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Abstract

We characterize Lp boundedness of iterated commutators of multiplication by a
symbol function and tensor products of Riesz and Hilbert transforms. We obtain
a two-sided norm estimate that shows that such operators are bounded on Lp if
and only if the symbol belongs to the appropriate multi-parameter BMO class. We
extend our results to a much more intricate situation; commutators of multiplication
by a symbol function and paraproduct-free Journé operators. We show that the
boundedness of these commutators is also determined by the inclusion of their
symbol function in the same multi-parameter BMO class. In this sense the tensor
products of Riesz transforms are a representative testing class for Journé operators.

Previous results in this direction do not apply to tensor products and only to
Journé operators which can be reduced to Calderón-Zygmund operators. Upper
norm estimate of Journé commutators are new even in the case of no iterations.
Lower norm estimates for iterated commutators only existed when no tensor prod-
ucts were present. In the case of one dimension, lower estimates were known for
products of two Hilbert transforms, and without iterations. New methods using
Journé operators are developed to obtain these lower norm estimates in the multi-
parameter real variable setting.
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1 Introduction

As dual of the Hardy space H1, the classical space of functions of bounded
mean oscillation, BMO, arises naturally in many endpoint results in analysis,
partial differential equations and probability. When entering a setting with
several free parameters, a large variety of spaces are encountered, some of
which lose the feature of mean oscillation itself. We are interested in charac-
terizations of multi-parameter BMO spaces through boundedness of commu-
tators.

A classical result of Nehari [26] shows that a Hankel operator with anti-analytic
symbol b mapping analytic functions into the space of anti-analytic functions
by f ÞÑ P´bf is bounded with respect to the L2 norm if and only if the symbol
belongs to BMO. This theorem has an equivalent formulation in terms of the
boundedness of the commutator of the multiplication operator with symbol
function b and the Hilbert transform rH, bs “ Hb´ bH.

Ferguson-Sadosky in [14] and later Ferguson-Lacey in their groundbreaking
paper [13] study the symbols of bounded ‘big’ and ‘little’ Hankel operators on
the bidisk through commutators of the tensor product or of the iterated form

rH1H2, bs, and rH1, rH2, bss.

Here b “ bpx1, x2q and the Hk are the Hilbert transforms acting in the kth vari-
able. A full characterization of different two-parameter BMO spaces, Cotlar-
Sadosky’s little BMO and Chang-Fefferman’s product BMO space, is given
through these commutators.

Through the use of completely different real variable methods, in [6] Coifman-
Rochberg-Weiss extended Nehari’s one-parameter theory to real analysis in
the sense that the Hilbert transform was replaced by Riesz transforms. These
one-parameter results in [6] were treated in the multi-parameter setting in
Lacey-Petermichl-Pipher-Wick [18]. Both the upper and lower estimate have
proofs very different from those in one parameter. In addition, in both cases
it is observed that the Riesz transforms are a representative testing class in
the sense that BMO also ensures boundedness for (iterated) commutators
with more general Calderon-Zygmund operators, a result now known in full
generality due to Dalenc-Ou [8]. Notably the Riesz commutator has found
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striking applications to compensated compactness and div-curl lemmas, [3],
[20].

Our extension to the multi-parameter setting is two-fold. On the one hand we
replace the Calderon-Zygmund operators by Journé operators Ji and on the
other hand we also iterate the commutator:

rJ1, ..., rJt, bs...s.

We prove the remarkable fact that a multi-parameter BMO class still en-
sures boundedness in this situation and that the collection of tensor products
of Riesz transforms remains the representative testing class. The BMO class
encountered is a mix of little BMO and product BMO that we call a little
product BMO. Its precise form depends upon the distribution of variables in
the commutator. Our result is new even when no iterations are present: in this
case, lower estimates were only known in the case of the double Hilbert trans-
form [14]. The sufficiency of the little BMO class for boundedness of Journé
commutators had never been observed.

It is a general fact that two-sided commutator estimates have an equivalent
formulation in terms of weak factorization. We find the pre-duals of our little
product BMO spaces and prove a corresponding weak factorization result.

Necessity of the little product BMO condition is shown through a lower es-
timate on the commutator. There is a sharp contrast when tensor products
of Riesz transforms are considered instead of multiple Hilbert transforms and
when iterations are present.

In the Hilbert transform case, Toeplitz operators with operator symbol arise
naturally. Using Riesz transforms in Rd as a replacement, there is an absence
of analytic structure and tools relying on analytic projection or orthogonal
spaces are not readily available. We overcome part of this difficulty through
the use of Calderón-Zygmund operators whose Fourier multiplier symbols are
adapted to cones. This idea is inspired by [18]. Such operators are also men-
tioned in [31]. A class of operators of this type classifies little product BMO
through two-sided commutator estimates, but it does not allow the passage to
a classification through iterated commutators with tensor products of Riesz
transforms. In a second step, we find it necessary to consider upper and lower
commutator estimates using a well-chosen family of Journé operators that are
not of tensor product type. Through geometric considerations and an aver-
aging procedure of zonal harmonics on products of spheres, we construct the
multiplier of a special Journé operator that preserves lower commutator esti-
mates and resembles the multiple Hilbert transform: it has large plateaus of
constant values and is a polynomial in multiple Riesz transforms. We expect

3



that this construction allows other applications.

There is an increase in difficulty when the dimension is greater than two, due
to the simpler structure of the rotation group on S1. In higher dimension,
there is a rise in difficulty when tensor products involve more than two Riesz
transforms.

The actual passage to the Riesz transforms requires a stability estimate in
commutator norms for certain multi-parameter singular integrals in terms of
the mixed BMO class. In this context, we prove a qualitative upper estimate
for iterated commutators using paraproduct free Journé operators. We make
use of recent versions of T p1q theorems in this setting. These recent advances
are different from the corresponding theorem of Journé [16]. The results we
allude to have the additional feature of providing a convenient representation
formula for bi-parameter in [22] and even multi-parameter in [28] Calderón-
Zygmund operators by dyadic shifts.

2 Aspects of Multi-Parameter Theory

This section contains some review on Hardy spaces in several parameters as
well as some new definitions and lemmas relevant to us.

2.1 Chang-Fefferman BMO

We describe the elements of product Hardy space theory, as developed by
Chang and Fefferman as well as Journé. By this we mean the Hardy spaces as-
sociated with domains like the poly-disk or Rd :“

Ât
s“1Rds for d “ pd1, . . . , dtq.

While doing so, we typically do not distinguish whether we are working on Rd
or Td. In higher dimensions, the Hilbert transform is usually replaced by the
collection of Riesz transforms.

The (real) one-parameter Hardy space H1
RepRdq denotes the class of functions

with the norm
d
ÿ

j“0

}Rjf}1

where Rj denotes the jth Riesz transform or the Hilbert transform if the di-
mension is one. Here and below we adopt the convention that R0, the 0th Riesz
transform, is the identity. This space is invariant under the one-parameter fam-
ily of isotropic dilations, while the product Hardy space H1

RepRdq is invariant
under dilations of each coordinate separately. That is, it is invariant under a t
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parameter family of dilations, hence the terminology ‘multi-parameter’ theory.
One way to define a norm on H1

RepRdq is

}f}H1 „
ÿ

0ďjlďdl

}

t
â

l“1

Rl,jlf}1.

Rl,jl is the Riesz transform in the jthl direction of the lth variable, and the 0th

Riesz transform is the identity operator.

The dual of the real Hardy space H1
RepRdq˚ is BMOpRdq, the t-fold product

BMO space. It is a theorem of S.-Y. Chang and R. Fefferman [4], [5] that this
space has a characterization in terms of a product Carleson measure.

Define

‖b‖BMOpRdq :“ sup
UĂRd

´

|U |´1
ÿ

RĂU

ÿ

εPsigd

|xb, wεRy|
2
¯1{2

. (1)

Here the supremum is taken over all open subsets U Ă Rd with finite measure,
and we use a wavelet basis wεR adapted to rectangles R “ Q1ˆ¨ ¨ ¨ˆQt, where
each Ql is a cube. The superscript ε reflects the fact that multiple wavelets are
associated to any dyadic cube, see [18] for details. The fact that the supremum
admits all open sets of finite measure cannot be omitted, as Carleson’s example
shows [2]. This fact is responsible for some of the difficulties encountered when
working with this space.

Theorem 1 (Chang, Fefferman) We have the equivalence of norms

}b}pH1
RepRdqq˚

„ }b}BMOpRdq.

That is, BMOpRdq is the dual to H1
RepRdq.

This BMO norm is invariant under a t-parameter family of dilations. Here the
dilations are isotropic in each parameter separately. See also [10] and [12].

2.2 Little BMO

Following [7] and [14], we recall some facts about the space little BMO, often
written as ‘bmo’, and its predual. A locally integrable function b : Rd “
Rd1 ˆ . . .ˆ Rds Ñ C is in bmo if and only if

}b}bmo “ sup
Q“Q1ˆ¨¨¨ˆQs

|Q|´1
ż

Q

|bpxq ´ bQ| ă 8

Here the Qk are dk-dimensional cubes and bQ denotes the average of b over Q.
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It is easy to see that this space consists of all functions that are uniformly
in BMO in each variable separately. Let xv̂ “ px1, . . . ., xv´1, ¨, xv`1, . . . , xsq.
Then bpxv̂q is a function in xv only with the other variables fixed. Its BMO
norm in xv is

}bpxv̂q}BMO “ sup
Qv

|Qv|
´1

ż

Qv

|bpxq ´ bpxv̂qQv |dxv

and the little BMO norm becomes

}b}bmo “ max
v
tsup
xv̂

}bpxv̂q}BMOu.

On the bi-disk, this becomes

}b}bmo “ maxtsup
x1
}bpx1, ¨q}BMO, sup

x2
}bp¨, x2q}BMOu,

the space discussed in [14]. Here, the pre-dual is the space H1pTq b L1pTq `
L1pTq b H1pTq. All other cases are an obvious generalization, at the cost of
notational inconvenience.

2.3 Little product BMO

In this section we define a BMO space which is in between little BMO and
product BMO. As mentioned in the introduction, we aim at characterizing
BMO spaces consisting for example of those functions bpx1, x2, x3q such that
bpx1, ¨, ¨q and bp¨, ¨, x3q are uniformly in product BMO in the remaining two
variables.

Definition 1 Let b : Rd Ñ C with d “ pd1, ¨ ¨ ¨ , dtq. Take a partition I “
tIs : 1 ď s ď lu of t1, 2, ..., tu so that 9Y1ďsďlIs “ t1, 2, ..., tu. We say that
b P BMOIpRdq if for any choices v “ pvsq, vs P Is, b is uniformly in product
BMO in the variables indexed by vs. We call a BMO space of this type a ‘little
product BMO’. If for any x “ px1, ..., xtq P Rd, we define xv̂ by removing
those variables indexed by vs, the little product BMO norm becomes

}b}BMOI “ max
v
tsup
xv̂
}bpxv̂q}BMOu

where the BMO norm is product BMO in the variables indexed by vs.

For example, when d “ p1, 1, 1q “ 1, when t “ 3 and l “ 2 with I1 “ p13q and
I2 “ p2q, writing I “ p13qp2q the space BMOp13qp2qpT1q arises, which consists
of those functions that are uniformly in product BMO in the variables p1, 2q
and p3, 2q respectively, as described above. Moreover, as degenerate cases, it
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is easy to see that BMOp12...tq and BMOp1qp2q...ptq are exactly little BMO and
product BMO respectively, the spaces we are familiar with.

Little product BMO spaces on Td can be defined in the same way. Now we find
the predual of BMOp13qp2q, which is a good model for other cases. We choose
the order of variables most convenient for us.

Theorem 2 The pre-dual of the space BMOp13qp2qpT1q is equal to the space

H1
RepTp1,1qq b L1

pTq ` L1
pTq bH1

RepTp1,1qq
:“ tf ` g : f P H1

RepTp1,1qq b L1
pTq and g P L1

pTq bH1
RepTp1,1qqu.

Proof. The space

H1
RepTp1,1qq b L1

pTq “ tf P L1
pT3
q : H1f,H2f,H1H2f P L

1
pT3
qu

equipped with the norm }f} “ }f}1`}H1f}1`}H2f}1`}H1H2f}1 is a Banach
space. Let W 1 “ L1pT3q ˆL1pT3q ˆL1pT3q ˆL1pT3q equipped with the norm

}pf1, f2, f3, f4q}W1 “ }f1}1 ` }f2}1 ` }f3}1 ` }f4}1.

Then we see that H1
RepTp1,1qqbL1pTq is isomorphically isometric to the closed

subspace

V “ tpf,H1pfq, H2pfq, H1H2pfqq : f P H1
pTp1,1qq b L1

pTqu

of W 1. Now, the dual of W 1 is equal to W8 “ L8pT3q ˆ L8pT3q ˆ L8pT3q ˆ

L8pT3q equipped with the norm }pg1, g2, g3, g4q}8 “ maxt}gi}8 : 1 ď i ď 4u
so the dual space of V is equal to the quotient of W8 by the annihilator U
of the subspace V in W8. But, using the fact that the Hilbert transforms are
self-adjoint up to a sign change, we see that

U “ tpg1, g2, g3, g4q : g1 `H1g2 `H2g3 `H1H2g4 “ 0u

and so:
V ˚ – W8

{U – Impθq

where
θpg1, g2, g3, g4q “ g1 `H1g2 `H2g3 `H1H2g4

since U “ kerpθq. But

Impθq “ L8pT3
q `H1pL

8
pT3
qq `H2pL

8
pT3
qq `H1pH2pL

8
pT3
qqq

is equal to the functions that are uniformly in product BMO in variables 1
and 2.

Using the same reasoning we see that the dual of L1pTq bH1
RepTp1,1qq is equal

to L8pT3q ` H2pL
8pT3qq ` H3pL

8pT3qq ` H2H3pL
8pT3qq, which is equal to
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the space of functions that are uniformly in product BMO in variables 2 and
3.

Now, we consider the ‘L1 sum’ of the spaces H1
RepTp1,1qq bL1pTq and L1pTq b

H1
RepTp1,1qq; that is

Mp13qp2q “ tpf, gq : f P H1
RepTp1,1qq b L1

pTq; g P L1
pTq bH1

RepTp1,1qqu

equipped with the norm

}pf, gq} “ }f}H1
RepTp1,1qqbL1pTq ` }g}L1pTqbH1

RepTp1,1qq
.

We see that, if φ : Mp13qp2q Ñ L1ppT3q is defined by φpf, gq “ f ` g, then the
image of φ is isometrically isomorphic to the quotient of Mp13qp2q by the space

N “ tpf, gq PMp13qp2q : f ` g “ 0u

“ tpf,´fq : f P H1
RepTp1,1qq b L1

pTq X L1
pTq bH1

RepTp1,1qqu.

Now, recall that the dual of the quotient M{N is equal to the annihilator of
N. It is easy to see that the annihilator of N is equal to the set of ordered
pairs pφ, φq with φ in the intersection of the duals of the two spaces. Thus the
dual of the image of θ is equal to BMOp13qp2q. The norm of an element in the
predual is equal to its norm as an element of the double dual which is easily
computed. QED

Following this example, the reader may easily find the correct formulation
for the predual of other little product BMO spaces as well those in several
variables, replacing the Hilbert transform by all choices of Riesz transforms.
For instance, one can prove that the predual of the space BMOp13qp2qpRdq is
equal to H1

RepRpd1,d2qq b L1pRd3q ` L1pRd1q bH1
RepRpd2,d3qq.

3 The Hilbert transform case

In this section, we characterize the boundedness of commutators of the form
rH2, rH3H1, bss as operators on L2pT3q. In the case of the Hilbert transform,
this case is representative of the general case and provides a starting point
that is easier to read because of the simplicity of the expression of products
and sums of projection onto orthogonal subspaces. Its general form can be
found at the beginning of Section 4.

Now let b P L1pTnq and let P and Q denote orthogonal projections onto sub-
spaces of L2pTnq. We shall describe relationships between functions in the
little product BMOs and several types of projection-multiplication operators.
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These will be Hilbert transform-type operators of the form P ´ PK; and it-
erated Hankel or Toeplitz type operators of the form QKbQ (Hankel), PbP
(Toeplitz),PQKbQP (mixed), where b means the (not a priori bounded) mul-
tiplication operator Mb on L2pTnq.

We shall use the following simple observation concerning Hilbert transform
type operators again and again:

Remark 1 If H “ P ´ PK and T : L2pTnq Ñ L2pTnq is a linear operator
then

rH,T s “ 2PTPK ´ 2PKTP

and H is bounded if and only if PTPK and PKTP are.

Proof.

pP ´ PKqT ´ T pP ´ PKq “ pP ´ PKqT pP ` PKq ´ pP ` PKqT pP ´ PKq

“ 2PTPK ´ 2PKTP.

QED

We state the main result of this section.

Theorem 3 Let b P L1pT3q. Then the following are equivalent with linear
dependence on the respective norms

(1) b P BMOp13qp2q
(2) The commutators rH2, rH1, bss and rH2, rH3, bss are bounded on L2pT3q

(3) The commutator rH2, rH3H1, bss is bounded on L2pT3q.

Corollary 1 We have the following two-sided estimate

}b}BMOp13qp2q À }rH2, rH3H1, bss}L2pT3qÑL2pT3q À }b}BMOp13qp2q .

It will be useful to denote by Q13 orthogonal projection on the subspace of
functions which are either analytic or anti-analytic in the first and third vari-
ables; Q13 “ P1P3 ` PK1 P

K
3 . Then the projection QK13 onto the orthogonal of

this subspace is defined by QK13 “ PK1 P3 ` P1P
K
3 . We reformulate properties

(2) and (3) in the statement of Theorem 3 in terms of Hankel Toeplitz type
operators.

Lemma 1 We have the following algebraic facts on commutators and projec-
tion operators.

(1) The commutators rH2, rH1, bss and rH2, rH3, bss are bounded on L2pT3q if
and only if the operators PiP2bP

K
i P

K
2 , P

K
i P2bPiP

K
2 , PiP

K
2 bP

K
i P2, P

K
i P

K
2 bPiP2

with i P t1, 3u are bounded on L2pT3q.
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(2) The commutator rH2, rH3H1, bss is bounded on L2pT3q if and only if all
four operators P2Q13bQ

K
13P

K
2 , P

K
2 Q

K
13bQ13P2, P2Q

K
13bQ13P

K
2 , P

K
2 Q13bQ

K
13P2

are bounded on L2pT3q.

Proof. Using Remark 1 it is easy to see that

rH2, rH1, bss “ 4
`

pP2P1bP
K
1 P

K
2 ´P2P

K
1 bP1P

K
2 q´ pP

K
2 P1bP

K
1 P2´P

K
2 P

K
1 bP1P2q

˘

and that the corresponding equation for rH2, rH3, bss is also true. This, along
with the observation that the ranges of all arising summands are mutually
orthogonal, gives assertion (1). To prove (2) we just notice that H1H3 “

Q13´Q
K
13 is a Hilbert transform type operator which permits us to repeat the

above argument replacing P1 by Q13. QED

The following lemma will allow us to insert an additional Hilbert transform
into the commutator without reducing the norm.

Lemma 2 }P3P
K
1 P

K
2 bP1P2P3}L2ÑL2 “ }PK1 P

K
2 bP1P2}L2ÑL2 .

Proof.

The inequality ď is trivial, since P3 is a projection which commutes with PK1
and PK2 . To see ě, notice that P3P

K
1 P

K
2 bP1P2P3 is a Toeplitz operator with

symbol PK1 P
K
2 bP1P2. So }P3P

K
1 P

K
2 bP1P2P3} “ supx3}P

K
1 P

K
2 bp¨, ¨, x3qP1P2}. The

latter is just }PK1 P
K
2 bP1P2}. For convenience we include a sketch of the facts

about Toeplitz operators we use. Let W3 be the operator of multiplication by
z3, W3pfq “ z3f , acting on L2pT3q. If we define B “ PK1 P

K
2 bP1P2 as well as

An “ W ˚n
3 pP3P

K
1 P

K
2 bP1P2P3qW

n
3 and Cn “ W n

3 pP
K
3 P

K
1 P

K
2 bP1P2P

K
3 qW

˚n
3

as operators acting on L2pT3q then the sequences An and Cn converge to B in
the strong operator topology: it is easy to see that W3 , W ˚

3 ; and P3 commute
with P1, P2, P

K
1 and PK2 . The multiplier b satisfies the equation W ˚n

3 bW n
3 “ b

and W n
3 W

˚n
3 “ Id. So we see that

An “ PK1 P
K
2 pW

˚n
3 P3W

n
3 qbP1P2pW

˚n
3 P3W

n
3 q.

But if f P L2pT3q, then, since W n
3 is a unitary operator:

}W ˚n
3 P3W

n
3 pfq´f} “ }P3W

n
3 pfq´W

n
3 pfq} “ }pP3´IqpW

n
3 qpfq} Ñ 0 pnÑ 8q,

as tail of a convergent Fourier series. This means that W ˚n
3 P3W

n
3 converges

to the identity in the strong operator topology. Thus, for each f P L2pT3q we
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have }pAn ´Bqpfq} Ñ 0. So

}PK1 P
K
2 bP1P2} ď sup

nPN
}W ˚n

3 pP3P
K
1 P

K
2 bP1P2P3qW

n
3 }

ď }P3P
K
1 P

K
2 bP1P2P3},

QED

Now, we are ready to proceed with the proof of the main theorem of this
section.

Proof. (of Theorem 3) We show p1 q ô p2 q and p2 q ô p3 q.

p1 q ô p2 q. Consider f “ fpx1, x2q and g “ gpx3q. Then rH2, rH1, bsspfgq “
g ¨ rH2, rH1, bsspfq. So }rH2, rH1, bsspfgq}

2
L2pT3q “ }Fg}2L2pTq where F px2q “

}rH2, rH1, bsspfq}L2pT2q. The map g ÞÑ Fg has L2pTq operator norm }F }8. Now
change the roles of x1 and x3. The Ferguson-Lacey equivalences }rH2, rHi, bss} „
}b}BMO give the desired result.

p2 q ñ p3 q. Boundedness of the commutators rH2, rH1, bss and rH2, rH3, bss im-
plies the boundedness of the mixed commutator rH2, rH1H3, bss by the identity
rH2, rH1H3, bss “ H1rH2, rH3, bss ` rH2, rH1, bssH3.

p3 q ñ p2 q. This part relies on Lemma 2. We wish to conclude from the bound-
edness of rH2, rH3H1, bss the boundedness of rH2, rH1, bss and rH2, rH3, bss. To
see boundedness of rH2, rH1, bss, let us look at one of the Hankels from Lemma
1. Lemma 2 shows that PK2 P

K
1 bP 2P1 is bounded if and only if the operator

P3P
K
1 P

K
2 bP1P2P3 is. And the latter is an operator found in the list from part

(2) of Lemma 1. The analogous reasoning shows that all eight Hankels in 1
are bounded and so (2) is proved. QED

4 Real variables: lower bounds

In this section, we are again in Rd with d “ pd1, . . . , dtq and a partition
I “ pIsq1ďsďl of t1, . . . , tu. It is our aim to prove the following characterization
theorem of the space BMOIpRdq.

Theorem 4 The following are equivalent with linear dependence of the re-
spective norms.

(1) b P BMOIpRdq
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(2) All commutators of the form rRk1,jk1
, . . . , rRkl,jkl

, bs . . .s are bounded in

L2pRdq where ks P Is and Rks,jks
is the one-parameter Riesz transform in

direction jks.
(3) All commutators of the form rR1,jp1q , . . . , rRl,jplq , bs . . .s are bounded in

L2pRdq where jpsq “ pjkqkPIs, 1 ď jk ď dk and the operators Rs,jpsq are a
tensor product of Riesz transforms Rs,jpsq “

Â

kPIs
Rk,jk .

Such two-sided estimates also hold in Lp for 1 ă p ă 8. Remarks will be
made in section 7. From the inductive nature of our arguments, it will also
be apparent that the characterization holds when we consider intermediate
cases, meaning commutators with any fixed number of Riesz transforms in
each iterate. Below we state our most general two-sided estimate through
Riesz transforms.

Theorem 5 Let 1 ă p ă 8. Under the same assumptions as Corollary 2 and
for any fixed n “ pnsq where 1 ď ns ď |Is|, we have the two-sided estimate

}b}BMOIpRdq À sup
j
}rR1,jp1q , . . . , rRl,jplq , bs . . .s}LppRdqý À }b}BMOIpRdq

where jpsq “ pjkqkPIs, 0 ď jk ď dk and for each s, there are ns non-zero
choices. A Riesz transform in direction 0 is understood as the identity.

For p “ 2 and n “ 1 this is the equivalence (1) ô (2) and for n “

p|I1|, . . . , |Il|q it is the equivalence (1) ô (3) from Theorem 4.

Our main focus is of course on a two-sided estimate when n “ p|I1|, . . . , |Il|q
when the tensor product is a paraproduct-free Journé operator:

Corollary 2 Let j “ pj1, . . . , jtq with 1 ď jk ď dk and let for each 1 ď s ď l,
jpsq “ pjkqkPIs be associated a tensor product of Riesz transforms Rs,jpsq “
Â

kPIs
Rk,jk ; here the Rk,jk are jthk Riesz transforms acting on functions defined

on the kth variable. We have the two-sided estimate

}b}BMOIpRdq À sup
j
}rR1,jp1q , . . . , rRt,jptq , bs . . .s}LppRdqý À }b}BMOIpRdq.

The statements above also serve as the statement of the general case for prod-
ucts of Hilbert transforms. In fact, when any dk “ 1 just replace the Riesz
transforms by the Hilbert transform in that variable. In this section, we con-
sider the case dk ě 2 for 1 ď k ď t and thus iterated commutators with tensor
products of Riesz transforms only. The special case when dk “ 1 for some k is
easier but requires extra care for notation, which is why we omit it here.

The proof in the Hilbert transform case relied heavily on analytic projections
and orthogonal spaces, a feature that we do not have when working with

12



Riesz transforms. We are going to simulate the one-dimensional case by a two-
step passage via intermediary Calderón-Zygmund operators whose multiplier
symbols are adapted to cones.

In dimension d ě 2, a cone C Ă Rd with cubic base is given by the data pξ,Qq
where ξ P Sd´1 is the direction of the cone and the cube Q Ă ξK centered at
the origin is its aperture. The cone consists of all vectors θ that take the form
pθξξ, θKq where θξ “ xθ, ξy and θK P θξQ. By λC we mean the dilated cone
with data pξ, λQq.

A cone D with ball base has data pξ, rq for 0 ă r ă π{2 and ξ P Sd´1 and
consists of the vectors tη P Rd : dpξ, η{}η}q ď ru where d is the geodesic
distance (with distance of antipodal points being π.)

Given any cone C or D, we consider its Fourier projection operator defined via
xPCf “ χC f̂ . When the apertures are cubes, such operators are combinations
of Fourier projections onto half spaces and as such admit uniform Lp bounds.
Among others, this fact made cubic cones necessary in the considerations in
[18] and [9] that we are going to need. For further technical reasons in the
proof these operators are not quite good enough, mainly because they are not
of Calderón-Zygmund type. For a given cone C, consider a Calderón-Zygmund
operator TC with a kernel KC whose Fourier symbol xKC P C

8 and satisfies the
estimate χC ď xKC ď χp1`τqC . This is accomplished by mollifying the symbol
χC of the cone projection associated to cone C on Sd´1 and then extending
radially. We use the same definition for TD.

Given a collection of cones C “ pCkq we denote by TC , PC the corresponding
tensor product operators.

In [18] it has been proved that Calderón-Zygmund operators adapted to certain
cones of cubic aperture classify product BMO via commutators. As part of the
argument, it was observed that test functions with opposing Fourier supports
made the commutator large. In [9] a refinement was proven, that will be helpful
to us. We prefer to work with cones with round base. Lower bounds for such
commutators can be deduced from the assertion of the main theorem in [9], but
we need to preserve the information on the Fourier support of the test function
in order to succeed with our argument. Information on this test function is
instrumental to our argument: it reduces the terms arising in the commutator
to those resembling Hankel operators. We have the following lemma, very
similar to that in [18] section 7 and [9] section 3, the only difference being
that the cones are based on balls instead of cubes.

Lemma 3 For every parameter 1 ď k ď t there exist a finite set of directions
Υk P Sdk´1 and an aperture 0 ă rk ă π{2 so that, for every symbol b belonging
to product BMO, there exist cones Dk “ Dpξk, rkq with ξk P Υk as well as a
normalised test function f “

Ât
k“1 fk whose components have Fourier support

13



in the opposing cones Dp´ξk, rkq such that

}rT1,D1 ..., rTt,Dt , bs...sf}2 Á }b}BMOp1q...ptqpRdq.

The stress is on the fact that the collection is finite, somewhat specific and
serves all admissible product BMO functions.

Proof. The lemma in [9] supplies us with the sets of directions Υk as well as
cones of cubic aperture Qk and a test function f supported in the opposing
cones. Now choose the aperture rk large enough so that p1 ` τqCpξk, Qkq Ă

Dpξk, rkq. Then we have the commutator estimate

}rT1,D1 ..., rTt,Dt , bs...sf}2 Á }b}BMOp1q...ptqpRdq.

In fact, both commutators with cones C and D are L2 bounded and reduce to
}TDpbfq}2 or }TCpbfq}2 respectively thanks to the opposing Fourier support
of f . Observe that TCpbfq “ TDpTCpbfqq “ TCpTDpbfqq. With }TC}2Ñ2 ď 1,
we see that }TDpbfq}2 ě }TCpbfq}2. QED

Using this a priori lower estimate, we are going to prove the lemma below.

Lemma 4 Let us suppose we are in Rd with d “ pd1, . . . , tq and a partition
I “ pIsq1ďsďl. For every 1 ď k ď t there exists a finite set of directions Υk Ă

Sdk´1 and an aperture rk so that the following hold for all b P BMOIpRdq :

(1) For every 1 ď s ď l there exists a coordinate vs P Is and a direction ξvs P
Υvs and so that with the choice of cone Dvs “ Dpξvs , rvsq and arbitrary Dk

for coordinates k P Isztvsu and if Ds denotes their tensor product, then
we have

}rT1,D1 , . . . , rTl,Dl
, bs . . .s}2Ñ2 Á }b}BMOIpRdq,

(2) The test function f “
Ât

k“1 fk which gives us a large L2 norm in (1) has
Fourier supports of the fk contained in Dp´ξk, rkq when k “ vs and in Dk

otherwise.

Before we can begin with the proof of Lemma 4, we will need a real variable
version of the facts on Toeplitz operators used earlier.

Lemma 5 Let Dk for 1 ď k ď t denote any cones with respect to the kth vari-
able. Let TDk

denote the adapted Calderón-Zygmund operators. Let K be any
proper subset of tk : 1 ď k ď tu, let DK “

Â

kPK Dk and TDK
the associated

tensor product of Calderón-Zygmund operators. Let P σ
DK

be a tensor product
of projection operators on cones Dpξk, rkq or opposing cones Dp´ξk, rkq. Let
j R K. Then

}TDK
TDj

bP σ
DK

PDj
}L2pRdqý “ }TDK

bP σ
DK
}L2pRdqý.
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Proof.

We will establish this by composing some unilateral shift operators and study-
ing their Fourier transform in the j variable. Let ξj denote the direction of the
cone Dj, for any l define the shift operator

Slgpxjq “

ż

Rdj

ĝpηjqe
2πiplξj`ηjqxj dηj.

Sl is a translation operator on the Fourier side along the direction ξj of the
cone Dj. It is not hard to observe that S˚l “ S´l. Now define

Al “ S´lTDK
TDj

bP σ
DK

PDj
Sl, and B “ TDK

bP σ
DK

.

We will prove that as l Ñ `8, Al Ñ B in the strong operator topology. As in
the argument in Lemma 2, this together with the fact that Sl is an isometry
will complete the proof. To see the convergence, let’s first remember that Sl
only acts on the j variable, and one always has the identities

SlS´l “ Id and S´lbSl “ b.

This implies

Al “ TDK
pS´lTDj

SlqpS´lbSlqP
σ
DK
pS´lPDj

Slq

“ TDK
pS´lTDj

SlqbP
σ
DK
pS´lPDj

Slq.

We claim that both S´lTDj
Sl and S´lPDj

Sl converge to the identity operator
in the strong operator topology, which then implies that Al Ñ B as l Ñ 8. We
will only prove S´lTDj

Sl Ñ Id as the second limit is almost identical. Observe
that }S´lTDj

Slf´f} “ }pTDj
´IqSlf}. Given any L2 function f and any fixed

large l ě 0. Consider the f with frequencies supported in Rd1 ˆ . . . ˆ pDj ´

lξjqˆ. . .ˆRdt . In this case, Slf has Fourier support in Rd1ˆ. . .ˆDjˆ. . .ˆRdt

where the symbol of TDj
equals 1. Thus, for such f , we have S´lTDj

Slf “ f .
The sets Rd1 ˆ . . .ˆ pDj ´ lξjq ˆ . . .ˆRdt exhaust the frequency space. With
}TDj

´I}2Ñ2 ď 1 the operators S´lTDj
Sl converge to the Identity in the strong

operator topology, and the lemma is proved. Observe that the aperture of the
cone Dj is not relevant to the proof. QED

We proceed with the proof of the lower estimate for cone transforms.

Proof. (of Lemma 4) For a given symbol b P BMOI , there exist for all 1 ď s ď l
coordinates v “ pvsq, vs P Is and a choice of variables not indexed by vs, x

0
v̂

so that up to an arbitrarily small error

}b}BMOI “ }bpx
0
v̂ q}BMOpv1q...pvlq

.

By Lemma 3, there exist cones Dvs “ Dpξvs , rvsq with directions ξvs P Υvs and
a normalised test function fH in variables vs with opposing Fourier support
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such that we have the lower estimate

}rTv1,Dv1
, . . . , rTvl,Dvl

, bpx 0
v̂ qs . . .spfHq}L2pRdv q Á }bpx

0
v̂ q}BMOpv1q...pvlq

where Rdv “ Rdv1 ˆ . . .ˆ Rdvl .

We now consider the commutator with the same cones but with full symbol
b “ bp¨, . . . , ¨q. Due to the lack of action on the variables not indexed by vs, in
the commutator, we have

rTv1,Dv1
, . . . , rTvl,Dvl

, bs . . .spfHgq “ g ¨ rTv1,Dv1
, . . . , rTvl,Dvl

, bs . . .spfHq

for g that only depends upon variables not indexed by vs. Again using that
multiplication operators in L2 have norms equal to the L8 norm of their
symbol, for the ‘worst’ L2-normalised g we have

}rTv1,Dv1
, . . . , rTvl,Dvl

, bs . . .spfHgq}L2pRdq

“ sup
xv̂
}rTv1,Dv1

, . . . , rTvl,Dvl
, bpx 0

v̂ qs . . .spfHq}L2pRdv q

ě }rTv1,Dv1
, . . . , rTvl,Dvl

, bpx 0
v̂ qs . . .spfHq}L2pRdv q

Á }bpx 0
v̂ q}BMOpv1q...pvlqpR

dv q “ }b}BMOIpRdq.

Note that the test function g can be chosen with well distributed Fourier
transform. Take any cones in the variables not indexed by vs and let D denote
the tensor product of their projections. fT “ PDg. Notice that

}rTv1,Dv1
, . . . , rTvl,Dvl

, bs . . .spfHfT q} Á }rTv1,Dv1
, . . . , rTvl,Dvl

, bs . . .spfHgq}

with constants depending upon how small the aperture of the chosen cones is.
Notice that the test function f :“ fHfT has the Fourier support as required
in part (2) of the statement of Lemma 4.

Now build cones Ds from the Dvs and the other chosen cones Dk as well
as operators Ts,Ds . Notice that the commutators rTv1,Dv1

, . . . , rTvl,Dvl
, bs . . .s

and rT1,D1 , . . . , rTl,Dl
, bs . . .s reduce significantly when applied to a test func-

tion f with Fourier support like ours. When the operators Tvs,Dvs
or any

tensor product Ts,Ds fall directly on f , the contribution is zero due to op-
posing Fourier supports of the test function and the symbols of the opera-
tors. The only terms left in the commutators rT1,D1 , . . . , rTl,Dvl

, bs . . .spfq and
rTv1,Dv1

, . . . , rTvl,Dvl
, bs . . .spfq have the form

Â

s Ts,Dspbfq and
Â

s Tvs,Dvs
pbfq

respectively.

By repeated use of Lemma 5 we have the operator norm estimates for any
symbol b, valid on the subspace of functions with Fourier support as described
for f : }

Â

s Ts,Dsb}2Ñ2 “ }
Â

s Tvs,Dvs
b}2Ñ2. We conclude that a normalised test

function f with Fourier support as described in the statement (2) of Lemma 4
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exists, so that }
Â

s Ts,Dspbfq}2 Á }b}BMOIpRdq. In particular, we get the desired
estimate in (1). QED

It does not seem possible to pass directly to a lower commutator estimate for
tensor products of Riesz transforms from that for tensor products of cone op-
erators. Just using tensor products of operators adapted to cones merely gives
us some lower bound where we are unable to control that a Riesz transform
does appear in every variable such as required in (3) of Theorem 4. The reason
for this will become clear as we advance in the argument. Instead of using op-
erators Ts,Ds directly, we will build upon them more general multi-parameter
Journé type cone operators not of tensor product type that we now describe.

Let us explain the multiplier we need for i copies of Sd´1 when all dimensions
are the same. We will explain how to pass to the case of i copies of varying
dimension dk below. A picture illustrating a base case, a product of two 1-
spheres, can be found at the end of this section.

For 0 ă b ă a ă 1, let ϕ : r´1, 1s Ñ r´1, 1s be a smooth function with
ϕpxq “ 1 when a ď x ď 1 and ϕpxq “ 0 when b ě x ě 0. And let ϕ be
odd, meaning antisymmetric about t “ 0. The function ϕ gives rise to a zonal
function with pole ξ1 on the first copy of Sd´1, denoted by C1pξ1; η1q. This is
the multiplier of a one-parameter Calderón-Zygmund operator adapted to a
cone Dpξ1, rq for r “ π{2p1´ aq. For i ą 1 we define Ckpξ1, . . . , ξk; η1, . . . , ηkq
for 1 ă k ď i inductively. In what follows, expectation is taken with respect
to traces of surface measure. When ηi “ ˘ξi, then conditional expectation is
over a one-point set.

Ckpξ1, . . . , ξk; η1, . . . , ηkq

“ Eak´1
pCk´1pξ1, . . . , ak´1; η1, . . . , ηk´1q | dpak´1, ξk´1q “ dpηk, ξkqq.

If the dimensions are not equal take d “ maxdj and imbed Sdj´1 into Sd´1
by the map ξ “ pξ1, . . . , ξdjq ÞÑ pξ1, . . . , ξdj , 0, . . . , 0q. Obtain in this manner
the function Ci and then restrict to the original number of variables when the
dimension is smaller than d.

The multiplier J “ Cipξ; ¨q gives rise to a multi-parameter Calderón-Zygmund
operator of convolution type (but not of tensor product type), T J “ T Cipξ;¨q.
In fact, it is defined through principal value convolution against a kernelKJ “

KCipξ;¨qpx1, . . . , xiq such that

@l :

ż

αă|xl|ăβ

KJpx1, . . . , xiqdxl “ 0, @0 ă α ă β, xj P Rdj fixed @j ‰ l,

|
B|n|

Bxn1
1 . . . Bxni

i

KJpx1, . . . , xiq| ď An|x1|
´d1´n1 . . . |xi|

´di´ni , nj ě 0.
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This kind of operator is a special case of the more general, non-convolution
type discussed in Section 5. It has many other nice features that will facilitate
our passage to Riesz transforms. One of them is its very special representa-
tion in terms of homogeneous polynomials, the other one a lower commutator
estimate in terms of the BMOI norm.

Lemma 6 Let Ci be a multiplier in
Âi

k“1Rdk as described above, with any
fixed direction and aperture. Let m be an integer of order d “ max dk. For
any δ ą 0, the function Ci has an approximation by a polynomial CN

i in the
śi

k“1 dk variables t
ś

k:1ďkďi ηk,jk | 1 ď jk ď dku so that }Ci´C
N
i }CmpSdk´1q ă δ

in each variable separately.

Cm indexes the norm of uniform convergence on functions that are m times
continuously differentiable. On the space side, CN

i corresponds to an operator
that is a polynomial in Riesz transforms of the variables

Â

k Rk,jk .

Lemma 7 We are in Rd with partition I “ pIsq1ďsďl. Let Υ consist of vectors
ξ “ pξkq

t
k“1 with ξk P Υk. Let Υpsq consist of ξpsq “ pξkqkPIs. Let us consider

the class of Journé type cone multipliers J s “ Cispξ
psq; ¨q of aperture rs with

associated multi-parameter Calderón-Zygmund operators T s,Js. Then we have
the two-sided estimate

}b}BMOIpRdq À sup
ξPΥ

}rT 1,J1 , . . . , rT l,J l
, bs . . .s}L2pRdqý À }b}BMOIpRdq.

In order to proceed with the proof of these lemmas, we will use some well
known facts about zonal harmonics. Fix a pole ξ P Sd´1. The zonal harmonic
with pole ξ of degree n is written as Z

pnq
ξ pηq. With t “ xξ, ηy P r´1, 1s, one

writes Z
pnq
ξ pηq “ Pnptq where Pn is the Legendre polynomial of degree n. It is

common to suppress the dependence on d in the notation for Z
pnq
ξ and Pn.

Z
pnq
ξ are reproducing for spherical harmonics of degree n, Y pnq. When Y pnq

is harmonic and homogeneous of degree n with Y pnqpξq “ 1 and Y pnqpRηq “

Y pnqpηq for any rotation R P Opdq with Rξ “ ξ, then Y pnq “ Z
pnq
ξ .

The lemma below will aid us in understanding the special form of the functions
Ci.

Lemma 8 Let ξ1, ξ2 P Sd´1. We have

Z
pnq
ξ1
pη1qZ

pnq
ξ2
pη2q “ Ea1pZpnqη1

pa1q | dpξ1, a1q “ dpξ2, η2qq

“ Ea2pZpnqη2
pa2q | dpξ2, a2q “ dpξ1, η1qq.
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Proof. The first equality is a change of variable, thanks to symmetry of the
zonal harmonic in its variables and invariance with respect to action of the
measure preserving elements of the orthogonal group fixing poles ξ1 or ξ2, that
we now detail. By a rotation in one of the spheres, assume ξ1 “ ξ2 “ ξ. Take
a small ball

Bξ,η1pa
0
2; ε2q “ ta2 : dpa2, a

0
2q ă ε2u X ta2 : dpa2, ξq “ dpη1, ξqu.

Note ta2 : dpa2, ξq “ dpη1, ξqu „ Sd´2. Every a2 P Bξ,η1pa
0
2; ε2q gives rise to a

canonical orthogonal map σa2 along geodesics in a scaled copy of Sd´2. Lifted
to Sd´1, these are orthogonal maps fixing ξ. Let σ0 fix ξ and map a02 to η1. Let
a01 “ σ0pη2q. We observe that tσ0σa2pη2q : a2 P Bξ,η1pa

0
2; ε2qu “ Bξ,η2pa

0
1; ε1q

with ε1 so that

Ppdpa2, a02q ă ε2 | dpξ, a2q “ dpξ, η1qq “ Ppdpa1, a01q ă ε1 | dpξ, a1q “ dpξ, η2qq.

Together with the symmetry and the rotation property Zpnqη paq “ Zpnqa pηq “

Z
pnq
σpaqpσpηqq, we obtain the first equality.

For fixed a1, the function Zpnqη1
pa1q “ Zpnqa1

pη1q is a function harmonic in Rd,
n-homogeneous. These properties are preserved when taking expectation in
a1. So the expression EpZpnqη1

pa1q | dpξ1, a1q “ dpξ2, η2qq remains harmonic

(regarded as a function in Rd), n-homogeneous. From the form EpZpnqη2
pa2q |

dpξ2, a2q “ dpξ1, η1qq we learn that its restriction to Sd´1 depends only upon
dpξ1, η1q. This implies that it is a constant multiple of the zonal harmonic with
pole ξ1. Exchanging the roles of η1 and η2 gives

EpZpnqη1
pa1q | dpξ1, a1q “ dpξ2, η2qq “ cnZ

pnq
ξ1
pη1qZ

pnq
ξ2
pη2q.

When assuming the normalization Z
pnq
ξ pξq “ 1 then cn “ 1.

This is a gernalisation of the classical symmetrising of the cosinus sum formula
1{2pcospx` yq ` cospx´ yqq “ cospxq cospyq.

QED

Proof. (of Lemma 6) It is well known that zonal harmonic series have conver-
gence properties when representing smooth zonal functions similar to that of
the Fourier transform. For any given m and sufficiently smooth ϕ of the type
described above, then

C1pξ1; η1q “
ÿ

n

ϕnZ
pnq
ξ1
pη1q

where the convergence is Cm-uniform. The degree of smoothness required for
ϕ to obtain convergence in the Cm in the above expression depends upon m
and the dimension d. For our purpose, we choose m ě d.
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Let us denote this function’s representation of degree N by a series of zonal
harmonics by C

pNq
1 pξ1; η1q.

C
pNq
1 pξ1; η1q “

ÿ

nďN

ϕnZ
pnq
ξ1
pη1q.

For every δ ą 0 there exists N so that we have the estimate

}C
pNq
1 pξ1; η1q ´ C1pξ1; η1q}CmpSd1´1q ă δ.

In the case of i copies of spheres, we define C
pNq
i inductively in the same

manner as Ci. Let us for the moment make all dimensions equal using the
argument discussed above. So we set

C
pNq
k pξ1, . . . , ξk; η1, . . . , ηkq

“ Eak´1
pC

pNq
k´1pξ1, . . . , ak´1; η1, . . . , ηk´1q | dpak´1, ξk´1q “ dpηk, ξkqq.

We claim the identity

C
pNq
i pξ; η1, η2, . . . , ηiq “

ÿ

nďN

ϕn

i
ź

k“1

Z
pnq
ξk
pηkq. (2)

This is trivially true for i “ 1. For i ą 1 induct on the number of parameters:

C
pNq
i pξ; η1, . . . , ηiq

“ Eai´1
pCi´1pξ1, ξ2, . . . , ai´1; η1, . . . , ηi´1q | dpai´1, ξi´1q “ dpηi, ξiqq

“ Eai´1

˜

ÿ

nďN

ϕn

i´1
ź

k“1

Z
pnq
ξk
pηkq | dpai´1, ξi´1q “ dpηi, ξiq

¸

“
ÿ

nďN

ϕn

i´2
ź

k“1

Z
pnq
ξk
pηkqEai´1

pZ
pnq
ξi´1

| dpai´1, ξi´1q “ dpηi, ξiqq

“
ÿ

nďN

ϕn

i
ź

k“1

Z
pnq
ξk
pηkq.

The first equality is the definition of C
pNq
i , the second one is the induction

hypothesis and the last an application of Lemma 8.

It follows that neither Ci nor C
pNq
i depend on the order chosen in their defini-

tion and

Cipξ; η1, . . . , ηiq “
ÿ

n

ϕn

i
ź

k“1

Z
pnq
ξk
pηkq

where the convergence is in Cm in each variable.
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Next, we study the terms arising in multipliers of the form C
pNq
i . When all

dimensions are equal, indeed,
śi

k“1 Z
pnq
ξk
pηkq has the important property that,

as a product of n-homogeneous polynomials, has only terms of the form

i
ź

k“1

ηαk
k “

i
ź

k“1

˜

d
ź

jk“1

η
αk,jk
k,jk

¸

where ηk P Sd´1 and αk “ pαk,jkq are multi-indices with |αk| “
ř

jk
αk,jk “ n

for all k. This form is inherited by C
pNq
i with varying n. It shows that C

pNq
i is

indeed a polynomial in the variables
śi

k“1 ηk,jk . When the dimensions dk are
not equal, observe that by restricting back to the original number of variables,
we certainly lose harmonicity of the polynomials, but not n-homogeneity or
the required form of our polynomials. QED

Proof. (of Lemma 7) By Lemma 4 we know that for each parameter 1 ď
s ď l there exists a tensor product of cones Ds “

Â

kPIs
Dpξk, rkq with rs :“

ř

kPIs
rk ă π{2 and ξk P Υk and test functions fs supported as described in

Lemma 4 part (2) so that

}rT1,D1 , . . . , rTl,Dl
, bs . . .spfq}2 Á }b}BMOIpRdq

where f “
Âl

s“1 fs. We make a remark about the apertures rs. Let dp¨, ¨q
denote geodesic distance on Sd´1, where antipodal points have distance π. Let
ξpsq be the set of directions of Ds. Remember that according to Lemma 4,
one component had a specific direction ξpsqv P Υv and possibly large aperture
with p1` τqrpsqv ă π{2. Let us choose the other directions arbitrarily but with

apertures r
psq
v̂ small enough so that p1`τqprpsqv `pi´1qr

psq
v̂ q ă π{2. Now choose

an aperture rs ă π{2 so that p1` τqprpsqv ` pi´ 1qr
psq
v̂ q ă rs ă π{2.

Writing is “ |Is|, we find Journé type cone multipliers J s “ Cispξ
psq; ¨q ac-

cording to the construction above with center ξpsq and aperture rs.

We are going to observe that J s ” 1 on sptpDsq and J s ” ´1 on the Fourier
support of fs. Let us drop the dependence on s for the moment. We see in an
inductive manner that Cipξ; ¨q takes the value 1 in a certain `1 ball of radius
r ă π{2 centered at ξ. We show that

ÿ

k

dpξk, ηkq ă r ñ Cipξ, η1, . . . , ηiq “ 1.

When i “ 1, the assertion is obviously true: dpξ1, η1q ă r ñ C1pξ1; η1q “ 1 by
the choice of ϕ, r and definition of C1. For i ą 1, we proceed by induction.
Assume that

ři´1
k“1 dpξk, nkq ă r implies Ci´1pξ1, . . . , ξi´1; η1, . . . , ηi´1q “ 1.

Let us assume that
ři
k“1 dpξk, ηkq ă r. Remembering the definition of Cipξ; ¨q

we assume dpai´1, ξi´1q “ dpηi, ξiq. By the triangle inequality
ři´2
k“1 dpξk, ηkq `
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dpai´1, ηi´1q ď
ři´2
k“1 dpξk, ηkq`dpai´1, ξi´1q`dpξi´1, ηi´1q “

ři
k“1 dpξk, ηkq ă r.

So

Ci´1pξ1, ξ2, . . . , ai´1; η1, . . . , ηi´1q “ 1

for all ai´1 relevant to the conditional expectation in the definition of Cipξ; ¨q.
The statement for i follows.

Since Cipξ; ¨q does not depend upon the order of the variables in its construc-
tion, we are also able to see exactly as done above that when σk “ ´1 for
exactly one choice of k, then

ř

k dpσkξk, ηkq ă r ñ Cipξ; η1, . . . , ηiq “ ´1.

Consider associated multi-parameter Calderón-Zygmund operators T s,Js and
Ids “

Â

kPIs
Idk and Idk the identity on the kth variable. Now

rT 1,J1 , . . . , rT l,J l
, bs . . .spfq“ rT 1,J1 ` Id1, . . . , rT l,J l

` Idl, bs . . .spfq

“

l
â

s“1

pT s,Js ` Idsqpbfq

With }
Âl

s“1pT s,Js ` Idsqpbfq}2 ě }
Âl

s“1 Ts,Dspbfq}2 and
Âl

s“1 Ts,Dspbfq “
rT1,D1 , . . . , rTl,Dl

, bs . . .spfq we get the desired lower bound on the Journé com-
mutator as claimed. QED

Let us illustrate the base case pS1q2 by a picture. The picture is simplified in
the sense that the odd function ϕ above is replaced by an indicator function
of an interval.
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r S1

S1

ξ

Cone functions based on the oblique strips con-
taining ξ are averaged. In the two-dimensional
case, S1, expectation is over a one or two point
set only. The rectangle around ξ with sides par-
allel to the axes representing S1 illustrates the
support of the tensor product of cone opera-
tors with direction ξ. The longer side is the
aperture that arises from the Hankel part. The
short sides can be chosen freely as they arise
from the Toeplitz part and are chosen small so
that the rectangle fits into the oblique square.
The other small rectangle corresponds to the
Fourier support of the test function f .

Proof. (of Theorem 4)

In contrast to the Hilbert transform case, both lower bounds require separate
proofs. This is a notable difference that stems from the loss of orthogonal
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subspaces in conjunction with the special form of the Hilbert transform only
seen in one variable. It does not seem possible to get a lower estimate (3)ñ(2)
directly.

(1)ô(2). The upper bound (1)ñ(2) is an easy consequence of the upper
estimates of iterated commutators of single Riesz transforms. The lower bound
(2)ñ(1) follows from a standard fact on multipliers in combination with the
main result in [18] section 1, the two-sided estimate for iterated commutators
with Riesz transforms, similar to the first arguments used in 4.

(1)ô(3). The upper bound (1)ñ(3) follows from the tensor product structure
and use of the little product BMO norm (see also the remarks in section 7).
The lower bound (3)ñ(1) uses the considerations leading up to this proof:
Suppressing again the dependence on s, we see that the multiplier Ci is an
odd, smooth, bounded function in each ηk when the other variables are fixed.
Furthermore, since ϕ, written as a function of t “ xξ, ηy is odd with respect

to t “ 0, the above series has ϕn ‰ 0 at most when n is odd and thus Z
pnq
ξ is

odd. So C
pNq
i is as a sum of odd functions odd.

We are now also ready to see that T J , the Journé operator associated to
the cone J “ Cipξ; ¨q as well as the operator associated to C

pNq
i pξ; ¨q are

paraproduct free. In fact, applied to a test function f “
Â

k fk with fk acting
on the kth variable and where fl ” 1 for some l gives T Jpfq “ 0. To see this,

apply the multiplier C
pNq
i pξ; ¨q in the l variable (acting on 1) first, leaving the

other Fourier variables fixed. The multiplier function

ηl ÞÑ C
pNq
i pξ; η1, . . . , ηiq “

ÿ

nďN

ϕnZ
pnq
ξl
pηlq

i
ź

k‰l,k“1

Z
pnq
ξk
pηkq

is, as a sum of odd functions, odd on Sdl´1, bounded by 1 and uniformly
smooth for all choices of ηk with k ‰ l. As such it gives rise to a paraproduct
free convolution type Calderón-Zygmund operator in the lth variable whose
values are multi-parameter multiplier operators.

Due to the convergence properties proved above, the difference

Cipξ; ¨q ´ C
pNq
i pξ; ¨q

gives rise to a paraproduct free Journé operator with Calderón-Zygmund norm
depending on N . This is seen by an application of an appropriate version of
the Marcinkievicz multiplier theorem.

By our stability result on Journé commutators in section 5, Corollary 3, there
exist for all 1 ď s ď l integers Ns so that CpNsq

s pξs; ¨q with ξk P Υk is a
characterizing set of operators via commutators for BMOIpRdq. This is a finite
set of possibilities because of the universal choice of the rs and finiteness of
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the set Υ. Using the multi-parameter analog of the observation rAB, bs “
ArB, bs ` rA, bsB and the special form of the CpNsq

s pξ; ¨q, leaves us with the
desired lower bound: Observe that when rAB, bs has large L2 norm then either
rA, bs or rB, bs has a fair share of the norm. We use this argument finitely many
times in a row for operators that are polynomials in tensor products of Riesz
transforms

Â

kPIs
Rk,jk . This finishes (3)ñ(1). QED

We remark that there are two cases of dimension greater than 1, where the
proof simplifies. In the case of arbitrarily many copies of R2, one can work with
the multiplicative structure of complex numbers and avoid the symmetrizing
procedure to obtain cone functions with the appropriate polynomial approxi-
mations. If the dimensions are arbitrary, but only tensor products of two Riesz
transforms arise, one can avoid part of the construction above by using the
addition formula for zonal harmonics.

5 Real variables: upper bounds

In this section, we are interested in upper bounds for commutator norms by
means of little product BMO norms of the symbol. In the case of the Hilbert
transform, we have seen that these estimates, even in the iterated case, are
straightforward. Other streamlined proofs exist for Hilbert or Riesz trans-
forms when considering dyadic shifts of complexity one, see [29], [30] and [19].
When considering more general Calderón-Zygmund operators, the arguments
required are more difficult, in each case. The first classical upper bound goes
back to [6], where an estimate for one-parameter commutators with convolu-
tion type Calderón-Zygmund operators is given. Next, the text [18] includes
a technical estimate for the multi-parameter case for such Calderón-Zygmund
operators with a high enough degree of smoothness. This smoothness assump-
tion was removed in [8] thanks to an approach using the representation formula
for Calderón-Zygmund operators by means of infinite complexity dyadic shifts
[15]. This last proof also gives a control on the norm of the commutators which
depends on the Calderón-Zygmund norm of the operators themselves, a fact
we will employ later. Below, we give an estimate by little product BMO when
the Calderón-Zygmund operators are of Journé type and cannot be written as
a tensor product. While this estimate is interesting in its own right, remem-
ber that it is also essential for our characterization result, the lower estimate,
in section 4. The first generation of multi-parameter singular integrals that
are not of tensor product type goes back to Fefferman [11] and was general-
ized by Journé in [16] to the non-convolution type in the framework of his
T p1q theorem in this setting. Much later, Journé’s T p1q theorem was revis-
ited, for example in [22], [27], [28]. See also [23] for some difficulties related
to this subject. The references [22] in the bi-parameter case and [28] in the
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general multi-parameter case include a representation formula by means of
adapted, infinite complexity dyadic shifts. While these representation formu-
lae look complicated, they have a feature very useful to us. ‘Locally’, in a
dyadic sense, they look as if they were of tensor product type, a feature we
will exploit in the argument below. We start with the simplest bi-parameter
case with no iterations and make comments about the generalization at the
end of this section.

The class of bi-parameter singular integral operators treated in this section is
that of any paraproduct free Journé type operator (not necessarily a tensor
product and not necessarily of convolution type) satisfying a certain weak
boundedness property, which we define as follows:

Definition 2 A continuous linear mapping T : C80 pRnqbC80 pRmq Ñ rC80 pRnqb

C80 pRmqs1 is called a paraproduct free bi-parameter Calderón-Zygmund oper-
ator if the following conditions are satisfied:

1. T is a Journé type bi-parameter δ-singular integral operator, i.e. there exists
a pair pK1, K2q of δCZ-δ-standard kernels so that, for all f1, g1 P C

8
0 pRnq and

f2, g2 P C
8
0 pRmq,

xT pf1 b f2q, g1 b g2y “

ż

f1py1qxK1px1, y1qf2, g2yg1px1q dx1dy1

when sptf1 X sptg1 “ H;

xT pf1 b f2q, g1 b g2y “

ż

f2py2qxK2px2, y2qf1, g1yg2px2q dx2dy2

when sptf2 X sptg2 “ H.

2. T satisfies the weak boundedness property |xT pχI b χJq, χI b χJy| À |I||J |,
for any cubes I Ă Rn, J P Rm.

3. T is paraproduct free in the sense that T p1 b ¨q “ T p¨ b 1q “ T ˚p1 b ¨q “
T ˚p¨ b 1q “ 0.

Recall that a δCZ-δ-standard kernel is a vector valued standard kernel taking
values in the Banach space consisting of all Calderón-Zygmund operators. It
is easy to see that an operator defined as above satisfies all the characterizing
conditions in Martikainen [22] section 2, hence is L2 bounded and can be
represented as an average of bi-parameter dyadic shift operators together with
dyadic paraproducts. Moreover, since T is paraproduct free, one can conclude
from observing the proof of Martikainen’s theorem, that all the dyadic shifts
in the representation are cancellative.

The base case from which we pass to the general case below, is the following:
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Theorem 6 Let T be a paraproduct free bi-parameter Calderón-Zygmund op-
erator, and b be a little bmo function, there holds

}rb, T s}L2pRnˆRmqý À }b}bmopRnˆRmq,

where the underlying constant depends only on the characterizing constants of
T .

Proof.

According to the discussion above, for any sufficiently nice functions f, g, one
has the following representation:

xTf, gy “ CEω1Eω2

8
ÿ

i1,j1“0

8
ÿ

i2,j2“0

2´maxpi1,j1q2´maxpi2,j2qxSi1j1i2j2f, gy, (3)

where expectation is with respect to a certain parameter of the dyadic grids.
The dyadic shifts Si1j1i2j2 are defined as

Si1j1i2j2f

:“
ÿ

K1PD1

ÿ

I1,J1ĂK1,I1,J1PD1

`pI1q“2´i1`pK1q

`pJ1q“2´j1`pK1q

ÿ

K2PD2

ÿ

I2,J2ĂK2,I2,J2PD2

`pI2q“2´i2`pK2q

`pJ2q“2´j2`pK2q

aI1J1K1I2J2K2xf, hI1 b hI2yhJ1 b hJ2

“
ÿ

K1

pi1,j1q
ÿ

I1,J1ĂK1

ÿ

K2

pi2,j2q
ÿ

I2,J2ĂK2

aI1J1K1I2J2K2xf, hI1 b hI2yhJ1 b hJ2 .

The coefficients above satisfy aI1J1K1I2J2K2 ď

?
|I1||J1||I2||J2|

|K1||K2|
, which also guaran-

tees the normalization }Si1j1i2j2}L2ÑL2 ď 1. Moreover, since T is paraproduct
free, all the Haar functions appearing above are cancellative.

It thus suffices to show that for any dyadic grids D1,D2 and fixed i1, j1, i2, j2 P
N, one has

}rb, Si1j1i2j2sf}L2 À p1`maxpi1, j1qqp1`maxpi2, j2qq}b}bmo}f}L2 , (4)

as the decay factor 2´maxpi1,j1q, 2´maxpi2,j2q in (3) will guarantee the convergence
of the series.

To see (4), one decomposes b and a L2 test function f using Haar bases:

rb, Si1j1i2j2sf “
ÿ

I1,I2

ÿ

J1,J2

xb, hI1 b hI2yxf, hJ1 b hJ2yrhI1 b hI2 , S
i1j1i2j2shJ1 b hJ2 .

A similar argument to that in [8] subsection 3.1 implies that rhI1bhI2 , S
i1j1i2j2shJ1b
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hJ2 is nonzero only if I1 Ă J
pi1q
1 or I2 Ă J

pi2q
2 , where J

pi1q
1 denotes the i1-th

dyadic ancestor of J1, similarly for J
pi2q
2 . Hence, the sum can be decomposed

into three parts: I1 Ă J
pi1q
1 and I2 Ă J

pi2q
2 (regular), I1 Ă J

pi1q
1 and I2 Ľ J

pi2q
2 ,

I1 Ľ J
pi1q
1 and I2 Ă J

pi2q
2 (mixed).

1) Regular case:

Following [8] subsection 4.1 one can decompose the arising sum into sums
of classical bi-parameter dyadic paraproducts B0pb, fq and its slightly revised
version Bklpb, fq: for any integers k, l ě 0, Bkl is the bi-parameter dyadic
paraproduct defined as

Bklpb, fq “
ÿ

I,J

βIJxb, hIpkq b uJplqyxf, h
ε1
I b u

ε2
J yh

ε11
I b u

ε12
J |I

pkq
|
´1{2

|J plq|´1{2,

where βIJ is a sequence satisfying |βIJ | ď 1. When k ą 0, all Haar functions
in the first variable are cancellative, while when k “ 0, there is at most one

of hε1I , h
ε11
I being noncancellative. The same assumption goes for the second

variable. Observe that when k “ l “ 0, Bkl becomes the classical paraproduct
B0. It is proved in [8] in Lemma 4.1 that

}Bklpb, fq}L2 À }b}BMO}f}L2

with a constant independent of k, l and the product BMO norm on the right
hand side.

Then since little bmo functions are contained in product BMO, this part can
be controlled. More specifically, write

rb, Si1j1i2j2sf “
ÿ

I1,I2

ÿ

J1,J2

xb, hI1 b hI2yxf, hJ1 b hJ2yhI1 b hI2S
i1j1i2j2phJ1 b hJ2q

´
ÿ

I1,I2

ÿ

J1,J2

xb, hI1 b hI2yxf, hJ1 b hJ2yS
i1j1i2j2phI1hJ1 b hI2hJ2q

“: I ` II,

then one can estimate term I and II separately. According to the definition of
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dyadic shifts, term I is equal to

ÿ

J1,J2

ÿ

I1:I1ĂJ
pi1q
1

ÿ

I2:I2ĂJ
pi2q
2

xb, hI1 b hI2yxf, hJ1 b hJ2yhI1 b hI2 ¨

´

ÿ

J 11:J
1
1ĂJ

pi1q
1

`pJ 11q“2
i1´j1`pJ1q

ÿ

J 12:J
1
2ĂJ

pi2q
2

`pJ 12q“2
i2´j2`pJ2q

a
J1J 11J

pi1q
1 J2J 12J

pi2q
2

hJ 11 b hJ 12

¯

“
ÿ

K1,K2

pi1q
ÿ

J1:J1ĂK1

pi2q
ÿ

J2:J2ĂK2

ÿ

I1:I1ĂK1

ÿ

I2:I2ĂK2

xb, hI1 b hI2yxf, hJ1 b hJ2yhI1 b hI2 ¨

´

pj1q
ÿ

J 11:J
1
1ĂK1

pj2q
ÿ

J 12:J
1
2ĂK2

aJ1J 11K1J2J 12K2
hJ 11 b hJ 12

¯

“
ÿ

I1,I2

xb, hI1 b hI2yhI1 b hI2
ÿ

K1ĄI1
K2ĄI2

pi1,j1q
ÿ

J1,J 11ĂK1

pi2,j2q
ÿ

J2,J 12ĂK2

aJ1J 11K1J2J 12K2
xf, hJ1 b hJ2yhJ 11 b hJ 12

“
ÿ

I1,I2

xb, hI1 b hI2yhI1 b hI2
ÿ

J 11:J
1pj1q
1 ĄI1

ÿ

J 12:J
1pj2q
2 ĄI2

xSi1j1i2j2f, hJ 11 b hJ 12yhJ 11 b hJ 12 .

Because of the supports of Haar functions, the inner sum above can be further
decomposed into four parts, where

I “
ÿ

I1,I2

ÿ

J 11ĽI1

ÿ

J 12ĽI2

, II “
ÿ

I1,I2

ÿ

J 11ĽI1

ÿ

J 12:J
1
2ĂI2ĂJ

1pj2q
2

III “
ÿ

I1,I2

ÿ

J 11:J
1
1ĂI1ĂJ

1pj1q
1

ÿ

J 12ĽI2

, IV “
ÿ

I1,I2

ÿ

J 11:J
1
1ĂI1ĂJ

1pj1q
1

ÿ

J 12:J
1
2ĂI2ĂJ

1pj2q
2

.

Hence, using the same technique as in [8], one has

I “
ÿ

I1,I2

xb, hI1 b hI2yxS
i1j1i2j2f, h1J 11 b h

1
J 12
yhI1 b hI2 |I1|

´1{2
|I2|

´1{2,

which is a bi-parameter paraproduct B0pb, fq. Moreover, one has

II “
ÿ

I1,I2

xb, hI1 b hI2yhI1 b hI2
ÿ

J 12:J
1
2ĂI2ĂJ

1pj2q
2

xSi1j1i2j2f, h1I1 b hJ 12y|I1|
´1{2hJ 12

“

j2
ÿ

l“0

ÿ

I1,J 12

βJ 12xb, hI1 b hJ 1plq2
yxSi1j1i2j2f, h1I1 b hJ 12yhI1 b hJ 12 |I1|

´1{2
|J
1plq
2 |

´1{2

“

j2
ÿ

l“0

B0lpb, S
i1j1i2j2fq,

where constants βJ 12 P t1,´1u, and B0l are the generalized bi-parameter para-
products of type p0, lq whose L2 Ñ L2 operator norm is uniformly bounded
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by }b}BMO product BMO. Similarly, one can show that

III “
j1
ÿ

k“0

Bk0pb, S
i1j1i2j2fq, IV “

j1
ÿ

k“0

j2
ÿ

l“0

Bklpb, S
i1j1i2j2fq.

Since }b}BMO À }b}bmo, all the forms above are L2 bounded. This completes
the discussion of term I.

To get an estimate of term II, we need to decompose it into finite linear combi-
nations of Si1j1i2j2pBklpb, fqq. By linearity, one can write Si1j1i2j2 on the outside
from the beginning, and we will only look at the inside sum. One splits for
example the sum regarding the first variable into three parts: I1 Ĺ J1, I1 “ J1,
J1 Ĺ I1 Ă J

pi1q
1 . If we split the second variable as well, there are nine mixed

parts, and it’s not hard to show that each of them can be represented as a
finite sum of Bklpb, fq. We omit the details.

2) Mixed case. Let’s call the second and the third ‘mixed’ parts, and as the two

are symmetric, it suffices to look at the second one, i.e. I1 Ă J
pi1q
1 , I2 Ľ J

pi2q
2 .

In the first variable, we still have the old case I1 Ă J
pi1q
1 that appeared in

[8] subsection 3.1, so morally speaking, we only need to nicely play around
with the stronger little bmo norm to handle the second variable. For any fixed
I1, J1, I2, J2, since I2 Ľ J

pi2q
2 , the definition of dyadic shifts implies that

hI1 b hI2S
i1j1i2j2phJ1 b hJ2q “ hI1S

i1j1i2j2phJ1 b hI2hJ2q

and

Si1j1i2j2phi1hJ1 b hI2hJ2q “ hI2S
i1j1i2j2phI1hJ1 b hJ2q.

Hence, we still have cancellation in the second variable, which converts the
mixed case to

ÿ

I1ĂJ
pi1q
1

ÿ

I2ĽJ
pi2q
2

xb, hI1 b hI2yxf, hJ1 b hJ2yrhI1 , S
i1j1i2j2sphJ1 b hI2hJ2q

“
ÿ

I1ĂJ
pi1q
1

ÿ

J2

xf, hJ1 b hJ2yrhI1 , S
i1j1i2j2sphJ1 b

ÿ

I2ĽJ
pi2q
2

xb, hI1 b hI2yhI2hJ2q

“
ÿ

I1ĂJ
pi1q
1

ÿ

J2

xf, hJ1 b hJ2yrhI1 , S
i1j1i2j2sphJ1 b xb, hI1 b h

1

J
pi2q
2

yh1
J
pi2q
2

hJ2q

“
ÿ

I1ĂJ
pi1q
1

ÿ

J2

xb, hI1 b h
1

J
pi2q
2

y|J
pi2q
2 |

´1{2
xf, hJ1 b hJ2yrhI1 , S

i1j1i2j2sphJ1 b hJ2q

“
ÿ

I1ĂJ
pi1q
1

ÿ

J2

xxby
J
pi2q
2

, hI1y1xf, hJ1 b hJ2yrhI1 , S
i1j1i2j2sphJ1 b hJ2q,
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where xby
J
pi2q
2

denotes the average value of b on J
pi2q
2 , which is a function of

only the first variable.

In the following, we will once again estimate the first term and second term of
the commutator separately, and the L2 norm of each of them will be proved
to be bounded by }b}bmo}f}L2 .

a) First term.

By definition of the dyadic shift, the first term is equal to

ÿ

I1ĂJ
pi1q
1

ÿ

J2

xxby
J
pi2q
2

, hI1y1hI1xf, hJ1 b hJ2y¨

´

ÿ

J 11ĂJ
pi1q
1

`pJ 11q“2
i1´j1`pJ1q

ÿ

J 12ĂJ
pi2q
2

`pJ 12q“2
i2´j2`pJ2q

a
J1J 11J

pi1q
1 J2J 12J

pi2q
2

hJ 11 b hJ 12

¯

,

which by reindexing K1 :“ J
pi1q
1 is the same as

ÿ

I1,J2

xxby
J
pi2q
2

, hI1y1hI1 ¨

¨
ÿ

K1:K1ĄI1

pi1q
ÿ

J1ĂK1

pj1q
ÿ

J 11ĂK1

pj2q
ÿ

J 12ĂJ
pi2q
2

a
J1J 11K1J2J 12J

pi2q
2

xf, hJ1 b hJ2yhJ 11 b hJ 12

“
ÿ

I1,J2

xxby
J
pi2q
2

, hI1y1hI1
ÿ

J 11:J
1pj1q
1 ĄI1

hJ 11 b xS
i1j1i2j2pxf, hJ2y2 b hJ2q, hJ 11y1,

where the inner sum is the orthogonal projection of the image of xf, hJ2y2bhJ2
under Si1j1i2j2 onto the span of thJ 11u such that J

1pj1q
1 Ą I1. Taking into account

the supports of the Haar functions in the first variable, one can further split
the sum into two parts where

I :“
ÿ

J2

ÿ

I1ĹJ 11

, II :“
ÿ

J2

ÿ

J 11ĂI1ĂJ
1pj1q
1

.

Summing over J 11 first implies that

I “
ÿ

J2

ÿ

I1

xxby
J
pi2q
2

, hI1y1hI1
`

h1I1 b xS
i1j1i2j2pxf, hJ2y2 b hJ2q, h

1
I1
y1
˘

“:
ÿ

J2

B0pxbyJpi2q2

, Si1j1i2j2pxf, hJ2y2 b hJ2qq

where B0pb, fq :“
ř

Ixb, hIyxf, h
1
IyhI |I|

´1{2 is a classical one-parameter para-
product in the first variable. Note that its L2 norm is bounded by }b}BMO}f}L2 .
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Moreover, according to the definition of Si1j1i2j2 , for any fixed J2

Si1j1i2j2pxf, hJ2y2 b hJ2q “
ÿ

J 12:J
1pj2q
2 “J

pi2q
2

xSi1j1i2j2pxf, hJ2y2 b hJ2q, hJ 12y2 b hJ 12 .

In other words, Si1j1i2j2pxf, hJ2y2bhJ2q only lives on the span of thJ 12 : J
1pj2q
2 “

J
pi2q
2 u. Hence, by linearity there holds

I “
ÿ

J2

ÿ

J 12:J
1pj2q
2 “J

pi2q
2

B0

`

xby
J
pi2q
2

, xSi1j1i2j2pxf, hJ2y2 b hJ2q, hJ 12y2
˘

b hJ 12

“
ÿ

J 12

´

B0

`

xby
J
1pj2q
2

, xSi1j1i2j2p
ÿ

J2:J
pi2q
2 “J

1pj2q
2

xf, hJ2y2 b hJ2q, hJ 12y2
˘

¯

b hJ 12 .

Thus, orthogonality in the second variable implies that

}I}2L2pRnˆRmq

“
ÿ

J 12

}B0

`

xby
J
1pj2q
2

, xSi1j1i2j2p
ÿ

J2:J
pi2q
2 “J

1pj2q
2

xf, hJ2y2 b hJ2q, hJ 12y2
˘

}
2
L2pRnq

À
ÿ

J 12

}xby
J
1pj2q
2

}
2
BMOpRnq}xS

i1j1i2j2p
ÿ

J2:J
pi2q
2 “J

1pj2q
2

xf, hJ2y2 b hJ2q, hJ 12y2}
2
L2pRnq.

Observing that }xby
J
1pj2q
2

}BMOpRnq ď x}b}BMOpRnqyJ 1pj2q2

ď }b}bmo, one has

ď }b}2bmo

ÿ

J 12

}xSi1j1i2j2p
ÿ

J2:J
pi2q
2 “J

1pj2q
2

xf, hJ2y2 b hJ2q, hJ 12y2}
2
L2pRnq

“ }b}2bmo}
ÿ

J 12

xSi1j1i2j2p
ÿ

J2:J
pi2q
2 “J

1pj2q
2

xf, hJ2y2 b hJ2q, hJ 12y2 b hJ 12}
2
L2pRnˆRmq.

Note that the sum in the L2 norm is in fact very simple:

ÿ

J 12

xSi1j1i2j2p
ÿ

J2:J
pi2q
2 “J

1pj2q
2

xf, hJ2y2 b hJ2q, hJ 12y2 b hJ 12

“
ÿ

J2

ÿ

J 12:J
1pj2q
2 “J

pi2q
2

xSi1j1i2j2pxf, hJ2y2 b hJ2q, hJ 12y2 b hJ 12

“
ÿ

J2

Si1j1i2j2pxf, hJ2y2 b hJ2q “ Si1j1i2j2pfq.

Hence, the uniform boundedness of the L2 Ñ L2 operator norm of dyadic
shifts implies that

}I}2L2pRnˆRmq À }b}
2
bmo}f}

2
L2pRnˆRmq.

In order to handle II, we split it into a finite sum depending on the levels of
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I1 upon J 11, which leads to

II “
j1
ÿ

k“0

ÿ

J2

ÿ

J 11

xxby
J
pi2q
2

, h
J
1pkq
1
y1hJ 1pkq1

hJ 11 b xS
i1j1i2j2pxf, hJ2y2 b hJ2q, hJ 11y1

“

j1
ÿ

k“0

ÿ

J2

ÿ

J 11

βJ 11,k|J
1pkq
1 |

´1{2
xxby

J
pi2q
2

, h
J
1pkq
1
y1hJ 11 b xS

i1j1i2j2pxf, hJ2y2 b hJ2q, hJ 11y1

“:
j1
ÿ

k“0

ÿ

J2

BkpxbyJpi2q2

, Si1j1i2j2pxf, hJ2y2 b hJ2qq,

whereBkpb, fq :“
ř

I βI,kxb, hIpkqyxf, hIyhI |I
pkq|´1{2 is a generalized one-parameter

paraproduct studied in [8] Lemma 3.6, whose L2 norm is uniformly bounded
by }b}BMO}f}L2 , independent of k and the coefficients βI,k P t1,´1u. Then one
can proceed as in part I to conclude that

}II}L2pRnˆRmq À p1` j1q}b}bmo}f}L2pRnˆRmq,

which together with the estimate for part I implies that

}First term}L2pRnˆRmq À p1` j1q}b}bmo}f}L2pRnˆRmq.

b) Second term.

As the second term by linearity is the same as

Si1j1i2j2
´

ÿ

J2

ÿ

I1ĂJ
pi1q
1

xxby
J
pi2q
2

, hI1y1xf, hJ1 b hJ2yhI1hJ1 b hJ2

¯

,

the L2 Ñ L2 boundedness of the shift implies that it suffices to estimate the
L2 norm of the term inside the parentheses. Since I1XJ1 ‰ H, one can further
split the sum into two parts:

I :“
ÿ

J2

ÿ

I1ĹJ1

, II :“
ÿ

J2

ÿ

J1ĂI1ĂJ
pi1q
1

.

Summing over J1 first implies that

I “
ÿ

J2

ÿ

I1

xxby
J
pi2q
2

, hI1y1xf, h
1
I1
b hJ2yhI1h

1
I1
b hJ2

“:
ÿ

J2

B0pxbyJpi2q2

, xf, hJ2y2q b hJ2 ,

where B0pb, fq :“
ř

Ixb, hIyxf, h
1
IyhI |I|

´1{2 is a classical one-parameter para-
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product in the first variable. Hence,

}I}2L2pRnˆRmq “
ÿ

J2

}B0pxbyJpi2q2

, xf, hJ2y2q}
2
L2pRnq

À
ÿ

J2

}xby
J
pi2q
2

}
2
BMOpRnq}xf, hJ2y2}

2
L2pRnq

ď }b}2bmo

ÿ

J2

}xf, hJ2y2}
2
L2pRnq “ }b}

2
bmo}f}

2
L2pRnˆRmq.

For part II, note that it can be decomposed as

II “
i1
ÿ

k“0

ÿ

J2

ÿ

J1

xxby
J
pi2q
2

, h
J
pkq
1
y1xf, hJ1 b hJ2yhJpkq1

hJ1 b hJ2

“

i1
ÿ

k“0

ÿ

J2

ÿ

J1

βJ1,k|J
pkq
1 |

´1{2
xxby

J
pi2q
2

, h
J
pkq
1
y1xxf, hJ2y2, hJ1y1hJ1 b hJ2

“:
i1
ÿ

k“0

ÿ

J2

BkpxbyJpi2q2

, xf, hJ2y2q b hJ2 ,

where coefficients βJ1,k P t1,´1u and the L2 norm of the generalized para-
product Bk is uniformly bounded as mentioned before. Therefore, the same
argument as for part I shows that

}II}L2pRnˆRmq À p1` i1q}b}bmo}f}L2pRnˆRmq,

which completes the discussion of the second term, and thus proves that the
mixed case is bounded. QED

The upper bound result we just proved can be extended to Rd, to arbitrarily
many parameters and an arbitrary number of iterates in the commutator.
To do this, consider multi-parameter singular integral operators studied in
[28], which satisfy a weak boundedness property and are paraproduct free,
meaning that any partial adjoint of T is zero if acting on some tensor product
of functions with one of the components being 1. And consider a little product
BMO function b P BMOIpRdq. One can then prove

Theorem 7 Let us consider Rd, d “ pd1, . . . , dtq with a partition I “ pIsq1ďsďl
of t1, . . . , tu as discussed before. Let b P BMOIpRdq and let Ts denote a multi-
parameter paraproduct free Journé operator acting on functions defined on
Â

kPIs
Rdk . Then we have the estimate below

}rT1, . . . rTl, bs . . .s}L2pRdqý À }b}BMOIpRdq.

The part of the proof that targets the Journé operators proceeds exactly the
same as the bi-parameter case with the multi-parameter version of the rep-
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resentation theorem proven in [28]. Certainly, as the number of parameters
increases, more mixed cases will appear. However, if one follows the corre-
sponding argument above for each variable in each case, it is not hard to
check that eventually, the boundedness of the arising paraproducts is implied
exactly by the little product BMO norm of the symbol. The difficulty of higher
iterates is overcome in observing that the commutator splits into commutators
with no iterates, as was done in [8] subsection 4.1. We omit the details.

The assumption that the operators be paraproduct free is sufficient for our
lower estimate. The general case is currently under investigation by one of the
authors. Important to our arguments for lower bounds with Riesz transforms
is the corollary below, which follows from the control on the norm of the
estimate in Theorem 7 by an application of triangle inequality. It is a stability
result for characterizing families of Journé operators.

Corollary 3 Let for every 1 ď s ď l be given a collection Ts “ tTs,jsu of
paraproduct free Journé operators on

Â

kPIs
Rdk that characterize BMOIpRdq

via a two-sided commutator estimate

}b}BMOIpRdq À sup
j
}rT1,j1 , . . . rTl,jl , bs . . .s}L2pRdqý À }b}BMOIpRdq.

Then there exists ε ą 0 such that for any family of paraproduct free Journé
operators T 1s “ tT 1s,jsu with characterizing constants }T 1s,js}CZ ď ε, the family
tTs,js ` T

1
s,jsu still characterizes BMOIpRdq.

6 Weak Factorization

It is well known, that theorems of this form have an equivalent formulation
in the language of weak factorization of Hardy spaces. We treat the model
case Rd “ Rpd1,d2,d3q and BMOp13qp2qpRdq only for sake of simplicity. The other
statements are an obvious generalization. For the corresponding collections of
Riesz transforms Rk,jk and b P BMOp13qp2qpRdq, 1 ď s ď 3, by unwinding the
commutator one can define the operator Πj such that

xrR2,j2 , rR1,j1R3,j3 , bssf, gyL2 “ xb,Πjpf, gqyL2 .

Consider the Banach space L2 ˚ L2 of all functions in L1pRdq of the form
f “

ř

j

ř

i Πjpφ
j
i , ψ

j
i q normed by

}f}L2˚L2 “ inft
ÿ

j

ÿ

i

}φji }2}ψ
j
i }2u

with the infimum running over all possible decompositions of f . Applying a
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duality argument and the two-sided estimate in Corollary 2 we are going to
prove the following weak factorization theorem.

Theorem 8 H1
RepRpd1,d2qq b L1pRd3q ` L1pRd1q bH1

RepRpd2,d3qq coincides with
the space L2˚L2. In other words, for any f P H1

RepRpd1,d2qqbL1pRd3q`L1pRd1qb

H1
RepRpd2,d3qq there exist sequences φji , ψ

j
i P L

2 such that f “
ř

j

ř

i Πjpφ
j
i , ψ

j
i q

and }f} „
ř

j

ř

i }φ
j
i }2}ψ

j
i }2.

Proof. Let’s first show that L2 ˚L2 is a subspace of H1
RepRpd1,d2qq bL1pRd3q `

L1pRd1qbH1
RepRpd2,d3qq. Recalling the remark after Theorem 2, this is the same

as to show @f P L2 ˚ L2, f is a bounded linear functional on BMOp13qp2qpRdq.
This follows from the upper bound on the commutators since

xb,
ÿ

j

ÿ

i

Πjpφ
j
i , ψ

j
i qy “

ÿ

j

ÿ

i

xrR2,j2 , rR1,j1R3,j3 , bssφ
j
i , ψ

j
i y.

Now we are going to show

sup
fPL2˚L2

!

|

ż

fb| : }f}L2˚L2 ď 1
)

„ }b}BMOp13qp2q

which gives the equivalence of H1
RepRpd1,d2qqbL1pRd3q`L1pRd1qbH1

RepRpd2,d3qq
norm and the L2 ˚ L2 norm, thus showing that the two spaces are the same.

To see this, note that the direction À is trivial, and the direction Á is implied
by the lower bound of commutators. For any b P BMOp13qp2q, there exists j
such that }b}BMOp13qp2q À }rR2,j2 , rR1,j1R3,j3 , bss}. Hence, there exist φ, ψ P L2

with norm 1 such that

}b}BMOp13qp2q À |xrR2,j2 , rR1,j1R3,j3 , bssφ, ψy| “ |xb,Πjpφ, ψqy| ď LHS,

which completes the proof. QED

7 Remarks about our results in Lp

As mentioned before, the two-sided estimates stated in section 4 and in partic-
ular Theorem 5 hold for all 1 ă p ă 8. The fact that upper estimates hold for
the Riesz commutator in Lp in the case where no tensor products are present is
proved in [18] as well as [19]. It stems from the fact that endpoint estimates for
multi-parameter paraproducts hold for all 1 ă p ă 8 [24], [25]. This estimate
carries over easily to tensor products of Riesz transforms or any other tensor
products of operators for which we have Lp estimates on the commutator: one
uses rT1T2, bs “ T1rT2, bs`rT1, bsT2 to handle arising tensor products, followed
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by a correct use of the little product BMO norm. The argument is left as an
exercise.

The lower estimate or the necessity of the BMO condition can be derived
from interpolation. In fact, suppose we have uniform boundedness of our com-
mutators with operators running through all choices of Riesz transforms and
some symbol b in Lp. Then by duality, we have boundedness in Lq where

1{p`1{q “ 1. In fact, rT, bs˚f “ ´rT ˚, b̄sf “ ´rT ˚, bsf̄ shows that the bound-
edness of adjoints is inherited. The same reasoning holds for iterated commu-
tators of tensor products. Thus by interpolation, the boundedness holds in L2

and the symbol function b necessarily belongs to the required BMO class.
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