eo, Z 9—max(i1,j1)8/29—maz(iz,j2)5/2 <$g’jf,g>,
i,jez?
where non-cancellative shifts may only appear if (i1,j1) = (0,0) or (i2, j2) = (0,0).
In light of this theorem, in order to prove Theorem 1.1, it suffices to prove the two-weight bound for
commutators [b, $p] with the dyadic shifts; with the requirements that the bounds be independent of the

choice of D and that they depend on i and ; at most polynomially. We first look at the case of cancellative
shifts, and then treat the non-cancellative case in Section 7.4.
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7.3. Cancellative Case.

Theorem 7.2. Let D = D; x Dy be dyadic rectangles in R" = R™ @ R™ and S?D; be a cancellative dyadic
shift as defined in (7.1). If u, A € Ap(R?), 1 < p < 0o, and v = p*/PAX=YP | then

08515 270 - 220 (04 mtin, 7)1 + iz, 2) ) llmonio

where ||bl|pmop (1) denotes the norm of b in the dyadic weighted little bmo(v) space on R™.

Proof. We may express the product of two functions b and f on R” as

bf = Pof+ > pof +TIsb,

where P}, runs through the nine paraproducts associated with BM Op(v) in Section 6.1, and pp, runs through
the six paraproducts associated with bmop(v) in Section 6.2. Then

B.8F1 =S P SFIF + > [po $H1 + Ri 2,
where

Ry f =15 b— SF b,

s f
From the two-weight inequalities for the paraproducts in Propositions 6.1 and 6.2, and the one-weight
inequality for the shifts in (7.2),

HZ va ZJ +Z pbv Lp )—> Lp H N ||b||bmoD(u)

so we are left with bounding the remainder term R;Jm We claim that:

[Rez: 1) » 17(V)|| 5 ((1 + max(i1, 1))(1 +max<i2,j2>>) 18llomon);

from which the result follows.
A straightforward calculation shows that

1,7

Rof= S awanfir <P (@cueas ~ O Jhen @l
R,P,Q

We write this as a sum R;;.f = ’R%;f + R%;f by splitting the term in parentheses as:

arear = Orer, = ( Garea, ~ Ornen, ) + (Bnr, ~ Orrer, )

For the first term, we may apply the biparameter version of (2.2), where we keep in mind that Ry = ng v
and Ry = Q(j2):

k k
<b>Q1><Q2 - R1><R2 Z b g 1) % Q; 2))hQ§k1)(Q1)hQék2)(Q2)

1<k1<j1
1<k2<j2
1r
+ Z <b hgun ® s |>hQ<k1>(Q1) + Z <b |R1| ®hQ<kz>>hQ<kz>(Q2)-
1<k < ' 1<ka<jo ’
Then, we may write the operator Rzlj as
0,1 1,0
(7.3) Rizf= >0 Awwf+ D0 BIUf+ >0 UYL
1<k1<j1 1<k1<j1 1<k2<j2
1<ka<j2
where

]

A == Y apqrf (P x P)b(QF™ % QF*N)hyn QUi (Q2)ha, © ha,
R,P,Q
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i

(O l)f S Z CLPQRf(Pl X P2) <b hQ(kl) & |R |>hQ§k1)(Q1)hQ1 Y th
R,P.Q

and

i
-~ 1
Bl(ciﬁo)f = Z apqrf(P1 x P») < |;1| ® hQ(k2)> hQ;kz) (Q2)hg, ® hq,-

We show that these operators satisfy:

[ Ak ks = LP (1) = LPQ) S 10l Ba105 ()5 for all Ky, ko,

B = £2(0) = L2O)|| S Wellomon (o), for all ke, and || B s 27(0) = PO S [6lmop s for all ks.
Going back to the decomposition in (7.3), these inequalities will give that
|RY;: 270) » 22| S G + 1+ 32)Bllomons -

A symmetrical proof for the term ngj coming from ((b) . g, — (b) p, x p,) Will show that

HR2]  LP(p) — LP()\)H < (inia + i1 + 12) 1Bl bmom (v) -
Putting these estimates together, we obtain the desired result
HR{,; L (p) — Lp(/\)H S (i tiatiria+ji+i2+5172) [bllbmon (v) S (1+max(iy, j1))(14+max(iz, j2))[|bllbmon () -

Remark that we are allowed to have one of the situations (i1,i2) = (0,0) or (j1,j2) = (0,0) — but not both
— and then either the term R% b f or Rzl i f, respectively, will vanish.

Let us now look at the estimate for Ay, ,. Taking again f € LP(u) and g € L¥' (X'), we write (Ag, 1, f, 9) =
(b, @), where

> apqrf(Pr x Pa)hyoe) (Qu)h ) (@2)F(Q1 X Q2)hyn) & hipes)
1 2 1 2

R,P,Q
o> Yoo f(Pix Pz)( > apqri(Q1 x Q2)hn, (Q1)hn, (Qz)) h, @ hi,.
RixX Ry Pre(R1)i; N1€(R1)j; —ky Q1E€(N1)k,
P2&(R2)iy N2€(R2)jg ko Q26€(N2)k,
Then
N 1 1 1y @1y
$os X (X 1HAxr)l Y laeanli@ x Q) ) T
NN N ety i VIN VINa|/) N[N
P2€(N2(J'2*k2))i2 Q2€(N2)ky
1y, @ 1
< 9—mi(i1+j1)9—n2(iz+j2) F(P x P,)|2nik1/2gnaka/2 AN, @ AN,
~ Z Z |f( 1 X 2)| <|g|>N1><N2 |N1||N2|

N1 XNy Ple(Nl(jlfh))il
P2€(N2(]27k2))i2

2
. o ~ 1 1
S mltikg et k) (\sg)® 37 ( 2 |f<P1xP2>|) >

|N1[| N2
RixRy N Pie(Ri)i, N1€(R1)jy -k
Pe(Rz2)i, N2€(R2)jy—ky

2
_ 2—"1(i1+j1—k1)2—n2(i2+j2—k2)(MSg)2 <Sg17i2),(j1—k17j2—/€2)f> :
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where the last operator is the shifted square function in (3.1). Then, from (3.2):

Ak, ks 2 LP (1) = LP(N)| S (1Bl Brros ) 15Dl 21 (1)
,;11 (i1+j1—/€1)27;l2

iatja— i1,i2),(j1—k1,j2—Fk
< 18l Baromn ()2 (G452 =k2) | Mgg]|r ay [1Sgp "2 IR0 £

S bl Brvon )9l Ler o) | f Lo ()

Finally, we look at B,(c?’l), with the proof for B,(ci’o) being symmetrical. We write again <B,(£’1)f,g> =
(b, ¢y, where

i

1

Z apqrf(P1 X P2)h Q(kl)(Ql) 9(Q1 x Q2)h QU ® |}§2|

R.P.Q
Then

2
o o 1 = 1
Sp, [ S 2 mntilgmnaliati) R Nl( SN F(PixP)l > ([Hgagly, 202 ;2) ;
R1€Dy | R2€D2 PrE(R1)4y Q2€(R2);, | 2|
N1€(R1)j; —ky Pe(Rz2)i,

and the summation above is bounded by:

]]_N =N 2]]-R 2]]-R

( > = S (3 IfPix ) |R:|>( > (X M (Ha.g) |R22|>7
R1€D, R2€D>  Pi€(R1)4y R2€D2 Q2€(Ra)j,

N1€(R1)j, -, P2€(R2)i,

which is exactly
2
(S»(Dll)lz))(]l_k170)f) ([MS]j2’Og)2_
From (3.2) and (3.3), we obtain exactly |Sp,llz1(v) < 1z llgll o7 (ry» and the proof is complete. O

7.4. The Non-Cancellative Case. Following Martikainen’s proof in [14], we are left with three types of
terms to consider — all of paraproduct type:

e The full standard paraproduct: II, and I},
e The full mixed paraproducts: Il,;(o,1) and I, ),

where, in each case, a is some fixed function in unweighted product BMO(R™), with lall rowny < 1, and
e The partial paraproducts, defined for every iy, j; > 0 as:
i ~ 1
’ .— I~ 1 5 R
$pf = DL D Aneum (B x Ry)hg, x 3t

R1€D1 P1e(R1)iy
R2€D2 Qi e(Ry);,

where, for every fixed Py, Q1, R1, ap,g,r, (z2) is a BMO(R"?) function with

VIPIWVIQ _ o= i),

| R1]

lapr, gy I BMO®RR2) <

and

—~ 5 S 5
ap,Q R, (1R?) = <aP1Q1R1=hR22>[Rn2 ZZ/R ap, R, (T2)hg, (22) dza.
n2

The symmetrical partial paraproduct $%’j2 is defined analogously.

We treat each case separately.
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7.4.1. The full standard paraproduct. In this case, we are looking at the commutator [b, I1,] where
Mof := Y a(R) (f)phr,
RED
and a € BMOp(R™) with [|a] garop®a) < 1. We prove that
Theorem 7.3. Let u, \ € Ap([Rﬁ), 1 <p<ooandv:=p/PX=1P. Then
[[[b,11a] : L (n) = LP(N)|| < llall parop ®a) [1bllbmon (v) -
Proof. Remark first that
Mo (bf) = Y @(R) (bf) g hr and T, sb = Y~ @(R) (b) g () s

ReD ReD
SO

o (bf) =T, b= Y @R)((bf) g — B)g () g ) g

RED
= Ha(z Pof+ Z po.f + Iyb) — Iy, sb,
where the last equality was obtained by simply expanding bf into paraproducts. Then

HHafb — HaHfb = ZHanf + Znapbf - Z a(R)( <bf>R - <b>R <f>R )hR

RED
Noting that

a)f =Y Pollaf + Y pollaf = Y MaPof = > Tlapof + I, b — IaTIsb,
we obtain

b, T0alf = Pollaf + > pollaf — > @(R)((bf) g — (0) g (f) g ) hr-

RED
The first terms are easily handled:

IPuILa fllzoxy S N0l BroD @) Haf o) S 110l Bros o) lall Brros @) I FllLe ()

”prafHLP(A) 5 HbemOD(V)HHafHLP(#) S ||b||bm0D(V)||a||BMO'D(Rﬁ)HfHLP(#)
So we are left with the third term.
Now, for any dyadic rectangle R:

Of) g = O (fr= |R|/f 2)Lr(z)(b(x) — (b)) da.

Expressing 1r(b — (b)) as in (2.5), we obtain

(0f)r — D) E bP1><P2 P1><P2)
P1CQ1
PyCQ2
o > <th ><fhp®11Q>+—1 > <b 1Q1®hp><f]1Q ® hp,)
? 1 ) 1 2 % s 1 %) -
7 2 1Qal 7 2\l
Therefore

ST AR () g — O p (f)r)ha = Aapf + AV F+ A0V,
ReD
where:

~

1 ~
————( 3" WP x Po)J(Py % P2) ) ha, © ha,
|Q1||Q2|(PCQ ( 1 2) ( 1 2)) Q1 Q2
(! 1

PyCQ2

Napfi= D @(Q1 % Q)
Q1XQ2

APF = Y a@x @t (3 (bin e i) i @ 10.) Jhe, @ has,

Q1xQ2 PiCQ1
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1
|Q1|IQ2|( 2 <b |QQI|®hp2><fv]lQ1®hP2>)hQ1®hQ2.
P>CQ2

To analyze the term A, p, we write (Mg pf, g) = (b, ), where

)\(lo)f = > aQi1 x Q)
Q1XQ2

o= X frnxr)( X Qi x Q@i x Qoo

Pyx P, QiDP |Q1]|Q2|
Q2D P

~ N N 1
-y f(R)( 3 a(T)g(T)m)hR
ReD TED:TOR
So [(Aapfr9) | S HbHBMoD(u)HSD¢||L1(U), and

s%¢:2|f(3)|2( 3> @) |T|) R < <> If®) ( > aT(T)ﬁr(T)%O %,

ReD TeD:TOR ReD TeD:TDOR

>hP1 ® hP2

where ar := Y p.pla(R)|hr and g; := > 5 p [g(R)|hr are martingale transforms which do not increase

either the BMO norm of a, or the L (\') norm of g. Now note that
* 1
(I g-) = > @-(T)g-(T) |R| +> gT(T)|T|

TCR TOR

and since all the Haar coefficients of a, and g, are non-negative, we may write

> m(T)@(T)% < (I g.) -

TDOR
Then
-~ 1g
Spo < 3 IR (L] g0 1 < (MsIL;_g7)"Sh .
ReD
and

1Sl 1) < (1ML gl o iy 15D f Il 2o (1)
S G, g2l por iy 1 ey
S ”aTHBMO»D([Rﬁ)HgT”LP’(X)”f”LT’(u)a

which gives us the desired estimate
[Aap s LP (1) = LN S llall Brros @ 10l Brrop ) -
Finally, we analyze the term )\((lobl), with the last term being symmetrical. We have </\g?l’)1) /s g> = (b, ¢)
with

1 ~ N 1 1p,
¢:Z<§<fahpl®lp2>@ 3" @(Q1 x P)G(Qs x )|Q1||P|>hpu

Py Qi1DP;

and [ (A0 £,9) 1 S [6limonw) 155, 6l1 11 Now

N . 1 . 1p\’1p

5,0 < 3 (Sl (X 0@ x P Qe x P g 1% ) 22

7 \p Q1" [P2| ) [Pl
1 b3 Q1DP

where we are using the same martingale transforms as above. Note that

. lp e e (m2) -~ |Q1 N Py
(1. “|P1|>Rm(””2)‘;2 Bl & &(Q X P QP T
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and again since all terms are non-negative:

2
S0 < XM (e f)(oa) (0 300:(@ x Pujg(Qu x Py ) ) 2l
Q

o Y Q1] [P ||
. 1p “1p, (1)
< S tp o) ( (om0 ) () 205
Py 1 R™1 1
i} ]]-P T . 2 2
< (Mo, 0 g0 e 22)) 37 013, 01 )0 2558 = (1, 01 1,20 (1901501,
Py
Then
150, 0ll130) S 1T, 9 o | SMfll ) S Nl arom(wny 19l o ooy 111 25
and so
P s 22G0) = 200 S Dall Baros ) 18llamon )
and the proof is complete. 0

7.4.2. The full mized paraproduct. We are now dealing with [b, I1,;(o,1)], where

~ 1p,\ 1p
Has0,1)f = a(Pr x ) <f, hp, ® 2> L @ hp,.
oy PIZX;DQ EEIVATEY ’

Theorem 7.4. Let 1, A € A,(R7), 1 <p < oo and v := p'/PA=YP. Then
(|16 oy 0,1)] = LP (1) = LPN)|| S llall avron®e)l1llsmon (v)-
Note that the case [b, Il,;(1,0)] follows symmetrically.
Proof. By the standard considerations, we only need to bound the remainder term
RO f =T, 1) £b — Maso,1) 150

Explicitly, these terms are:

~/ e € € 1p €
HHa;(O,l)fb = Z a(Pll X P22) <f7 h]—_}l ® |P22|> ( Z <b>Q1><P2 héQll (Pl)héQll (x1)>h}j22(x2)7

P1><P2 Ql;PI
e . = e Ip (z1) _ .
.01y = Z a(py ><P22)< Z FPE % Q%) () py xo, hg?2(P2)> |1131| ® h (z2).
Py X P Q22 P>

Consider now a third term

. . ¢ ]lp ]lP
T := Z a(Pll ><P)22)<b>P1><PQ <f’hpll® |P22|> |P1| ®h
P1><P2

Using the one-parameter formula:

le 5 &
1 Z h 11 Pl h 1 )
Q12P1
we write T as

-~ € € € ]]'P €
T= Y app ><P22)<f,hpll @ |P22|>( S B, hgl(Pl)hgl(xl))hgz(xQ),

Py X P Qi12P

allowing us to combine this term with Il , , rb:

-~ € € € ]]-P €
T 00T = 3 A <P (05,0 120 ) (3 (Oguars= 0 G, (PR, (00) ) 02),

Py x P Q12P:
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Using (2.2):

T ]]-P T
<b>Ql><P2 - <b>P1><P2 = - Z <b7 thl ® |P2| > h]{ll(Pl)
Ri1:PiCR1CQ: 2

Then the term in parentheses above becomes
1
(7.49) S (X (g g e ) (PG o)
Q12P1 “Ri1:PICR1CQ1 2
Next, we analyze this term depending on the relationship between R; and Qq:
Case 1: R € @1: Then we may rewrite the sum as
b B 1p, BT Lo Lo _ b. BT 1p, %! 1g, (‘Tl)
Z My @ P 7, (P1) Z o, (P1) hgy, (1) = Z g, ® P 7 (P1) Ri|
| 2| —— | 2| | 1|

R12P, Q2R R12P,
=13, )

This then leads to

~/ e € € 1p T 1p T 1g (.’Iil) €
Z a(Pr' x Py?) <f7 hp, ® |p22|> ( Z <b7 hg, ® |P22|>h1%1(P1) |}31| h, (22)
R12P

P1 ><P2
1p . 1p 1g, (21)
_ b, th ® 2 > ( a Pel X Péz < ,h€1 ® 2 >hT1 P ) 1 ® h62 T
Rlzx:P2< Y Plzc;%l " RAC | P () | Ry | A()
- ]].p T € ]]-R (Il) €
= Z <ba thl ® |P2|> <Ha;(0,1)f’ thl ®h1322> |}z | ®hPQ2(I2)
R1X P> 2 !

:WZ;(O,l)Ha;(OJ)f'
Case 2(a): Ry = Q1 and 71 # 61: Then (7.4) becomes:

T ]]'P 1 T14+6 §
> <b,hQ11 ®ﬁ> hg PO (PR, (1),

o Q
Q12P: |Q1| !

which leads to

T ]]'P 1 € -~ € € € ]]'P T
> <b, hg, ® ﬁ> hey (w1)h$ (x2) Y a(P x Ps?) <f, hg © |P2|>thl+61 (P1)
Qi1 x P> 2 |Q1| PiCQ 2

1p 1
_ T1 P 71401 €2 01 €2
- Z <b’ hQ1 ® |P2| > <Ha;(071)f’ th ® hP2> \/th1 (.%'1) ® th (.%'2)

Q1 X P2

=Yb;00,1)Has0,1) f-

Case 2(b): Ry = @1 and 71 = d1: Then (7.4) becomes:

1p,\ 1
b,h51®—2>—h1,
> (b0 ) ind

Q12P:

which gives rise to the term

1 1 1

0,1 5 P s . o . . P

T 3 (ol o ) ey 3 art < (e )
Q1 X P PiCQ:

We have proved that

M, o1 0 =T = —m,0,1)Ha; 0,10 f = 30,10 as0,1).f — Té?z;l)f-

Expressing T instead as

~ € € 77 e 1 €
= Y app fo)( il xQ?)<b>plxp2h2;2<P2>)i®hﬁf

P |1
1 X P Q22 P
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we are able to pair it with I, 1)[Isb. Then, a similar analysis yields

T — ;00,0110 = gy 0,1)T(1,0)f + Tas(0,1)05(1,0) f+T 0f,

where

s ~/ E € ]]-P Z1 € ]]-P T pe 1
T3V f = 3 a(py x Py?) |1P(1| )®hp22(:v2)( 3 <b |P11| ® hi2 >f(P11 ngz)m)

Py x Py Q22 P>

Then
R((fz}l)f = Ia;(0,1)T;(1,0) f + Has0,1):(1,0). = Tp00,19as0,1) F — Yos0,1) 0,0 f + be’o)f - T;?Al)f-

It is now obvious that the first four terms are bounded as desired, and it remains to bound the terms T, .
We look at Téob’l), for which we can write <T(§Ob’1)f, g> = (b, ¢), where

o~ ]].P S ]]_P
¢ = G(Q x P2y — < a(Pt ><P€2)<f,h€1 ®—2>>h1 ® —=.
Q;PQ ! Q1] Pél ' ? Y @ Py
Then | < aobl f7 >| 5 ”bemov(u)HSD1¢”L1(V)7 and
. 1p Lp,(22)\* 1g, (z1)
26— ( Q%xpfz( apelxp62<,h€2® >) : 1(21)
Bio=2 (29 o 2 AR P LR @ k) ) S ) o)

Q1 P PiCQa

Now,

€ ~1 DE € € 1p |P10Q1|
f,— h2>— aP1><P2<f,h1® >7
< DT g T ;1(1 SIS TRy ) TP

Define the martingale transform a + a, = Y p . p, Tp, 5,a(Py" x Py?), where

. e 1
paes _ [ LI (0 @ ) 2 0
b2 —1, otherwise.

Remark that, while this transform does depend on f, in the end it will not matter, as this will be absorbed
into the product BMO norm of a,. Then we have

1 . 1p
_ a(P' x Ps2)( f,h%S ® 2> §< a f, ®h3 >
Q1] N 2>< ERTY (00 IQI

PiCQ:

Returning to the square function estimate, we now have

1 €2 ]]‘ 2( ) €2 ]]‘ 2( ) ]]‘ 1( )
Spl¢<Z(Z|g QY x PP )(Z<|Hp2na7;<o,1>f|>gl Lo, (1) ijz) (T

Q1 Py P

€ ]]' 2 z ?
< pa( 30043, (3 0 )0 22 ) = i (IMSIT, 00 )

P>
Finally,
HSD1¢||L1 w) < ||SD9HLP (\) H [M S]IT aT (0,1 fHLp u)
Sl oy Moo fllegy S lallBaros @ 1 2o 191l ey
| S U ——

S”aT”BMOD([RTL)”]CHLP(;L)
showing that
0,1
TS 2P () = LP OV S llall arom ) [Blomon -

9 follows similarly. O

The estimate for T;lb’
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7.4.3. The partial paraproducts. We work with

i1.4 ~ €2\ 7/ DE € 1
S Y% nan et <m0
R1XRa2 P1€(R1)il
Q1€(R1)j,

where i1, j1 are non-negative integers, and for every P, @1, Ry:
ap, Qi k: (€2) € BMO(R™) with [|ap,q,a, | Broges) <272 (14,
Theorem 7.5. Let u, \ € Ap([Rﬁ), 1 <p<ooandv:=puPX=1/P. Then
|, 8577 22G) = 22O S Ibllbmon o)
First we need the one-weight bound for the partial paraproducts:

Proposition 7.6. For any w € A,(R"), 1 < p < oco:

(7.5) ‘

S0 Le(w) = L ()| 1
Proof. Let f € LP(w) and g € L” (w'), and show that | <$%’jlf,g> | S 1 lee@llgll o (w

H<$“7J1f 9>H <> Y lanoir, rQim g |

Ry P1€ Rl
Qi€ Rl)

<> > langurlBro)lISp.6p, @R L&)
Ry P1€(R1)11
Qle(Rl)j2

< 27;11(i1+j1)z Z HSD2¢P1Q1R1HL1(IR”2)a

R1 Pi€(Ry)ig
Q1E€(R1)j,

where for every Pi,Q1, R1:

P R (72) Zf Py x Ry) <97hQ1 s |>hR2($2)

Now,
]]-R (,TQ)
S%2¢P1Q1R1 Z'le R2 |HQ19|>R2 |;_%2|
< (MDQHng) (22)(Sp, Hp, f)*(x2),
S0
Z Z HSD2¢P1Q1R1HL1([R"2) < Z Z MD2HQ19>(:E2)(SD2HP1f)(:EQ)dx?
Ry Pie(Ri)i, Ry Pie(Ri);, "R
Q1€(R1)j, Q1€(R1)j,
1R, (71)
(Mp,Hg, 9)(x2)(Sp, Hp, f)(72) A dx1 dzo
R72 JR™ R Ple(Rl)Il !
Q1€(R1)j,

LR 3 ) 582) (5 3, o) 255

Ri “Pie(R1)iy 1 " Q1€(R1)j;

= / (88D, ] 0 f - [SMp, P Ogw' Pw P da.

33
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Then, from the estimates in (3.3):

(857 .0} < 2780090 (8815 N8I 01

—nq

<2

nyi ni1j1

1
1 fllze@)2 2 gl Lo )
and the result follows. O

(i1+i1)9

Proof of Theorem 7.5. In light of (7.5), we only need to bound the remainder term
R f =gy b — Sp7 b,

The proof is somewhat similar to that of the full mixed paraproducts, in that we combine each of these
terms:

M= 3 5 anam AR < B X Baua, h, (R, (00 )1, (00
R1XRa P1€(R1)il Q22 R2
Q1€(R1)j,

S%Jln.fb = Z Z aPlQlRl (R§2) (Plel x R§2) <b>P1 X Ro hJQll (‘Tl) ®
R1XRa P1€(R1)il
Q1€(R1)j,

g, (72)
|Ra|

with a third term:

—~ €2\ 77 pe € ]1R
T:= Z Z apQir, (1) f(PF x Ry) <b>Q1XR2 hgl ® |R2|'
RixR2 P1€(R1)iy 2
Q1E(R1)j,

As before, expanding the indicator function in 7' into its Haar series, we may combine 7" with Ilgi, . fb:
D

~

Hgg*h fb -T= Z Z aPlQlRl (R§2) (1:)1€1 x R§2)T5(I2>h6Qll (I1>a
R1XRa P1€(R1)il
Qle(Rl)j2

where

L) = 3 (<b>leQ2 Boren, )hgz (Ra)h3, (22)

Q22R2
]]' T T
=Y ( > <b, —ICZII ® hp22> hPZ(RQ)) he2 (Ra)h3 (x2).
Q22R2 “P2:RyCPCQo
We analyze this term depending on the relationship of P, with Qs.
Case 1: P, C @Q2: Then

1 m \ 7 1p,(72)
P>DR>

which gives the operator

1 1 X ~ €2\ T7€1 F( DE T
> (b ong )@ (T S aneum R TRIEINE ()

Q1 X Py PIE(Q(ljl))il RngQ
]].Q . T 1p (:EQ) * € T
B Z <b, |Q11| @ hPQ2> thl («Il) |,2P2| Z <HaP1Q1R1 (HPll )7 hPi>[an
Q1 X Py PIE(Q(ljl))il
:WZ;(l,o)Fv
where
P (008 Mg (D) ) (o)
@ Pre(@Y);,
Now

751,00 lLrny S N0lbmon @) 1 F] e ()
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so we are done if we can show that

(7.6) IE Loy S 1 Le -
Take g € L” (i/). Then

* € §
(R 1< X (M (HR ) H9) |

@ Py E(ngl))il

Notice that we may write

* 4
<HaP1Q1R1 (ngll ), HQ119> - <aP1QlR1 ) ¢P1QlRl>[R"2 )

Rn2
where

¢P1Q1R1 IQ ZH;I R <Hgllg>R2 h(};%(ftg)
Then

[(E <> > largrlBro)lISp.ép gk L1 ®e)
A Pie(@V);,

<9 —+ (i1 +51) HS f R52 H 2 ]]-Rz(xQ) 1/2d
< Y (S EREE (g ), e 2

Ry P1€(R1 Ry
16(R1)12

<2 B0 [ ST ST (A, 9)(02) (Sp,HE )
" Ri Pie(R1)y,
Q1€(R1)j,

1R, (1)
| R

dx.

The integral above is bounded by

L= (szanllf)(:vz)>2lT};jl)y/z(Z( > <sD2H;1f><x2>)2“T;;j”)wdx

Ry P1€(R1)i1 Ry P1€(R1)i1
g ([SSDZ]M’O][) ([SMDZ]jl 0 > dz < [|[SSpa)"* f|| oy 11SMD ]| v

<27 I £l Loy gl Lo rys bY (33).
The desired estimate in (7.6) is now proved.
Case 2(a): P» = Q2 and 75 # d2: Then

Lo 1 5 5
Ty(w2) = <b ~ @ hg > ——=hg, 2 (Ra)he3, (2),
oo, T 1) i NG,

giving rise to the operator
lg * 5 L s 5
2 <b Q. “ha > ( 2 <HaP1Q1R1 (Hp, ). hes," >[R) hG, ® hg, = a0
Q1xQ2 1 P1€(Q§jl))i1 |Q2|
which is handled as in the previous case.

Case 2(b): P> = @2 and 75 = d2: In this case, Tp(x2) gives rise to the operator

1o 5 s 5 1 . T e
T 3 (e g ens Y gr X anew (ROELRS)
Q1%XQ2 Ple(ngl))il R2CQ>

Now define
T = Z ( Z HZ;1Q1R1 (Hlejllf)(x2)> héQll (xl)’

(Q(n)
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just as we defined F' before, except now to every function ap, g, r, we apply the martingale transform

+1, if Hy f(R) > 0,

T €o ~ €2 €2
Ap,O1Ry & Op Oy Ry = E TR ap, 0 R, (RS?)hE , where 732 := )
1Q1 R 1Q1 Ry RyP1Q1 R\ M2 )Ry R2 —1, otherwise.

Ro

Since this does not increase the BMO(R"™?) norms of the ap, g, g, functions, the estimate (7.6) still holds:

||FT”LP(M) 5 HfHLP(,u)
Moreover, note that

* € € € € |R2 N Q2|
1 2 1 2\ 172 1 T 2]
<Ha"1;1Q1R1(HP1 >Q Z(L PlQlRl(R )HPlf(R ) |R2||Q2|
Ro> >0
and that
]]'Q ] * € [ [
moor = X (niens) X (g, 050), 150,
Q1xQ2 P1€(Q§j1))¢1
Then
2 /! Ql 62 2 1 -~ €2 /6—1\ €2 2 ]]'Ql ]]'Q2
S’DT < Z b |Q | ®h Z ﬁ Z |a‘P1Q1R1(R2 )HPlf(R2 )| m@) |Q |
Q1 xQa 1 Pe@),, 2l RyC Q@ 1 2
1qg 5 2 * € ? Lo lg
< ‘< - hQ22> ( Z <HU’;1Q1R1 (HPll )>Q2> |Q11| ® |Q22|
Q1 XQ2 PIE(Q(ljl))il
= SH (1,0 Fr)-

Finally, this gives us that

1T Lo xy = 1SDT || o) < 1SDs1,0) Frllo(ny = 7w 1,00 Erlzoay S N0lbmom ) | Frll e )
S Bllmon @) 1 f 1l 2o () -

This proves that HSil,jlfb — T obeys the desired bound, and the case T — S%!jl I;b is handled similarly.
D
|

7.5. Proof of Theorem 1.4. Having now proved all the one-weight inequalities for dyadic shifts, we may
conclude that

195« LP(w) — LP(w)]| S 1,

for all w € A,(R™). For the cancellative shifts, this was proved in (7.2). For the non-cancellative shifts,
the first two types are simply paraproducts with symbol ||a|| 5 Mop(®r7) < 1, while the third type, a partial
paraproduct, was proved to be bounded on LP(w) in Proposition 7.6.

Theorem 1.4 now follows trivially from Martikainen’s representation Theorem 7.1: take f € LP(w) and

g € LP (w'). Then

| <Tf, g>| < CT[Ewl [sz Z 2—max(i1,j1)6/22—max(i27j2)5/2 ‘<$€gf7g>’
ijez?
S Al 2o 9l o ) Z g-max(i,j1)5/29—max(iz,j2)3/2
ijez?

= ”f”LP(w)Hg”LP'(w’)'
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8. THE UNWEIGHTED CASE OF HIGHER ORDER JOURNE COMMUTATORS

Here is the definition of the BMO spaces which are in between little BMO and product BMO. Let
b:RY = C with d = (dy,--- ,d;). Take a partition Z = {I; : 1 < s <1} of {1,2,...,t} so that Uj<s<; I, =
{1,2,...,t}. We say that b € BMOI([RJ) if for any choices v = (vs),vs € I, b is uniformly in product
BMO in the variables indexed by vs. We call a BMO space of this type a ‘little product BMO’. If for any
Z=(x1,...,2¢) € IRJ, we define T by removing those variables indexed by vs, the little product BMO norm
becomes

[bllBmor = max{sup [|b(Zs)[|Brmo }
Ty

where the BMO norm is product BMO in the variables indexed by vs.
In [17] it was proved that commutators involving tensor products of Riesz transforms in L are a testing
class for these BMO spaces:

Theorem 8.1 (Ou-Petermichl-Strouse). Let j = (j1,...,j:) with 1 < jx < di and let for each 1 < s <1,
j® = (Jr)ker, be associated a tensor product of Riesz transforms R, Fo = Qrer. Riji; here Ry j, are g

Riesz transforms acting on functions defined on the k™ variable. We have the two-sided estimate

HbHBMoI([RJ) S Sllp ||[R1j(1) R [Rtj(t) 0] .. ']HLp([Rd‘)HLp(nadﬂ) < ”b”BMOI([RE)'
J
It was also proved that the estimate self improves to paraproduct-free Journé commutators in L?, in the
sense T is paraproduct free T(1® ) =T(-®1)=T*(1® ) =T*(-®1) = 0.

Theorem 8.2 (Ou-Petermichl-Strouse). Let us consider RY, d = (dy,...,d) with a partition T = (Is)1<s<i

of {1,...,t} as discussed before. Let b € BMOz(R?) and let T, denote a multi-parameter paraproduct free
Journé operator acting on function defined on ®k€]s R . Then we have the estimate below

||[T1, cee [Tla b] . ']HL2([RJ)_>L2([RJ) /S HbHBMoI([RJ)'

This estimate was generalised somewhat in [18] in that the paraproduct free condition was slightly weak-
ened, the considerations in this present text in combination with arguments from [5] and [17] to pass to the
iterated case, readily give us the following full result, for all Journé operators and all p:

Theorem 8.3. Let us consider [R‘f, d=(dy,...,ds) with a partition T = (Is)i<s<i of {1,...,t} as discussed

before. Let b € BMOz(RY) and let T, denote a multi-parameter Journé operator acting on function defined
on ®kels Rex. Then we have the estimate below

”[Tlv s [Tlv b] . ']”LT’([RE)%LP(R'I) S HbHBMoI([RJ)'
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