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ON THE FAILURE OF LOWER SQUARE FUNCTION ESTIMATES
IN THE NON-HOMOGENEOUS WEIGHTED SETTING

K. DOMELEVO, P. IVANISVILI, S. PETERMICHL, S. TREIL, AND A. VOLBERG

ABSTRACT. We show that the classical A, condition is not sufficient for a lower
square function estimate in the non-homogeneous weighted L? space. We also show
that under the martingale A condition, an estimate holds true, but the optimal
power of the characteristic jumps from 1/2 to 1 even when considering the classical
Agy characteristic. This is in a sharp contrast to known estimates in the dyadic
homogeneous setting as well as the recent positive results in this direction on the
discrete time non-homogeneous martingale transforms. Last, we give a sharp A,
estimate for the n-adic homogeneous case, growing with n.
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1. INTRODUCTION

It is a classical result that the Haar system on the real line is an unconditional
basis in the weighted space L?(w) = L?(R,w) if and only if the weight w satisfies the
dyadic Muckenhoupt A5 condition. This is equivalent to boundedness of the predictable
+1 multiplier on the martingale difference sequences with underlying homogeneous
dyadic filtration. This generalizes to martingale difference spaces in homogeneous
filtrations. These results were proved in [16], where also Littlewood-Paley estimates
were considered. It has been known for some time that the optimal unconditional basis
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constants are the first power of the A, characteristic of the weight. Through averaging,
it follows that the square function has no worse upper bounds, so, again, at most the
first power of the A, characteristic of the weight.

Concerning the lower estimate of the square function, it is known that the square
function for the standard dyadic filtration on R satisfies better lower estimates, namely,
with a square root on the characteristic instead of linear — the upper and lower esti-
mates estimates are both optimal for the homogeneous filtration, see [5], [12].

Mixed As — Ao norm estimates from above were first considered and motivated in
[6]. In fact, even the weaker A, characteristic is sufficient for the lower estimate (for
the standard dyadic filtration on R), also with square root bounds; this was proved in
[17] using the earlier results from [4].

It was a general understanding that in the homogeneous case one should have the
same lower bounds as in the case of the standard dyadic filtration on R, but surprisingly,
it was not proven before for our “real” square function. The result from [17] gives
the desired estimates for a bigger square function, but the statement for our “real”
square function (which is the only one that works in the non-homogeneous case) for
a homogeneous filtration is proved (to the best of our knowledge) only in the present
paper.

The sharp results on the estimates of unconditional basis constants for arbitrary
underlying Radon measure and any discrete in time atomic filtration was proved more
recently in [13] and then later in [9] by a different method. The constants remain in a
linear dependence with the martingale A, characteristic, exactly as in the homogeneous
situation.

In this paper, we discuss the upper and lower estimates of the square function in this
(arbitrary filtration) setting. It is remarkable that the better lower estimates seen in
the homogeneous setting fail — indeed the A., bound does not hold true at all — in
other words, the A, condition is not sufficient for a lower square function bound. This
is even so when using the most restrictive way of defining A,,. Under the martingale
A, condition, we obtain a lower estimate, but we will see that it is twice the power of
that in the homogeneous case. The failure of the lower estimates motivate us to look
closely at the n-adic homogeneous case — one expects a growth with n. Indeed, we
show that the lower square function estimate in this setting still holds under the A,
assumption, but with a growth O(n).

To see the blow ups we claim, we construct weights, in Ay or A, respectively, via
their martingales based on a filtration where each interval has at most two children,
but of possibly very disbalanced measures.

To see the A, lower estimate via the true square function in the n-adic setting, we
make use of a Bellman functional taking a distribution function as its variable. This
idea stems from [14] — but here is an additional difficulty, similar to that of estimating
Haar shifts with Bellman functions.
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2. SETUP AND MOTIVATIONS

2.1. Filtered atomic spaces. Let (X, F,v) be a o-finite measure space with an
atomic filtration, meaning that there exist an increasing sequence of g-algebras F,,,
n € N or n € 7Z, such that for each n there exists a countable collection D,, of sets of
finite positive measure (called atoms) such that A € F,, is a union of atoms of D,,.

We will denote I € D,, the atoms of D,,, and denote by D the collection of all atoms,
ie. D =U,D,. We allow a set I to belong to several generations D,,, so formally an
atom I € D, is a pair (I,n). When there is no confusion, we will omit the “time” n
and write simply I instead of (I,n); otherwise when it is necessary to refer to the time
n, we will use the symbol rk(7), such that if I denotes the atom (I, n) then rk([) := n.
Also the inclusion I C J for atoms should be understood as inclusion for the sets
together with the inequality rk(I) > rk(J). However the union (intersection) of atoms
will simply denote the union (intersection) of the corresponding sets regardless of the
time component. For I € D,, we denote by ch(I) the set of children of I, that is the
atoms of D, that are direct descendants of I : ch(I) := {I' € D, ;' C I}.

A typical example is the standard dyadic filtration in R? with v being an arbitrary
Radon measure v; of course, we need to ignore all cubes @ € D with v(Q) = 0.

To avoid nonessential technical details, in this paper we assume that v is a probability
measure, and the filtration is indexed by n € Z,. We also assume that Dy = {X'}, and
each D,, is a finite collection (i.e. that every atom has finitely many children).

Since our main results are counterexamples, by providing them in more restrictive
settings we get a formally stronger result than in the more general settings. As for the
positive estimates, they can be extended to the general case using standard approxi-
mation reasoning, so we do not lose anything.

Without loss of generality we can assume that X’ is the unit interval [0, 1], the
measure v is the standard Lebesgue measure, and that the atoms are intervals. We
assume that the o-algebra F is generated by o-algebras F,,, so more precisely, v is the
restriction of the Lebesgue measure on F.

Measures of intervals are denoted by |I| := v(I). For any interval I € D, we define
(2.1) = |1]™! /fdz/
and
E]f = <f>11[‘

For any interval I € D, the martingale difference operator A, is defined by
Af= > E,f-Ef
I’ech(I)

Notice that the atom I € D, has only one child (i.e. ch(I) = {I}) if and only if the
corresponding martingale difference operator is trivial (i.e. A, = 0).
With this in mind, setting

Enf =Y E,f=E(f|IF),

1€Dy
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we define the martingale difference operator A,, for any n > 0 as

Anf:]Enf_]Enflf = Z A]f

IeD:xk(I)=n—1

together with Agf = Eof = (f), 1. In the sum above the contributions of the trivial
martingale operators is automatically omitted.

For I € D denote by D, the martingale difference space, the image of the operator
A,, 50 D, = A, L? and similarly D, = A,L*. Note, that the subspaces D,, n > 0
form an orthogonal basis in L* = L*(X, F,v), and the same holds for the family D,
I € D together with the subspace Dy (consisting of constants).

2.2. Bases of martingale difference spaces and the Muckenhoupt A, con-
dition. In the setting described above the following statements are equivalent (with

equivalent constants in statements (iii)—(vi)) as a consequence of the general theory of
bases, cf. [13].

(i) The system of subspaces {D, : I € D, D, # {0}} U {Do} is an unconditional
basis in L?(w).

(ii) The system of subspaces {D,, : 0 < n < o0, D,, # {0}} is an unconditional
basis in L?(w).

(iii) The predictable martingale multipliers T, T, f = > ;.p0, A, f, with ¢ =
{0/ 1eps 07 € {0,1} (or equivalently o, € {—1,1}), are uniformly in o
bounded in L*(w).

(iv) The predictable martingale multipliers 7, with ¢ = {o
uniformly in o bounded in L*(w).

v e martingale multipliers 1. with 7 = {7, fnen, 7Tn € 10, or, equivalently
Th ingal ltipliers T, with 0,1 ivalentl
. € {—1,1}),

1

1epr o] < 1 are

T.f =Y 7lpf
keN
are uniformly in 7 bounded in L?(w).
(vi) The martingale multipliers T, with 7 = {7,,}nen, || < 1 are uniformly in 7

bounded in L*(w).

It has been known for some time that the statements (iii)—(vi) hold if and only if the
weight w satisfies the martingale Muckenhoupt As condition, see Definition 2.1 below:
for the standard dyadic filtration in RY we can refer the reader to [7], and for general
martingales the result was proved in [2]. Later it was proved that the constants in
the statements (iv)—(vi) are estimated by the first power of the A, characteristic (i.e.
< [w)], ,,): for the standard dyadic filtration in R (and so in RY)it was proved in [19];

< [wl, )
for the general non-homogeneous filtration it was established in [13] and soon after by
a different method in [9].

Let now S denote the square function, as defined in equation (3.1) in Section 3. By
taking the average over all o, € {—1,1} such as in equation (4.2) one can see that for

a weight satisfying the martingale A, condition, the quantity ||S fHL2 () is equivalent

in the sense of two sided estimates to the norm || f]| , () 5 the details in Section 4.1.

)



LOWER SQUARE FUNCTION ESTIMATES 5

It can be easily obtained from the estimate ||T,|| S [w], , that

L2(w)— L2 (w) ™~
Wy 1oy S IS F gy S Wyl F e,V € L2)

see again Section 4.1 for details. The upper bound HSfHLQ(w) S wl, p HfHLQ(w) is known
to be sharp, but the lower bound ||f||L2(w) < [w]Q,D||Sf||L2(w), as we discussed above

in the introduction, can be improved in the homogeneous case. The investigation of
the lower bound in the non-homogeneous situation was the main motivation for this

paper.

2.3. Different A, and A, conditions. Since our underlying filtration can be non-
homogeneous, we have to be very careful about the definitions of the classes of weights
we will use, as they are no longer necessarily comparable. In all definitions we consider
integrable w. Also the notation (-); below denotes the average operator as defined in
(2.1).

Definition 2.1. We say that a weight w satisfies the martingale A, condition and
write w € AY if

= sup(w)  (w™'), < co.
IeD

[w]2,D
Definition 2.2. We say that a weight w satisfies the classical Ay condition and write
w e A if
W] = sup (w), (w™), <o,
1C[0,1]

where the supremum runs over all intervals I C [0, 1].

Definition 2.3. For an interval I define the localized maximal function M,
M, f(x) :==1,(x) sup [(f),],
JCI:xeJ

where the supremum runs over all intervals J C I containing .
For an interval I € D define also the martingale localized maximal function MID,

M7 f(x) =1,(z) sup  |(f),]
JeD(I):zeJ
Definition 2.4. We say that a weight w satisfies the classical A, condition and write
w e A9 if
<M1w>[

Woo,el = SUPp ———— < Q.
[ ] 1C[0,1] <w>1

where M f is the localized classical maximal function defined above.

Definition 2.5. We say that a weight w satisfies the semiclassical A, condition and
write w € A% if

M w
[W] s sc1 = SUP —< L >I < 0,
I1eD <w>]

where again M;f is the classical maximal function localized to I € D.
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Definition 2.6. We say that w € AL if

(M7Pw)
= sup
P pep (w),

I

[w] < o0,

where MP f is the martingale maximal function localized to I € D.
We need the following well-known fact.

Proposition 2.7. For any atomic filtration

(2.2) w] - < 4wl

00, D = 2,D

For a simple (but probably not the first) proof see [11, Lemma 4.1]; there it was stated
for the standard dyadic filtration on R?, but the same proof without any changes works
for any atomic filtration.

It is a theorem of [13] and [9] that the A? characteristic is sufficient, indeed that
the constants above are bounded by a multiple of [w]Q’D. It is well known that the
AP condition is necessary and that the linear dependence in (2.2) is optimal among all
estimates of the form ®([w], ), which is already seen in the case of dyadic filtration
with underlying Lebesgue measure.

3. MAIN RESULTS

For f € L'(X) of mean zero the martingale square function is defined by

1/2
(3.1) Sf = (Z(Aff)g) .

1

For functions that are not of mean zero, the definition is

1/2
(32) Sf = (E(f)2+Z(AIf)2> .

For simplicity we consider X = [0,1] and mean value zero functions. For general
functions all our results also hold true if the square function is defined by (3.2).

There are various definitions of the square function in the literature that are not
equivalent when the measures are non-homogeneous. Ours is the most natural defi-
nition from probability theory, and the only one that works in the non-homogeneous
case. For example, for our square the quantity ||Sf||, is always equivalent to the norm
I fllp, 1 < p < oo, (with constants depending on p); for other accepted definitions of a
square function the equivalence of the norms is true only for homogeneous filtrations,
but fails in the non-homogeneous case for p # 2.

In the paper the expression A < B means there exists a universal constant ¢, inde-
pendent of the important quantities, such as function, weight, measure and filtration,
so that A < ¢B. If the constant depends on some parameters, say a and b, we will

write A < B.
a,b
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The theorem below is presented just for the sake of completeness. Estimate (3.4) can
be easily obtained from known results, see Section 4.1 below. A bit stronger estimate
(3.3) can be obtained from the upper bound (Theorem 3.6 below) via Proposition 4.1.

Theorem 3.1. Given the interval [0,1] and any discrete time atomic filtration and
any measure, then there holds

(3.3) 110y S
(3.4) <

[w]y 2wl I\SfHL2
2wl p 1551 2

Here are our main theorems

Theorem 3.2. The exponent 1 of [w], ,, in (3.4) is optimal. Namely, given A > 1 one

can find a weight w defined on the interval [0, 1] satisfying the classical Ay conditions,
such that [wlaa = A and a non-homogeneous dyadic filtration D such that for some

f € L*(w)
111 2y 2 ANSFI 2y = [0l g IS FI 2y

recall that the tmplied constant here is an absolute one.

Since [w], ,, < [w], , this indeed means that the estimate ||fHL2(w [w], DHSfHL2
in Theorem 3.1 is Sharp

Theorem 3.3. Assumption w € A% is not sufficient for an estimate
£l < Ol 110

Namely, one can find a weight w on the interval [0, 1] satisfying the classical Ay, con-
dition and a non-homogeneous dyadic filtration for which there exists a sequence of
functions f, € L*(w) with

HSfTLHL2(w) :17 anHL2(w) — OO asn — Q.

Since [w] > [w] > [w] this means in particular that no definition of A
oo,cl 00,scl 00,D 0
is sufficient for a lower square function estimate in the non-homogeneous case.
The following theorem can be obtained combining results from [4] and [17], but here
we present a direct proof.
Recall that the n-adic filtration is the atomic filtration where each atom has exactly

n children of equal measure.
Theorem 3.4. For the n-adic filtration
112y <m0l 157 o

00,scl

Remark 3.5. The above theorem holds for an arbitrary homogeneous filtration, i.e. for
a filtration such that for a certain constant Cj, > 0,

VI € D, VI' € ch(I), |I| < Cy|I'|.
Then it can be seen from the proof that

1120y 5 [ 1S
h

00,scl
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In particular, there holds HfHLQ(w) < [w ]1/2 HSfHL2 with additional growth in n.

The following result is probably well-known, see for example [10] for the version for
a continuous square function. We present it just for the completeness, and we will just
outline the proof of (3.5) in Section 8 and the proof of (3.6) in Section 4.1.

Theorem 3.6. For an arbitrary atomic filtration and a weight w € AD
(3.5) 1511 2y S 1l o™ T2 AN o
(36) < 2ul, ol

4. REDUCTION OF LOWER BOUND TO AN EMBEDDING THEOREM

It is more convenient to treat the square function S as a linear operator, by paying
the price of treating it as an operator to the space of vector-valued functions.

Namely, define S : L2 — L?(¢?) as

Sh={Ah}, p-
Here we treat the sequence {A h}, . as an element of the (*-valued space L*(¢?), i.e
we associate with this sequence the function Sh of two variables, x € Q, k € N|
Sh(z,k) = A,h(z),  where I € D is such that rk(I) = k.
Since for all x € €2
|Sh(x)| = [|Sh(z, )|,

we conclude that

1/2
(4.1) B T (/ ISk, I, <>dx) .

So the estimates for the square function S are equivalent (with the same constants)
to the corresponding estimates for the vector-valued square function S.

4.1. Trivial estimates. Let T;,, 0 = {0,}, 5, 0, € {—1,1} be a martingale multi-
plier,

T,f=) o,Af
I1eD

Taking the average E, over all possible choices of o, € {—1,1} (i.e. formally taking
o, to be independent random variables taking values £1 with probability 1 /2), we
conclude that for almost all x

(4.2) E, (IT,f(2)]*) = (Sf(2))".
Therefore, for any weight w and any f € L?(w)
1T, 12y < 151y < 50011
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Thus, denoting by M (w) := sup, ||T"||L2(w)—>L2(w) we can see that

-1
It is well known that for w € AD

Tl sy S [

for the classical dyadic filtration on R this result was first proved in [19], and many
different proofs are known now for homogeneous filtrations. For the non-homogeneous
case it was proved in [13] and then independently and by a different and easier method
in [9].

In fact, using the sparse domination technique from [9] one can show that for any
atomic filtration one can write the following (stronger) As—A,, estimate

(4.3) T, || < [w]Y/2 ([w]1/2 + [w Y2 ) '

w)—L2(w) ™~ 2,D 00,D 00,D
Another trivial observation is that a lower bound for Sf in L?(w) can be reduced to

the upper bound in L*(w™1):
Proposition 4.1. Let w > 0 a.e. Then

(44) HfHLQ(w) S HS”L2(w71)_>L2(w71)HSfHLZ(w)

Proof. By (4.1) estimates for S are reduced to estimating its “linearized” vector-valued
version S. Namely, it is sufficient to estimate the norm in L?(w) of the canonical left
inverse STHef of S

Gkt . Ran § — L
note that since S is clearly an injective map, the operator SLleft ig well defined. Note

also that there are no weights in the definition of S~ left.
The operator S : L? — L*(¢?) (in the non-weighted situation) is an isometry, so

Ghleft — §* | Ran S.

Therefore

(45) ”S lleft”LQ ,w 62 —>L2(w) — H HLQ(w f2)—)L2( )
But for an operator S* : L%(w; (2) — L2(w) its adjoint with respect to the standard
non-weighted duality is the operator S : L*(w™1) — L?(w™!; £?), so

(el <15,

L2 (w; £2)— L2 (w w )= L2 (w1 £2))

which immediately gives (4.4).
In the above reasoning we skipped a trivial technical detail, namely that SL? #
SL?(w) and we have to be a bit careful. However, it all can be fixed by a standard
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approximation reasoning. For example, for a finite 7 C D we can define the square
function S,

1/2

2

Syh = <Z|A1h| ) :
IeF

Then for the vector version S + we do not have a problem with ranges, so the above

reasoning gives us the estimate (4.4) with S instead of S. Taking the supremum over
all finite F C D we get (4.4). O

4.2. A sharper way to write the lower bound for the square function. Ana-
lyzing the proof of Proposition 4.1, we can see where one could lose sharpness of the
estimate (and in some cases we indeed do lose it): we estimate the norm of the operator
S* between weighted spaces, while we need to estimate only the norm of its restriction,
which could be smaller.

We wish to find a more convenient equivalent form of the inequality

(46) 5l 2y < CUSPIz,

that gives us the same constant in the estimate.
Denoting h, := A h the above inequality reads, with the same constant C' as above,

1/2 1/2
2 2
>, S|, <o(Bml, ) =e(Smi,,)
IeD v

IeD IeD IeD
where we noted in the first and last sum D = {I € D : h; # 0}.
The standard approximation reasoning implies that it is sufficient to check the above
inequality only for finite sums, so we do not have to worry about convergence.
The sequence {hl} [ep 1S @ sequence of martingale differences: this simply means

(4.7)

L2 (w)

that each h, = A h for some h, or, equivalently, that %, is supported on I, f h,dz =0
and h, is constant on all I" € ch([).

The above inequality (4.7) holds for all finite sequences {h,}, cp Of martingale dit-
ferences if and only the estimate

§ :xlhl
IeD

holds for all (finite) collections of martingale differences h, and real numbers x,, I € D.
The fact that (4.8) implies (4.7) is trivial; on the other hand denoting = h, in (4.8) by
h, we can see that (4.7) implies (4.8).

It looks like we just made the estimate (4.7) more complicated, but this allows us to
reduce the problem to a simple “embedding theorem?”.

Namely, for a fixed sequence {h,}, op Of martingale differences let us define the
reconstruction operator

R:(?=(*D) — L? Ra::Zth[, where v = {z,}

IeD

(4.8)

1/2
<C 21h |12
L2(w) (Z%” IHL%))

IeD

IeD '
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With respect to the unweighted pairing, its adjoint is the operator
(1.9) R RP=((fh),)

2l 1ep’

Define v = {Vl}leﬁ = {HhIHiQ(w) }Ief)’ and the norm in the weighted space ¢?(y) is
given by
2
Il =) .
1eD

The estimate (4.8) can be rewritten as
|Bal,,,, < Clall,
But that is equivalent to the weighted estimate

(410) ||R||€2(7)~>L2(w) S C

For the operator R : (%(y) — L*(w) its adjoint with respect to the standard non-
weighted duality is the operator
R*: L*(w™) — (v
where v~1 = {7;1}1615, and R* is the adjoint of the operator R in the non-weighted

situation (R : ¢* — L? R*: L? — (?) given by (4.9).
The inequality (4.10) (and so (4.8)) rewritten for the adjoint operator thus becomes

fih)?, 1
s e i
IeD r 0

and writing f = gw we can restate it as

(g’ ] L2
(4.11) P / 9.

IeD
Let us simplify the estimate (4.11) a bit more. Consider the weighted Haar functions
hy,
hy =h, —d1

I~
where d; is the unique constant such that A7 L1, in L?(w). Thanks to orthogonality
we have by Pythagorean theorem the estimate ||A7]| , () < gl ) Notice further

that with this choice of Haar functions, we have D = {I € D;ch(I) # I}. In particular,
if D is the usual dyadic or n-adic filtration, then D = D. This is the situation we will
consider in the counterexamples built in the next sections.

In order to estimate the sum in (4.11), it suffices to estimate the terms

(g, hy)?
Z—

LQ(”LU) d (97 1])
IeD

I

2 w
and L ).
r IeD
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The first sum is easily estimated by the Pythagorean theorem:

> (9:17) o s (9:1) o )
IeD r IeD || IH
(4.12) _z m ’H“” <112y
I€D
The second sum can be rewritten as
(gw) W

s e
1€D
and by the martingale Carleson Embedding theorem, it suffices to check its bounds on

functions g =1, J € D.
Namely, this sum is bounded by C%|| f Hi?( : if and only if for all J € D

1 Ew)ilIpP
(4.13) il Z B < CH{w), .
1eD(J)
Combining this estimate with (4.12) and using the triangle inequality for the ¢* norm,
we get that (4.13) holds if and only if

(4.14) — Z <C3w), VJeD.
IeD (J)

Moreover, we can see that the best constants in inequalities (4.6), (4.13) and (4.14) are
equivalent.

5. COUNTEREXAMPLE FOR THE A LOWER BOUND.

In this section, we will prove Theorem 3.2; note that it is sufficient to prove this
theorem for sufficiently large A.

We will first construct a non-homogeneous dyadic filtration on I, = [0,1] and a
weight w with [w]Q,C1 = A such that for the best constant Cj in (4.14) we have for this

filtration C3 2, [w], . More precisely, we will prove the estimate

(w, hy)?,
(5.1) Z H W, >A2(w>10.

IeD(1

Then later in Section 5.3 we will show that the weight w we constructed belongs to
the classical Ay class, and that [w ]2701 [w], 1, which completely proves Theorem 3.2.

Note, that since our filtration is dyadic, all martingale difference subspaces A 1L2 are
one-dimensional, so the Haar functions h, are uniquely defined up to a factor. Due to
homogeneity of each term in (5.1) a choice of the factor does not matter.
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5.1. Preliminary computations and idea of the proof. For an interval I € D let
I, and I_ be its children, and let

al = L] /|1
The corresponding Haar function A, is given (up to a constant factor) by

T T
1—04_1[+ a+11_.

Then
(w,hy),. = ol ((w),, = (w), ) 1],
and
Iy 12, = adal (altw),, +at(w), )11l

so the left hand side in (5.1) is given by

alal ((w), — (w))?
(5.2) S —F G 1< )r-) 1].
IED(Io) a” <w>[+ + O{+ <w>17
5.1.1. Idea of the construction. Assume we have for a term in the sum (5.2) a_ < ay
(and in particular o’ < 0.1, so a} > 0.9). Assume also for this term of (w);, ~

ol (w);_ so (w), — (w);_ 2 (w), and let also (w), 1] Z (w) ol Then term we have

al

2
11| 2 {w) [ Z (w)y, Hol-

ol ((w)r, — (w)r)
ol (w)1+ + OJI+ <7«U>I,
If we are able to find as many as A? such intervals, we will prove (5.1), and therefore
also Theorem 3.2.

So let us construct a (non-homogeneous) dyadic filtration D and a weight w € A,
such that [w], ;, = A such that we have sufficient number of terms as we described
above.

In the construction we first show that [w]
A, characteristic remains the same.

,p = A, and later prove that the classical

5.1.2. A random walk representation. To construct a weight we will use its martingale
representation i.e. get the weight from a random walk in the domain €2, C R2?,

Q, ={(uv) eR*: 1 <wuv < A}

Namely, suppose for each I € D we have a point X, = (u,,v,) € {2
X, satisfy a (non-homogeneous) martingale dynamics,

4» and the points

(5.3) X, =alX, +alX, ;

here recall ol = |I.|/|I].
This collection of points X, can be interpreted as as a non-homogeneous random

walk in €, where we move from a point X, to points X It with probabilities a’
respectively.
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In our example the walk will be stopped after n steps on the lower boundary uv = 1
of 1 ,, meaning that for all I € ch® Iy, k > n we have

U, = 1.

Remark. Note that when the walk hits the lower boundary uv =1 of 2, it must stay
there; it is immediate corollary of the martingale dynamics (5.3) and the requirement
that one must stay above the hyperbola uv = 1.

Such a walk immediately gives us a weight w € AD. Namely, take the level N where
the walk is stopped on the hyperbola uv = 1, and define

w = Z ulll.

IechM Iy
The martingale dynamics (5.3) together with the fact that u,v, = 1 for all I €
ch™ (1) imply that for any I € D

(5.4) (w), = u,, (w™), =v,.
Since X, € Q ,, identities (5.4) mean that [w], , < A; if we, for example start the walk

at a point on the upper hyperbola uv = A, then trivially [w], , = A.

5.2. The construction. Let us construct the non-homogeneous dyadic filtration and
the corresponding random walk in €2 ,, which gives us the weight w as follows.

5.2.1. Setting up the random walk. We restrict our attention to the one dimensional
dyadic setting. Let Iy = [0,1]. The dyadic filtration D(1y) is such that each I € D has
exactly 2 children, I, and I_, with equal Lebesgue measure A\(I_) = A(1y) = A({)/2.
However, with respect to the non homogeneous measure v, we have v(I+) := |I| :=
ol |I], and we will be choosing the probabilities ol in order to completely define the
dyadic lattice.

For easier bookkeeping let I, always be on the right, and let |1, | > |I_].

We start from the interval Iy = [0, 1], and pick a point Xy = X, = (ug,vp) on the
upper hyperbola uv = QQp = A. We will then construct the random walk in such a way,
that at each interval I anything interesting can happen only on its right part I,; on
the left part I_ the walk stops on the lower hyperbola uv = 1. Because we are stopped
on the lower hyperbola, it does not matter how we continue the filtration D on I_; we
can, for example continue it as the standard dyadic filtration.

So, we start from the interval Iy, and anything interesting will happen only on its
right part (ly)y =: I, because the walk will stop on (/y)- =: I7. We then split the
interesting interval I; into two parts I := (I;); and I} := (I;)_, so again on [} the
walk stops, and so on. ..

So, we will only need to keep track of what is going on on intervals Iy, I}, k > 1

Tepr = (In)+,  Iigq = (i), k> 0.

Denoting for simplification of notation the corresponding probabilities ol by «; and
ag, we write

[T | = awlLi|,  |Ipy| = agldil, k>0
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(clearly ay, + aj = 1); the values of ay, o will be chosen later.
The points Xy = (uk, vx), X; = (uf,v}) of our walk must satisfy the martingale
dynamics (5.3), which in our notation can be rewritten as

(55) Xk = aka+1 + OzZX]:_H.

Schematically, the random walk we need to track can be presented in the picture
below.

(UU) UO)

(UZ+1,UZ+1) (un+177}n+1)

5.2.2. Inductive construction. We start from a point Xy = (ug,vg), uovg = Qo =
A, and construct the the walk by induction. Suppose we constructed the points
X1, X, ..., Xy, and X7, X5, ..., X}, and let Q) := wivi. We will continue our it-
erations as long as Qr > Qo/2; if Qr < Qp/2 we stop the walk by moving from the
point X} to the both points being on the lower hyperbola uv = 1.

If Qr > Qo/2 we set

(5.6) of=1/Qw  a=1-af.

The point X}, is defined as the point of intersection of the tangent line to the hy-
perbola uwv = @y at the point Xy = (ug,vx) and the lower hyperbola wv = 1. The
computations show

b, = (1 /1= 1/Qk> up, U = (1 + /1= 1/Qk> Vg;

probably the easiest way to compute is to do first the computations for the case u;, =
v = Q,lf and then do the rescaling u — Au, v — A\~!v for an appropriate .
It follows from the martingale dynamics (5.5) that

*

a o
Upy1 = (1+@—kv1—1/Qk) U, Vg1 = ( —a—kvl—l/Qk) Uk,
k

k
- (1-+ajou ) - (1 ajes ) e

The figure below shows an example of a dyadic martingale as above with X, =
(ug,vg) with 0 < k < 4, X} = (u,v}), with 1 < k£ < 3. Only Xy, X; and X are
labelled. The two hyperbolas are uv = 1 and uwv = Qg = A. All the points lie in the
domain 4.
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5.2.3. The estimates. Let us now write some estimates. Let us assume that Qo = A >

4,80 Qr > AJ2 =(Qy/2 > 2. Then
Ukst — Upyy > Up — Upyy = /1 — 1/Qp > wi/V2,

afuge + gy = (1 + afo, %)+ ap(l - a)*)| e

< [042(1 + &204,;1/2) + Oz;ak] up S aguy.

Combining the above estimates together we get that

e (U1 — U py)?

*
QU1 + Qpuy

(5.7)

k] 2 | 1]

Using formulas for w1 and uj_ , we get that
Qk+1 = (1 -+ ozZozk_l/Q) (1 — aZak_l/Q) Qk
= (1-Q*(1-1/Qx)™") Qu
(58) > (1-20Q;7) Qx> (1-8Qp") Q.
Finally, since w1 = (1 + ozza,;lm)uk we get
wri| T | = (1= af)(1+ agoy el Ly
> (1= (aj)?) we| | = (1 = 1/QF) ur| Ii|
(5.9) > (1 —4/Q7) ux| Iy
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The estimate (5.8) implies that
vk
Qr > (1-8Q5°)" Qo,
so for n 2 Q2 steps we will have Q) > Qo/2, k < n. Finally, it follows from (5.9) that
k
wgl I = (1 —4/Q3)" uollo,
therefore wg|Ij;| > Lug|ly| for k < n. From (5.7) we get that for k < n

e (U — Uy q)?

* *
OpUk+1 + akukH

[ I| Z wollol

5.2.4. Finishing the random walk. First of all let us note that in our construction not
only the points X}, X}, but the whole interval [Xj, X}] are in the domain 2 ,. That
will be needed in proving that the weight w we constructed satisfies the classical A,
condition and that [w]lD = [w]ld.

Note also that the following follows immediately from the construction:

(i) The sequence uy, is increasing, the sequence vy is decreasing.
(ii) The sequence @y is decreasing.
(iii) The slopes of intervals [ X}, X}| are negative and increasing (i.e. have decreasing
absolute values).

In our construction we made n steps while Q; > (p/2. Now we need to stop the
process by moving from X, to the points X, 1, X;,; on the lower hyperbola uv = 1.
Note that we can easily do it preserving the above properties (i)—(iii); recall that we

have a choice of transition probabilities o, a.

5.3. Why the constructed weight belongs to classical A,. It is of independent
interest to observe that even classical AS, containing many more intervals as competi-
tors, is not sufficient for a square root bound. We will show that the example above

indeed belongs to the classical A; and that [w], , = [w], ;.

The following argument is borrowed from [8]. Let X : [ — R? be a vector-valued
function, X (t) = (w(t),w(t)™").
Consider the trajectory

1) = (X)yy, te€l=101].

Notice that v(0) = (wg,vo) is the starting point. Let 5; be the left endpoint of the
interval I, then

(5.10) Y(Br) = (1 — Br) Xk, Xy = (ug, vi)-

Since the weight is constant on the interval I ;1 \ I we see that on this interval the
trajectory of v(¢) in the wv plane is exactly the line segment joining the points X} and
Xk11 (note that this segment is the part of the interval [ X}, Xi]).

Indeed, since both w and w™! are constant on Iy, \ I, both u and v coordinates of
v(t) have a form

a+bt  a+b
1—t 1-—t

b,
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so both coordinates are affine functions of the variable s = 1/(1 — t). Therefore the
trajectory indeed lies on a line segment. The monotonicity of the change of variables
s =1/(1 —t) together with (5.10) insure that this segment is exactly [Xz, Xgi1].

Clearly the trajectory of v(t) is convex (increasing slopes, see (iii) in Section 5.2.4
above), piecewise linear, and it belongs to the domain

Qa = {(u,v) eR*: 1 <uv < A}

The line segments at the endpoints of the curve ~ if extended to the line liees below
the graph uwv = A (here we should agree that on the final interval I,, we concatenated
the weight along the line segment not intersecting the previous line segments and the
boundary uv = A).

Take arbitrary 1 > b > a > 0. Since

1—0 b—a
= -y(b) +

7v(a) X [y

1—a 1l—a
it follows from a simple geometry that (X )[a’b] € Qg,. The figure below illustrates the

equation above. Notice that the segment [(X),7(a)] lies below the convex curve
7(t) and below its tangent at ¢t = 0. This ensures that (X)) belongs to 4.
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6. NO BOUNDS IN TERMS OF A,

In this section we prove Theorem 3.3. We show that in the non-homogeneous setting,
if (W], < 00 then we can choose a filtration so that the sum

abal ((w), — (w), )
!ﬂ§: (w)

cs I +O‘ (w),,

can be very large (so no bound in terms of A_  characteristics can be obtained).
Indeed, Take w(z) = x on [0, 1]. It is not difficult to check that [w] , is finite. Let

e > 0 be a sufficiently small number (we will specify it later). We will construct the
filtratrion as follows (parent — children)

1|

Iy :=1[0,1]; Iy :=10,¢], I = [e, 1];

I = I}; I =g, 2¢], It = [2e,1];

Ly = [(k — 1), 1]; I = [(k—1)e, ke, L= lke, 1]

Then
2k — 1) 1+ ek
<w>fk__1 =T 9 <w>1,j_l -5
N € . N 1—¢€k
i ™ 1 —e(k—1) Ko T 1Tk —1)

Let’s say we make NV steps. Then

N oap- ap ((w),- —<w>1+ )2 N — — —1))2
Z k—1 “k—1 k—1 ’Ik 1’ _ 12( (1 5k)(1 g(k 1))

—~ o (W) o (W) l+ek)+(1—ck)(2k—1)

Choose € =

1N (1—ek)(1—e(k— 1)) 1N(1—WNﬁ
§2u+m @fw%4)>§;

1

N
. 12?, 3k/N
8 k=1
1
> S(n(N-1)-3)

and it becomes very large as N — oo.

7. ESTIMATE IN TERMS OF MARTINGALE A?O FOR HOMOGENEOUS FILTRATIONS

In this section we prove Theorem 3.4.

Since everything scales correctly, we can assume without loss of generality that the
starting interval Iy of our filtration is Iy = [0, 1].
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Let D = D(1y) denote all n-adic intervals I C Ij.

7.1. Bellman functional and its properties. For a non-negative function w on an
interval I let N = N}’ be its normalized distribution function,

(7.1) NY@) = I {w e [ :w(z) > t}|, t>0,

Trivially the normalized distribution function N}’ satisfies the martingale dynamics,
namely, if Ij, are the children of I, then

Ny = ZakN}‘;, where ay = [I|/|]].
k

On the set of distribution functions consider the Bellman functional

_ /OO SN (L))dt
0
with ¥(s) = s — sln(s).

We will need the following well-known fact, see [1, Theorem IV.6.7].

Lemma 7.1. Let w be a non-negative function on Iy = [0,1] and let N = N} be
its distribution function. Then ||Mpw| , and B(N) are equivalent in the sense of

two-sided estimates (with some absolute constants).

Let N = Ny and N; be two distribution functions, and let AN := N; — N. We want
to compute the second derivative of the function 6 — B(N + 6aN).
Let Ny := N 4+ 60aN, and let
"y = / Ny(t)dt
0

If we think of the function Ny as of the distribution function of a function wy on, say,
[0, 1], then wuy is the average of the function wy. Also, denote

(72) AU = U] — Uy = / AN(t)dt
0
Then we calculate
* (aN(®))?
(Ny( ——dt.
a P WNo) = g / P(No(t /0 No(t)
Using the Cauchy—Schwartz inequality we get, see [14, Lemma 5.1], that
2 * AN(t)dt)? 2
_d_B(N)/(fo A ) :|AU| ‘
d92 f(] N@ dt Ug

Then using the Taylor’s formula we get, see [14, Corollary 5.2]

Lemma 7.2. Let Ny, Ny and N be distribution functions such that N = (N7 + Ny)/2
and N = N(Ny2) < 0o. Let AN = Ny — N and au is defined by (7.2). Then

B(Ny) + B(No) - 1 M
2 -2 u '

(7.3) B(N) —

where, recall w = [ N(t)dt.
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Using this lemma one can easily get the result for the dyadic filtration. To get it for
the n-adic filtration some extra work is needed.

Definition 7.3. Recall that a Haar function on an interval I € D is a function h = h,
supported on I, constant on children of I and such that f ;hydz=0.
A Haar function h, is called elementary if it is non-zero on at most 2 children of I.

Thus any elementary Haar function i, can be represented as h, = ¢, (1 T 1 Ik2>7

[klylkz €chl.

Lemma 7.4. Let D be an n adic filtration. Any Haar function h on an interval I € D
can be represented as a sum of at most n elementary Haar functions hy, and moreover

(7.4) (Al = Al

Proof. We prove it using induction in n. The case n = 2 is trivial.
Suppose the lemma is proved for n — 1. Let I be the children of I. We write h as

h = Z nklfk
k=1

Since [, dz = 0 there exist ki, ks such that n, > 0, 7, < 0.
For py = min(|77k1 |7 ’nkzl) define

- 1.
hl = 1 (1Ik1_11—k2)’ h —h—hl
Clearly, h; is an elementary Haar function, A is a Haar function and
(7.5) \h| = |hy| + |11

Note, that h! is supported on at most n—1 intervals. Applying the induction hypothesis
we get the decomposition h =), hy. Identity (7.4) follows from (7.5). O

7.2. Proof of Theorem 3.4. We need to estimate the left hand side of (4.14), i.e. the
sum

1 Z (w7h])L2
Tl 2= T2,

IeD(Ip)

(7.6)

Recall that for an interval I € D, we note N the distribution function (7.1). We
want to show that

(7.7) I|B(N,) = > |LIB(N, ) >

I echl

Then summing over all I € D(I) and taking into account that B (N ;) > 0 we get that

2 (w, hl)%z
n? |[hyl)3.

h 2 2
S Wi vy < ]
0 L (I

2 = I
1€D(Io) 1Rz ||L2(w) 2 ’
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the last inequality here follows from Lemma 7.1. By the definition of A,
HMIowHLl(IO) < [w]oo,cl <w>10 |[0| = [w]oo,cl <w>107

so the theorem is proved modulo the main inequality (7.7).
To proof (7.7) let us decompose the Haar function A, into the sum of elementary
Haar functions o, , h =3, h,,, see Lemma 7.4.

Lk
It follows from (7.4) that
(7.8) gl 2y < Bl
Certainly

n
(w,hy),, =Y (w, Py e
k=1
so there exists a k£ so that

Tk L2|‘

(7.9 .y, ] > ()

Without loss of generality (by rearranging the intervals, if necessary) we can assume
that this £ = 1 and that the elementary Haar function hl,l is a dyadic Haar function
supported on the first two n-adic subintervals I; and Iy of I.

Denote I' = I; U I,. Then

2 1 1
N =N, +-3 N, ad N, =2 (N, +N,)
k=1
By concavity of B we get
|1 2 Ny + Ny
I|B(N,) > —B(N, —IB|———|.
B3 > 3 80w + 18 (5

Note that for the elementary Haar function h,
2 2
(wh, )2, (W), —w),) (), —w,)
e W,
L1 L2 (w) It I

Then applying Lemma 7.2 and noticing that au in (7.3) us exactly (w), — (w) , we
get

1 2 ! (w’ hI 1)
I'|B (#) > |17|(B(N1) + B(N,)) + QW by (7.3)
> I (B(Ny) + B(Ny)) + 2 (. hr)s by (7.8) and (7.9).

n? ||h1||%2(w)

The main inequality (7.7), and so the theorem is proved.
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7.3. Some remarks. It is a remarkable result of [4] that for any @ C R™ we have
superexponential bound

(7.10) (reQ : flz)— (o> A} < e N/ClIS=TIZ)

|
Q|
for any A > 0 and any f with ||S f||cc < 00, where the square function S, is defined
as follows
1/2

Sl =1 D I1AfI%L,

1eD(Q)

The superexponential estimate allowed Wilson [18] to obtain weighted L? estimates for
the square function in terms of the maximal function, namely for any 0 < p < co we
have

(7.11) / My fPuds < [ul2f / (S f)Pwda

For the standard dyadic filtration SOO coincides with our square function S, so the
result of Wilson (for p = 2) gives for the standard dyadic filtration the statement of
Theorem 3.4. However, this approach does not give Theorem 3.4 for n-adic filtration
with n > 3, because the superexponential estimate (7.10) should be first proved for
our square function S. And the square function S, is significantly larger than S: one
can easily construct an example of a function with ||Sf||.c < 1 and unbounded S f.
So Theorem 3.4 is a new result.

We should mention that it is possible using some ideas from the proof of Theorem
3.4 to prove the estimate (7.10) for our square function S. The reasoning from [18§]
then allows us to get the estimate (7.11) for our square function, but this will be a
subject of a separate paper.

8. UPPER BOUND FOR THE SQUARE FUNCTION

In this section we sketch a proof of the harder estimate (3.5) in Theorem 3.6; the
easier estimate (3.6) was proved earlier in Section 4.1.

Trivial reasoning shows that it is sufficient to prove the estimate for an atomic
filtration on I, = [0, 1].

The proof is based on the sparse domination of the square function.

Recall that a collection § C D is called sparse if for any J € S

> U<z

Iech‘S J

Given a sparse family S the sparse square function Sg is defined as

Ssf(z) = (Z<\f|>§1,<x>)l/2

Ies
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Lemma 8.1. Let f € L'(Iy). There exist a sparse collection S C D (depending on f)
such that

Sf(x) < S.f(x) a.e.

Proof. The construction is pretty standard, we just outline it.
It is well known that the operator S has weak type 1-1, see [3]. The maximal function
MP also has weak type 1-1, so there exists constant C' such that

(8.1) {er:SJf(:z:)>C}U{xEJ:MJDf(x)>C'}

< |J]/2;

here S is the localized square function

()

IeD(J

We start from the interval Iy. We define the stopping intervals I € S;(1p) to be the
maximal (by inclusion) intervals I € D(Iy) such that either

(S, >CAfh, — or Yoo 1A f@)P > CH:
JeDIo): IS

here C'is from (8.1) and clearly S =S, .
By (8.1) we have > ;cs ) | < |1o]/2, and

Sf)? <3C%|FN3 L, +2C2 Y (D1, + Y S fl
1€81(Io) 1€81(Io)
Repeating this procedure for stopping intervals I € Si(I) and iterating, we get the

conclusion of the lemma. O
Proof of estimate (3.5). It is sufficient to show that for a sparse family S

1851 ngy S L2200 12 11
Denoting g = wf, so f = w™'g we can rewrite this estimate as
(82) 18500 oy S 01202 gl
So, we need to estimate
(8.3) S (Jglu )2 (), 1]

IeS

(the left hand side in (8.2) squared). But as we already discussed above in Section 4.2,
the martingale Carleson Embedding Theorem implies that it is sufficient to estimate
(8.3) on functions g = 1, J € D. Namely, if for all J € D

Z (w™) H(w) 1] < Clw™) 1]

then for all g € L?(w™'), the sum (8.3) is bounded by 4CHgHL2( Ly
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Estimating we get

Y W wy < [wl,, Yo (wh), I

IeS:ICJ IeS:ICJ
< [wly 1M, (w™H]

[w™]

IN

[w]

2D o0, D"’

REFERENCES

[1] C. Bennett and R. Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129,
Academic Press Inc., Boston, MA, 1988.

[2] A. Bonami and D. Lépingle, Fonction mazimale et variation quadratique des martingales en
présence d’un poids, Séminaire de Probabilités, XIII (Univ. Strasbourg, Strasbourg, 1977/78),
Lecture Notes in Math., vol. 721, Springer, Berlin, 1979, pp. 294-306.

[3] D. L. Burkholder, Martingale transforms, Ann. Math. Statist. 37 (1966), 1494-1504.

[4] S.-Y. A. Chang, J. M. Wilson, and T. H. Wolff, Some weighted norm inequalities concerning the
Schrédinger operators, Comment. Math. Helv. 60 (1985), no. 2, 217-246.

[5] S. Hukovic, S. Treil, and A. Volberg, The Bellman functions and sharp weighted inequalities for
square functions, Complex analysis, operators, and related topics, Oper. Theory Adv. Appl., vol.
113, Birkhauser, Basel, 2000, pp. 97-113.

[6] T. Hytonen and C. Perez, Sharp weighted bounds involving A, Anal. PDE, 6, (2013), no. 4,
777-818.

[7] R. F. Gundy and R. L. Wheeden, Weighted integral inequalities for the nontangential maximal
function, Lusin area integral, and Walsh-Paley series, Studia Math. 49 (1973/74), 107-124.

[8] P. Ivanisvili, N. N. Osipov, D. M. Stolyarov, V. V. Vasyunin, P. B. Zatitskiy, Bellman function
for extremal problems in BMO, Trans. Amer. Math. Soc. 368 (2016), 3415-3468

[9] M. T. Lacey, An elementary proof of the As bound, Israel J. Math. 217 (2017), no. 1, 181-195.

[10] M. T. Lacey and K. Li, On A,-As type estimates for square functions, Math. Z. 284 (2016),
no. 3-4, 1211-1222.

[11] F. Nazarov, S. Petermichl, S. Treil, and A. Volberg, Convez body domination and weighted esti-
mates with matriz weights, arXiv:1701.01907 [math.CA] (2017), 22pp.

[12] S. Petermichl and S. Pott, An estimate for weighted Hilbert transform via square functions, Trans.
Amer. Math. Soc. 354 (2002), no. 4, 1699-1703.

[13] C. Thiele, S. Treil, and A. Volberg, Weighted martingale multipliers in the non-homogeneous
setting and outer measure spaces, Adv. Math. 285 (2015), 1155-1188.

[14] S. Treil and A. Volberg, Entropy conditions in two weight inequalities for singular integral oper-
ators, Adv. Math. 301 (2016), 499-548.

[15] G. Wang, Sharp square-function inequalities for conditionally symmetric martingales, Trans.
Amer. Math. Soc. 328 (1991), no. 1, 393-419.

[16] R. F. Gundy and R. L. Wheeden, Weighted Integral Inequalities for the Nontangential Mazimal
function, Lusin area integral and Walsh Paley series, Studia Math. 49, (1973/74), 107-124.

[17] J. M. Wilson, Weighted norm inequalities for the continuous square function, Trans. Amer. Math.
Soc. 314 (1989), no. 2, 661-692.

[18] J. M. Wilson, L? weighted norm inequalities for the square function, 0 < p < 2, Illinois J. Math.
33 (1989), Iss. 3, 361-366.

[19] J. Wittwer, A sharp estimate on the norm of the martingale transform, Math. Res. Lett. 7 (2000),
no. 1, 1-12.



26 K. DOMELEVO, P. IVANISVILI, S. PETERMICHL, S. TREIL, AND A. VOLBERG

K. DOMELEVO: INSTITUT DE MATHEMATIQUES DE TOULOUSE, UNIVERSITE PAUL SABATIER,
31062 TouLOUSE, FRANCE
FE-mail address: komla.domelevo@math.univ-toulouse.fr

P. IvanisviLl: DEPARTMENT OF MATHEMATICAL SCIENCES, KENT STATE UNIVERSITY, KENT,
OH 44242, USA
E-mail address: ivanishvili.paata@gmail.com

S. PETERMICHL: INSTITUT DE MATHEMATIQUES DE TOULOUSE, UNIVERSITE PAUL SABATIER,
31062 ToULOUSE, FRANCE
E-mail address: stefanie.petermichl@gmail.com

S. TREIL: DEPARTMENT OF MATHEMATICS, BROWN UNIVERSITY, PROVIDENCE, RI 02912,
USA
E-mail address: treil@math.brown.edu

A. VOLBERG: DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING,
MI, 48824, USA
E-mail address: volberg@math.msu.edu



	1. Introduction
	2. Setup and motivations
	2.1. Filtered atomic spaces
	2.2. Bases of martingale difference spaces and the Muckenhoupt A<sub>2 condition
	2.3. Different A2 and A<sub>infty conditions

	3. Main results
	4. Reduction of lower bound to an embedding theorem
	4.1. Trivial estimates
	4.2. A sharper way to write the lower bound for the square function

	5. Counterexample for the A2 lower bound.
	5.1. Preliminary computations and idea of the proof
	5.1.1. Idea of the construction
	5.1.2. A random walk representation

	5.2. The construction
	5.2.1. Setting up the random walk
	5.2.2. Inductive construction
	5.2.3. The estimates
	5.2.4. Finishing the random walk

	5.3. Why the constructed weight belongs to classical A2

	6. No bounds in terms of A<sub>infty
	7. Estimate in terms of martingale A<sub>infty for homogeneous filtrations
	7.1. Bellman functional and its properties
	7.2. Proof of Theorem 3.4
	7.3. Some remarks

	8. Upper bound for the square function
	References

