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ON THE FAILURE OF LOWER SQUARE FUNCTION ESTIMATES
IN THE NON-HOMOGENEOUS WEIGHTED SETTING

K. DOMELEVO, P. IVANISVILI, S. PETERMICHL, S. TREIL, AND A. VOLBERG

Abstract. We show that the classical A∞ condition is not sufficient for a lower
square function estimate in the non-homogeneous weighted L2 space. We also show
that under the martingale A2 condition, an estimate holds true, but the optimal
power of the characteristic jumps from 1/2 to 1 even when considering the classical
A2 characteristic. This is in a sharp contrast to known estimates in the dyadic
homogeneous setting as well as the recent positive results in this direction on the
discrete time non-homogeneous martingale transforms. Last, we give a sharp A∞
estimate for the n-adic homogeneous case, growing with n.
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1. Introduction

It is a classical result that the Haar system on the real line is an unconditional
basis in the weighted space L2(w) = L2(R, w) if and only if the weight w satisfies the
dyadic Muckenhoupt A2 condition. This is equivalent to boundedness of the predictable
±1 multiplier on the martingale difference sequences with underlying homogeneous
dyadic filtration. This generalizes to martingale difference spaces in homogeneous
filtrations. These results were proved in [16], where also Littlewood–Paley estimates
were considered. It has been known for some time that the optimal unconditional basis
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constants are the first power of the A2 characteristic of the weight. Through averaging,
it follows that the square function has no worse upper bounds, so, again, at most the
first power of the A2 characteristic of the weight.

Concerning the lower estimate of the square function, it is known that the square
function for the standard dyadic filtration on R satisfies better lower estimates, namely,
with a square root on the characteristic instead of linear — the upper and lower esti-
mates estimates are both optimal for the homogeneous filtration, see [5], [12].

Mixed A2 − A∞ norm estimates from above were first considered and motivated in
[6]. In fact, even the weaker A∞ characteristic is sufficient for the lower estimate (for
the standard dyadic filtration on R), also with square root bounds; this was proved in
[17] using the earlier results from [4].

It was a general understanding that in the homogeneous case one should have the
same lower bounds as in the case of the standard dyadic filtration on R, but surprisingly,
it was not proven before for our “real” square function. The result from [17] gives
the desired estimates for a bigger square function, but the statement for our “real”
square function (which is the only one that works in the non-homogeneous case) for
a homogeneous filtration is proved (to the best of our knowledge) only in the present
paper.

The sharp results on the estimates of unconditional basis constants for arbitrary
underlying Radon measure and any discrete in time atomic filtration was proved more
recently in [13] and then later in [9] by a different method. The constants remain in a
linear dependence with the martingale A2 characteristic, exactly as in the homogeneous
situation.

In this paper, we discuss the upper and lower estimates of the square function in this
(arbitrary filtration) setting. It is remarkable that the better lower estimates seen in
the homogeneous setting fail — indeed the A∞ bound does not hold true at all — in
other words, the A∞ condition is not sufficient for a lower square function bound. This
is even so when using the most restrictive way of defining A∞. Under the martingale
A2 condition, we obtain a lower estimate, but we will see that it is twice the power of
that in the homogeneous case. The failure of the lower estimates motivate us to look
closely at the n-adic homogeneous case — one expects a growth with n. Indeed, we
show that the lower square function estimate in this setting still holds under the A∞
assumption, but with a growth O(n).

To see the blow ups we claim, we construct weights, in A2 or A∞ respectively, via
their martingales based on a filtration where each interval has at most two children,
but of possibly very disbalanced measures.

To see the A∞ lower estimate via the true square function in the n-adic setting, we
make use of a Bellman functional taking a distribution function as its variable. This
idea stems from [14] — but here is an additional difficulty, similar to that of estimating
Haar shifts with Bellman functions.
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2. Setup and motivations

2.1. Filtered atomic spaces. Let (X ,F , ν) be a σ-finite measure space with an
atomic filtration, meaning that there exist an increasing sequence of σ-algebras Fn,
n ∈ N or n ∈ Z, such that for each n there exists a countable collection Dn of sets of
finite positive measure (called atoms) such that A ∈ Fn is a union of atoms of Dn.

We will denote I ∈ Dn the atoms of Dn, and denote by D the collection of all atoms,
i.e. D = ∪nDn. We allow a set I to belong to several generations Dn, so formally an
atom I ∈ Dn is a pair (I, n). When there is no confusion, we will omit the “time” n
and write simply I instead of (I, n); otherwise when it is necessary to refer to the time
n, we will use the symbol rk(I), such that if I denotes the atom (I, n) then rk(I) := n.
Also the inclusion I ⊂ J for atoms should be understood as inclusion for the sets
together with the inequality rk(I) > rk(J). However the union (intersection) of atoms
will simply denote the union (intersection) of the corresponding sets regardless of the
time component. For I ∈ Dn we denote by ch(I) the set of children of I, that is the
atoms of Dn+1 that are direct descendants of I : ch(I) := {I ′ ∈ Dn+1; I ′ ⊂ I}.

A typical example is the standard dyadic filtration in Rd with ν being an arbitrary
Radon measure ν; of course, we need to ignore all cubes Q ∈ D with ν(Q) = 0.

To avoid nonessential technical details, in this paper we assume that ν is a probability
measure, and the filtration is indexed by n ∈ Z+. We also assume that D0 = {X}, and
each Dn is a finite collection (i.e. that every atom has finitely many children).

Since our main results are counterexamples, by providing them in more restrictive
settings we get a formally stronger result than in the more general settings. As for the
positive estimates, they can be extended to the general case using standard approxi-
mation reasoning, so we do not lose anything.

Without loss of generality we can assume that X is the unit interval [0, 1], the
measure ν is the standard Lebesgue measure, and that the atoms are intervals. We
assume that the σ-algebra F is generated by σ-algebras Fn, so more precisely, ν is the
restriction of the Lebesgue measure on F .

Measures of intervals are denoted by |I| := ν(I). For any interval I ∈ D, we define

(2.1) 〈f〉
I

= |I|−1

∫
I

fdν

and

E
I
f = 〈f〉

I
1
I
.

For any interval I ∈ D, the martingale difference operator ∆
I

is defined by

∆
I
f =

∑
I′∈ch(I)

E
I′
f −E

I
f.

Notice that the atom I ∈ Dn has only one child (i.e. ch(I) = {I}) if and only if the
corresponding martingale difference operator is trivial (i.e. ∆

I
= 0).

With this in mind, setting

Enf =
∑
I∈Dn

E
I
f = E(f |Fn),
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we define the martingale difference operator ∆n for any n > 0 as

∆nf = Enf −En−1f =
∑

I∈D:rk(I)=n−1

∆
I
f

together with ∆0f = E0f = 〈f〉X 1. In the sum above the contributions of the trivial
martingale operators is automatically omitted.

For I ∈ D denote by D
I

the martingale difference space, the image of the operator

∆
I
, so D

I
= ∆

I
L2 and similarly Dn = ∆nL

2. Note, that the subspaces Dn, n ≥ 0

form an orthogonal basis in L2 = L2(X ,F , ν), and the same holds for the family D
I
,

I ∈ D together with the subspace D0 (consisting of constants).

2.2. Bases of martingale difference spaces and the Muckenhoupt A2 con-
dition. In the setting described above the following statements are equivalent (with
equivalent constants in statements (iii)–(vi)) as a consequence of the general theory of
bases, cf. [13].

(i) The system of subspaces {D
I

: I ∈ D, D
I
6= {0}} ∪ {D0} is an unconditional

basis in L2(w).
(ii) The system of subspaces {Dn : 0 6 n < ∞, Dn 6= {0}} is an unconditional

basis in L2(w).
(iii) The predictable martingale multipliers Tσ Tσf =

∑
I∈D σI∆I

f , with σ =
{σ

I
}
I∈D , σ

I
∈ {0, 1} (or equivalently σ

I
∈ {−1, 1}), are uniformly in σ

bounded in L2(w).
(iv) The predictable martingale multipliers Tσ with σ = {σ

I
}
I∈D , |σ

I
| 6 1 are

uniformly in σ bounded in L2(w).
(v) The martingale multipliers Tτ with τ = {τn}n∈N, τn ∈ {0, 1} (or, equivalently

τn ∈ {−1, 1}),
Tτf =

∑
k∈N

τk∆kf

are uniformly in τ bounded in L2(w).
(vi) The martingale multipliers Tτ with τ = {τn}n∈N, |τn| 6 1 are uniformly in τ

bounded in L2(w).

It has been known for some time that the statements (iii)–(vi) hold if and only if the
weight w satisfies the martingale Muckenhoupt A2 condition, see Definition 2.1 below:
for the standard dyadic filtration in RN we can refer the reader to [7], and for general
martingales the result was proved in [2]. Later it was proved that the constants in
the statements (iv)–(vi) are estimated by the first power of the A2 characteristic (i.e.
. [w]

2,D): for the standard dyadic filtration in R (and so in RN)it was proved in [19];

for the general non-homogeneous filtration it was established in [13] and soon after by
a different method in [9].

Let now S denote the square function, as defined in equation (3.1) in Section 3. By
taking the average over all σ

I
∈ {−1, 1} such as in equation (4.2) one can see that for

a weight satisfying the martingale A2 condition, the quantity ‖Sf‖
L2(w)

is equivalent

in the sense of two sided estimates to the norm ‖f‖
L2(w)

, see the details in Section 4.1.
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It can be easily obtained from the estimate ‖Tσ‖L2(w)→L2(w)
. [w]

2,D that

[w]−1

2,D
‖f‖

L2(w)
. ‖Sf‖

L2(w)
. [w]

2,D‖f‖L2(w)
∀f ∈ L2(w),

see again Section 4.1 for details. The upper bound ‖Sf‖
L2(w)

. [w]
2,D‖f‖L2(w)

is known

to be sharp, but the lower bound ‖f‖
L2(w)

. [w]
2,D‖Sf‖L2(w)

, as we discussed above

in the introduction, can be improved in the homogeneous case. The investigation of
the lower bound in the non-homogeneous situation was the main motivation for this
paper.

2.3. Different A2 and A∞ conditions. Since our underlying filtration can be non-
homogeneous, we have to be very careful about the definitions of the classes of weights
we will use, as they are no longer necessarily comparable. In all definitions we consider
integrable w. Also the notation 〈·〉I below denotes the average operator as defined in
(2.1).

Definition 2.1. We say that a weight w satisfies the martingale A2 condition and
write w ∈ AD2 if

[w]
2,D := sup

I∈D
〈w〉

I
〈w−1〉

I
<∞.

Definition 2.2. We say that a weight w satisfies the classical A2 condition and write
w ∈ Acl

2 if

[w]cl
2 = sup

I⊆[0,1]

〈w〉
I
〈w−1〉

I
<∞,

where the supremum runs over all intervals I ⊂ [0, 1].

Definition 2.3. For an interval I define the localized maximal function M
I
,

M
I
f(x) := 1

I
(x) sup

J⊆I:x∈J
|〈f〉

J
|,

where the supremum runs over all intervals J ⊂ I containing x.
For an interval I ∈ D define also the martingale localized maximal function MD

I
,

MD
I f(x) = 1

I
(x) sup

J∈D(I):x∈J

∣∣〈f〉
J

∣∣
Definition 2.4. We say that a weight w satisfies the classical A∞ condition and write
w ∈ Acl

∞ if

[w]∞,cl = sup
I⊆[0,1]

〈MIw〉I
〈w〉

I

<∞.

where MIf is the localized classical maximal function defined above.

Definition 2.5. We say that a weight w satisfies the semiclassical A∞ condition and
write w ∈ Ascl

∞ if

[w]∞,scl = sup
I∈D

〈M
I
w〉

I

〈w〉
I

<∞,

where again MIf is the classical maximal function localized to I ∈ D.
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Definition 2.6. We say that w ∈ AD∞ if

[w]∞,D = sup
I∈D

〈MD
I w〉I
〈w〉

I

<∞,

where MD
I f is the martingale maximal function localized to I ∈ D.

We need the following well-known fact.

Proposition 2.7. For any atomic filtration

(2.2) [w]∞,D ≤ 4[w]
2,D

For a simple (but probably not the first) proof see [11, Lemma 4.1]; there it was stated
for the standard dyadic filtration on Rd, but the same proof without any changes works
for any atomic filtration.

It is a theorem of [13] and [9] that the AD2 characteristic is sufficient, indeed that
the constants above are bounded by a multiple of [w]

2,D . It is well known that the

AD2 condition is necessary and that the linear dependence in (2.2) is optimal among all
estimates of the form Φ([w]

2,D), which is already seen in the case of dyadic filtration

with underlying Lebesgue measure.

3. Main results

For f ∈ L1(X ) of mean zero the martingale square function is defined by

Sf :=

(∑
I

(∆
I
f)2

)1/2

.(3.1)

For functions that are not of mean zero, the definition is

Sf :=

(
E(f)2 +

∑
I

(∆
I
f)2

)1/2

.(3.2)

For simplicity we consider X = [0, 1] and mean value zero functions. For general
functions all our results also hold true if the square function is defined by (3.2).

There are various definitions of the square function in the literature that are not
equivalent when the measures are non-homogeneous. Ours is the most natural defi-
nition from probability theory, and the only one that works in the non-homogeneous
case. For example, for our square the quantity ‖Sf‖p is always equivalent to the norm
‖f‖p, 1 < p <∞, (with constants depending on p); for other accepted definitions of a
square function the equivalence of the norms is true only for homogeneous filtrations,
but fails in the non-homogeneous case for p 6= 2.

In the paper the expression A . B means there exists a universal constant c, inde-
pendent of the important quantities, such as function, weight, measure and filtration,
so that A 6 cB. If the constant depends on some parameters, say a and b, we will
write A .

a,b

B.
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The theorem below is presented just for the sake of completeness. Estimate (3.4) can
be easily obtained from known results, see Section 4.1 below. A bit stronger estimate
(3.3) can be obtained from the upper bound (Theorem 3.6 below) via Proposition 4.1.

Theorem 3.1. Given the interval [0, 1] and any discrete time atomic filtration and
any measure, then there holds

‖f‖
L2(w)

. [w]1/2
2,D

[w]1/2
∞,D
‖Sf‖

L2(w)
(3.3)

≤ 2[w]
2,D‖Sf‖L2(w)

.(3.4)

Here are our main theorems

Theorem 3.2. The exponent 1 of [w]
2,D in (3.4) is optimal. Namely, given A ≥ 1 one

can find a weight w defined on the interval [0, 1] satisfying the classical A2 conditions,
such that [w]2,cl = A and a non-homogeneous dyadic filtration D such that for some
f ∈ L2(w)

‖f‖
L2(w)

& A‖Sf‖
L2(w)

= [w]
2,cl
‖Sf‖

L2(w)
;

recall that the implied constant here is an absolute one.

Since [w]
2,D 6 [w]

2,cl
this indeed means that the estimate ‖f‖

L2(w)
. [w]

2,D‖Sf‖L2(w)

in Theorem 3.1 is sharp.

Theorem 3.3. Assumption w ∈ Acl
∞ is not sufficient for an estimate

‖f‖
L2(w)

≤ C([w]∞,cl)‖Sf‖L2(w)
.

Namely, one can find a weight w on the interval [0, 1] satisfying the classical A∞ con-
dition and a non-homogeneous dyadic filtration for which there exists a sequence of
functions fn ∈ L2(w) with

‖Sfn‖L2(w)
= 1, ‖fn‖L2(w)

→∞ as n→∞.

Since [w]∞,cl
> [w]∞,scl

> [w]∞,D this means in particular that no definition of A∞
is sufficient for a lower square function estimate in the non-homogeneous case.

The following theorem can be obtained combining results from [4] and [17], but here
we present a direct proof.

Recall that the n-adic filtration is the atomic filtration where each atom has exactly
n children of equal measure.

Theorem 3.4. For the n-adic filtration

‖f‖
L2(w)

. n[w]1/2
∞,scl
‖Sf‖

L2(w)
.

Remark 3.5. The above theorem holds for an arbitrary homogeneous filtration, i.e. for
a filtration such that for a certain constant Ch > 0,

∀I ∈ D, ∀I ′ ∈ ch(I), |I| ≤ Ch|I ′|.
Then it can be seen from the proof that

‖f‖
L2(w)

.
Ch

[w]1/2
∞,scl
‖Sf‖

L2(w)
.
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In particular, there holds ‖f‖
L2(w)

.
n

[w]1/2
∞,D
‖Sf‖

L2(w)
with additional growth in n.

The following result is probably well-known, see for example [10] for the version for
a continuous square function. We present it just for the completeness, and we will just
outline the proof of (3.5) in Section 8 and the proof of (3.6) in Section 4.1.

Theorem 3.6. For an arbitrary atomic filtration and a weight w ∈ AD2
‖Sf‖

L2(w)
. [w]1/2

2,D
[w−1]1/2

∞,D
‖f‖

L2(w)
(3.5)

≤ 2[w]
2,D‖f‖L2(w)

(3.6)

4. Reduction of lower bound to an embedding theorem

It is more convenient to treat the square function S as a linear operator, by paying
the price of treating it as an operator to the space of vector-valued functions.

Namely, define ~S : L2
0 → L2(`2) as

~Sh = {∆
I
h}

I∈D .

Here we treat the sequence {∆
I
h}

I∈D as an element of the `2-valued space L2(`2), i.e.

we associate with this sequence the function ~Sh of two variables, x ∈ Ω, k ∈ N,

~Sh(x, k) = ∆
I
h(x), where I ∈ D is such that rk(I) = k.

Since for all x ∈ Ω

|Sh(x)| = ‖~Sh(x, · )‖
`2
,

we conclude that

‖Sh‖
L2(w)

= ‖~Sh‖
L2(w; `2)

:=

(∫
Ω

‖~Sh(x, · )‖2

`2
w(x)dx

)1/2

.(4.1)

So the estimates for the square function S are equivalent (with the same constants)

to the corresponding estimates for the vector-valued square function ~S.

4.1. Trivial estimates. Let Tσ, σ = {σ
I
}
I∈D , σ

I
∈ {−1, 1} be a martingale multi-

plier,

Tσf =
∑
I∈D

σ
I
∆
I
f.

Taking the average Eσ over all possible choices of σ
I
∈ {−1, 1} (i.e. formally taking

σ
I

to be independent random variables taking values ±1 with probability 1/2), we
conclude that for almost all x

Eσ
(
|Tσf(x)|2

)
= (Sf(x))2 .(4.2)

Therefore, for any weight w and any f ∈ L2(w)

inf
σ
‖Tσf‖L2(w)

≤ ‖Sf‖
L2(w)

≤ sup
σ
‖Tσf‖L2(w)

.
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Thus, denoting by M(w) := supσ ‖Tσ‖L2(w)→L2(w)
we can see that

M(w)−1‖f‖
L2(w)

≤ ‖Sf‖
L2(w)

≤M(w)‖f‖
L2(w)

.

It is well known that for w ∈ AD
2

‖Tσ‖L2(w)→L2(w)
. [w]

2,D ;

for the classical dyadic filtration on R this result was first proved in [19], and many
different proofs are known now for homogeneous filtrations. For the non-homogeneous
case it was proved in [13] and then independently and by a different and easier method
in [9].

In fact, using the sparse domination technique from [9] one can show that for any
atomic filtration one can write the following (stronger) A2–A∞ estimate

‖Tσ‖L2(w)→L2(w)
. [w]1/2

2,D

(
[w]1/2
∞,D

+ [w−1]1/2
∞,D

)
.(4.3)

Another trivial observation is that a lower bound for Sf in L2(w) can be reduced to
the upper bound in L2(w−1):

Proposition 4.1. Let w > 0 a.e. Then

‖f‖
L2(w)

≤ ‖S‖
L2(w−1)→L2(w−1)

‖Sf‖
L2(w)

(4.4)

Proof. By (4.1) estimates for S are reduced to estimating its “linearized” vector-valued

version ~S. Namely, it is sufficient to estimate the norm in L2(w) of the canonical left

inverse ~S−1,left of ~S,

~S−1,left : Ran ~S → L2;

note that since ~S is clearly an injective map, the operator ~S−1,left is well defined. Note
also that there are no weights in the definition of ~S−1,left.

The operator ~S : L2 → L2(`2) (in the non-weighted situation) is an isometry, so

~S−1,left = ~S∗
∣∣∣ Ran ~S.

Therefore

‖~S−1,left‖
L2(w; `2)→L2(w)

≤ ‖~S∗‖
L2(w; `2)→L2(w)

.(4.5)

But for an operator ~S∗ : L2(w; `2) → L2(w) its adjoint with respect to the standard

non-weighted duality is the operator ~S : L2(w−1)→ L2(w−1; `2), so

‖~S−1,left‖
L2(w; `2)→L2(w)

≤ ‖~S‖
L2(w−1)→L2(w−1; `2)

,

which immediately gives (4.4).

In the above reasoning we skipped a trivial technical detail, namely that ~SL2 6=
~SL2(w) and we have to be a bit careful. However, it all can be fixed by a standard
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approximation reasoning. For example, for a finite F ⊂ D we can define the square
function SF ,

SFh =

(∑
I∈F

|∆
I
h|2
)1/2

.

Then for the vector version ~SF we do not have a problem with ranges, so the above
reasoning gives us the estimate (4.4) with SF instead of S. Taking the supremum over
all finite F ⊂ D we get (4.4). �

4.2. A sharper way to write the lower bound for the square function. Ana-
lyzing the proof of Proposition 4.1, we can see where one could lose sharpness of the
estimate (and in some cases we indeed do lose it): we estimate the norm of the operator
~S∗ between weighted spaces, while we need to estimate only the norm of its restriction,
which could be smaller.

We wish to find a more convenient equivalent form of the inequality

(4.6) ‖h‖
L2(w)

6 C‖Sh‖
L2(w)

that gives us the same constant in the estimate.
Denoting h

I
:= ∆

I
h the above inequality reads, with the same constant C as above,∥∥∥∥∑

I∈D̃

h
I

∥∥∥∥
L2(w)

=

∥∥∥∥∑
I∈D

h
I

∥∥∥∥
L2(w)

6 C

(∑
I∈D

‖h
I
‖2

L2(w)

)1/2

= C

(∑
I∈D̃

‖h
I
‖2

L2(w)

)1/2

,(4.7)

where we noted in the first and last sum D̃ = {I ∈ D : hI 6= 0}.
The standard approximation reasoning implies that it is sufficient to check the above

inequality only for finite sums, so we do not have to worry about convergence.
The sequence {h

I
}
I∈D is a sequence of martingale differences: this simply means

that each h
I

= ∆
I
h for some h, or, equivalently, that h

I
is supported on I,

∫
h
I
dx = 0

and h
I

is constant on all I ′ ∈ ch(I).
The above inequality (4.7) holds for all finite sequences {h

I
}
I∈D of martingale dif-

ferences if and only the estimate∥∥∥∥∑
I∈D̃

x
I
h
I

∥∥∥∥
L2(w)

6 C

(∑
I∈D̃

x2

I
‖h

I
‖2

L2(w)

)1/2

(4.8)

holds for all (finite) collections of martingale differences h
I

and real numbers x
I
, I ∈ D̃.

The fact that (4.8) implies (4.7) is trivial; on the other hand denoting x
I
h
I

in (4.8) by
h
I

we can see that (4.7) implies (4.8).
It looks like we just made the estimate (4.7) more complicated, but this allows us to

reduce the problem to a simple “embedding theorem”.
Namely, for a fixed sequence {h

I
}
I∈D of martingale differences let us define the

reconstruction operator

R : `2 = `2(D̃)→ L2, Rx =
∑
I∈D̃

x
I
h
I
, where x = {x

I
}
I∈D̃

.
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With respect to the unweighted pairing, its adjoint is the operator

R∗ : L2 → `2, R∗f = {(f, h
I
)
L2}I∈D̃ .(4.9)

Define γ = {γ
I
}
I∈D̃

=
{
‖h

I
‖2

L2(w)

}
I∈D̃

, and the norm in the weighted space `2(γ) is

given by

‖x‖2

`2(γ)
=
∑
I∈D̃

x2

I
γ
I
.

The estimate (4.8) can be rewritten as

‖Rx‖
L2(w)

≤ C‖x‖
`2(γ)

.

But that is equivalent to the weighted estimate

‖R‖
`2(γ)→L2(w)

≤ C(4.10)

For the operator R : `2(γ) → L2(w) its adjoint with respect to the standard non-
weighted duality is the operator

R∗ : L2(w−1)→ `2(γ−1)

where γ−1 = {γ−1

I
}
I∈D̃

, and R∗ is the adjoint of the operator R in the non-weighted

situation (R : `2 → L2, R∗ : L2 → `2) given by (4.9).
The inequality (4.10) (and so (4.8)) rewritten for the adjoint operator thus becomes∑

I∈D̃

(f, h
I
)2

L2

γ
I

6 C2

∫ 1

0

|f |2w−1

and writing f = gw we can restate it as∑
I∈D̃

(g, h
I
)2

L2(w)

γ
I

6 C2

∫ 1

0

|g|2w.(4.11)

Let us simplify the estimate (4.11) a bit more. Consider the weighted Haar functions
hw
I

,

hw
I

= h
I
− d

I
1
I
,

where dI is the unique constant such that hwI ⊥1
I

in L2(w). Thanks to orthogonality
we have by Pythagorean theorem the estimate ‖hw

I
‖
L2(w)

6 ‖h
I
‖
L2(w)

. Notice further

that with this choice of Haar functions, we have D̃ = {I ∈ D; ch(I) 6= I}. In particular,
if D is the usual dyadic or n-adic filtration, then D̃ = D. This is the situation we will
consider in the counterexamples built in the next sections.

In order to estimate the sum in (4.11), it suffices to estimate the terms

∑
I∈D̃

(g, hw
I

)2

L2(w)

γ
I

and
∑
I∈D̃

d2

I
(g,1

I
)2

L2(w)

γ
I

.
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The first sum is easily estimated by the Pythagorean theorem:∑
I∈D̃

(g, hw
I

)2

L2(w)

γ
I

=
∑
I∈D̃

(g, hw
I

)2

L2(w)

‖h
I
‖2

L2(w)

≤
∑
I∈D̃

(g, hw
I

)2

L2(w)

‖hw
I
‖2

L2(w)

≤ ‖f‖
L2(w)

.(4.12)

The second sum can be rewritten as∑
I∈D̃

d2

I
〈gw〉2

I
|I|2

γ
I

and by the martingale Carleson Embedding theorem, it suffices to check its bounds on
functions g = 1

J
, J ∈ D̃.

Namely, this sum is bounded by C2
1‖f‖2

L2(w)
if and only if for all J ∈ D̃

1

|J |
∑

I∈D̃(J)

d2

I
〈w〉2

I
|I|2

γ
I

6 C2
2〈w〉J .(4.13)

Combining this estimate with (4.12) and using the triangle inequality for the `2 norm,
we get that (4.13) holds if and only if

(4.14)
1

|J |
∑

I∈D̃(J)

(w, h
I
)2

L2

γ
I

6 C2
3〈w〉J ∀J ∈ D̃.

Moreover, we can see that the best constants in inequalities (4.6), (4.13) and (4.14) are
equivalent.

5. Counterexample for the A2 lower bound.

In this section, we will prove Theorem 3.2; note that it is sufficient to prove this
theorem for sufficiently large A.

We will first construct a non-homogeneous dyadic filtration on I0 = [0, 1] and a
weight w with [w]

2,cl
= A such that for the best constant C3 in (4.14) we have for this

filtration C3 & [w]
2,cl

. More precisely, we will prove the estimate

∑
I∈D(I0)

(w, h
I
)2

L2

‖h
I
‖2

L2(w)

& A2〈w〉
I0
.(5.1)

Then later in Section 5.3 we will show that the weight w we constructed belongs to
the classical A2 class, and that [w]

2,cl
� [w]

2,D , which completely proves Theorem 3.2.

Note, that since our filtration is dyadic, all martingale difference subspaces ∆
I
L2 are

one-dimensional, so the Haar functions h
I

are uniquely defined up to a factor. Due to
homogeneity of each term in (5.1) a choice of the factor does not matter.
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5.1. Preliminary computations and idea of the proof. For an interval I ∈ D let
I+ and I− be its children, and let

αI± := |I±|/|I|.
The corresponding Haar function h

I
is given (up to a constant factor) by

h
I

= αI−1
I+
− αI+1

I−
.

Then

(w, h
I
)
L2 = αI+α

I
−

(
〈w〉

I+
− 〈w〉

I−

)
|I|,

and

‖h
I
‖2

L2(w)
= αI+α

I
−

(
αI−〈w〉I+ + αI+〈w〉I−

)
|I|,

so the left hand side in (5.1) is given by∑
I∈D(I0)

αI−α
I
+

(
〈w〉I+ − 〈w〉I−

)2

αI−〈w〉I+ + αI+〈w〉I−
|I|.(5.2)

5.1.1. Idea of the construction. Assume we have for a term in the sum (5.2) α− � α+

(and in particular αI− ≤ 0.1, so αI+ ≥ 0.9). Assume also for this term αI−〈w〉I+ ≈
αI+〈w〉I− so 〈w〉I+ −〈w〉I− & 〈w〉I , and let also 〈w〉

I
|I| & 〈w〉

I0
|I0|. Then term we have

αI−α
I
+

(
〈w〉I+ − 〈w〉I−

)2

αI−〈w〉I+ + αI+〈w〉I−
|I| & 〈w〉

I
|I| & 〈w〉

I0
|I0|.

If we are able to find as many as A2 such intervals, we will prove (5.1), and therefore
also Theorem 3.2.

So let us construct a (non-homogeneous) dyadic filtration D and a weight w ∈ A2

such that [w]
2,cl

= A such that we have sufficient number of terms as we described

above.
In the construction we first show that [w]

2,D = A, and later prove that the classical

A2 characteristic remains the same.

5.1.2. A random walk representation. To construct a weight we will use its martingale
representation i.e. get the weight from a random walk in the domain Ω

A
⊂ R2,

Ω
A

:= {(u, v) ∈ R2 : 1 ≤ uv ≤ A}.
Namely, suppose for each I ∈ D we have a point X

I
= (u

I
, v
I
) ∈ Ω

A
, and the points

X
I

satisfy a (non-homogeneous) martingale dynamics,

X
I

= αI+XI+
+ αI−XI−

;(5.3)

here recall αI± = |I±|/|I|.
This collection of points X

I
can be interpreted as as a non-homogeneous random

walk in Ω
A

, where we move from a point X
I

to points X
I±

with probabilities αI±
respectively.
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In our example the walk will be stopped after n steps on the lower boundary uv = 1
of Ω

A
, meaning that for all I ∈ chk I0, k > n we have

u
I
v
I

= 1.

Remark. Note that when the walk hits the lower boundary uv = 1 of Ω
A

it must stay
there; it is immediate corollary of the martingale dynamics (5.3) and the requirement
that one must stay above the hyperbola uv = 1.

Such a walk immediately gives us a weight w ∈ AD2 . Namely, take the level N where
the walk is stopped on the hyperbola uv = 1, and define

w :=
∑

I∈chN I0

u
I
1
I
.

The martingale dynamics (5.3) together with the fact that u
I
v
I

= 1 for all I ∈
chN(I0) imply that for any I ∈ D

〈w〉
I

= u
I
, 〈w−1〉

I
= v

I
.(5.4)

Since X
I
∈ Ω

A
, identities (5.4) mean that [w]

2,D ≤ A; if we, for example start the walk

at a point on the upper hyperbola uv = A, then trivially [w]
2,D = A.

5.2. The construction. Let us construct the non-homogeneous dyadic filtration and
the corresponding random walk in Ω

A
, which gives us the weight w as follows.

5.2.1. Setting up the random walk. We restrict our attention to the one dimensional
dyadic setting. Let I0 = [0, 1]. The dyadic filtration D(I0) is such that each I ∈ D has
exactly 2 children, I+ and I−, with equal Lebesgue measure λ(I−) = λ(I+) = λ(I)/2.
However, with respect to the non homogeneous measure ν, we have ν(I±) := |I±| :=
αI±|I|, and we will be choosing the probabilities αI± in order to completely define the
dyadic lattice.

For easier bookkeeping let I+ always be on the right, and let |I+| ≥ |I−|.
We start from the interval I0 = [0, 1], and pick a point X0 = X

I0
= (u0, v0) on the

upper hyperbola uv = Q0 = A. We will then construct the random walk in such a way,
that at each interval I anything interesting can happen only on its right part I+; on
the left part I− the walk stops on the lower hyperbola uv = 1. Because we are stopped
on the lower hyperbola, it does not matter how we continue the filtration D on I−; we
can, for example continue it as the standard dyadic filtration.

So, we start from the interval I0, and anything interesting will happen only on its
right part (I0)+ =: I1, because the walk will stop on (I0)− =: I?1 . We then split the
interesting interval I1 into two parts I2 := (I1)+ and I?2 := (I1)−, so again on I?2 the
walk stops, and so on. . .

So, we will only need to keep track of what is going on on intervals Ik, I
?
k , k ≥ 1

Ik+1 := (Ik)+, I?k+1 := (Ik)−, k ≥ 0.

Denoting for simplification of notation the corresponding probabilities αI± by αk and
α?k, we write

|Ik+1| = αk|Ik|, |I?k+1| = α?k|Ik|, k ≥ 0
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(clearly αk + α∗k = 1); the values of αk, α
?
k will be chosen later.

The points Xk = (uk, vk), X
?
k = (u?k, v

?
k) of our walk must satisfy the martingale

dynamics (5.3), which in our notation can be rewritten as

Xk = αkXk+1 + α?kX
?
k+1.(5.5)

Schematically, the random walk we need to track can be presented in the picture
below.

(u0, v0)

(u1
⋆, v1

⋆) (u1, v1)

(u2
⋆, v2

⋆) (u2, v2)

(u3
⋆, v3

⋆) (u3, v3)

(u4
⋆, v4

⋆) ···

(un+1
⋆ , vn+1

⋆ ) (un+1, vn+1)

5.2.2. Inductive construction. We start from a point X0 = (u0, v0), u0v0 = Q0 :=
A, and construct the the walk by induction. Suppose we constructed the points
X1, X2, . . . , Xk, and X?

1 , X
?
2 , . . . , X

?
k , and let Qk := ukvk. We will continue our it-

erations as long as Qk ≥ Q0/2; if Qk < Q0/2 we stop the walk by moving from the
point Xk to the both points being on the lower hyperbola uv = 1.

If Qk ≥ Q0/2 we set

α?k = 1/Qk, αk = 1− α?k.(5.6)

The point X?
k+1 is defined as the point of intersection of the tangent line to the hy-

perbola uv = Qk at the point Xk = (uk, vk) and the lower hyperbola uv = 1. The
computations show

u?k+1 =
(

1−
√

1− 1/Qk

)
uk, v?k+1 =

(
1 +

√
1− 1/Qk

)
vk;

probably the easiest way to compute is to do first the computations for the case uk =

vk = Q
1/2
k and then do the rescaling u 7→ λu, v 7→ λ−1v for an appropriate λ.

It follows from the martingale dynamics (5.5) that

uk+1 =

(
1 +

α?k
αk

√
1− 1/Qk

)
uk, vk+1 =

(
1− α?k

αk

√
1− 1/Qk

)
vk,

=
(
1 + α?kαk

−1/2
)
uk, =

(
1− α?kαk−1/2

)
vk.

The figure below shows an example of a dyadic martingale as above with Xk =
(uk, vk) with 0 6 k 6 4, X?

k = (u?k, v
?
k), with 1 6 k 6 3. Only X0, X1 and X?

0 are
labelled. The two hyperbolas are uv = 1 and uv = Q0 = A. All the points lie in the
domain ΩA.
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X0

X1

X1

5.2.3. The estimates. Let us now write some estimates. Let us assume that Q0 = A ≥
4, so Qk ≥ A/2 = Q0/2 ≥ 2. Then

uk+1 − u?k+1 ≥ uk − u?k+1 = uk
√

1− 1/Qk ≥ uk/
√

2,

α?kuk+1 + αku
?
k+1 =

[
α?k(1 + α?kα

−1/2
k ) + αk(1− α1/2

k )
]
uk

≤
[
α?k(1 + α?kα

−1/2
k ) + α?kαk

]
uk . α?kuk.

Combining the above estimates together we get that

αkα
?
k(uk+1 − u?k+1)2

α?kuk+1 + αku?k+1

|Ik| & uk|Ik|(5.7)

Using formulas for uk+1 and u?k+1 we get that

Qk+1 =
(
1 + α?kαk

−1/2
) (

1− α?kαk−1/2
)
Qk

=
(
1−Q−2

k (1− 1/Qk)
−1
)
Qk

≥
(
1− 2Q−2

k

)
Qk ≥

(
1− 8Q−2

0

)
Qk .(5.8)

Finally, since uk+1 = (1 + α?kα
−1/2
k )uk we get

uk+1|Ik+1| = (1− α?k)(1 + α?kα
−1/2
k )uk|Ik|

≥
(
1− (α?k)

2
)
uk|Ik| =

(
1− 1/Q2

k

)
uk|Ik|

≥
(
1− 4/Q2

0

)
uk|Ik|.(5.9)
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The estimate (5.8) implies that

Qk ≥
(
1− 8Q−2

0

)k
Q0,

so for n & Q2
0 steps we will have Qk ≥ Q0/2, k ≤ n. Finally, it follows from (5.9) that

uk|Ik| ≥
(
1− 4/Q2

0

)k
u0|I0|,

therefore uk|Ik| ≥ 1
2
u0|I0| for k ≤ n. From (5.7) we get that for k ≤ n

αkα
?
k(uk+1 − u?k+1)2

α?kuk+1 + αku?k+1

|Ik| & u0|I0|

5.2.4. Finishing the random walk. First of all let us note that in our construction not
only the points Xk, X

?
k , but the whole interval [Xk, X

?
k ] are in the domain Ω

A
. That

will be needed in proving that the weight w we constructed satisfies the classical A2

condition and that [w]
2,D = [w]

2,cl
.

Note also that the following follows immediately from the construction:

(i) The sequence uk is increasing, the sequence vk is decreasing.
(ii) The sequence Qk is decreasing.

(iii) The slopes of intervals [X?
k , Xk] are negative and increasing (i.e. have decreasing

absolute values).

In our construction we made n steps while Qk ≥ Q0/2. Now we need to stop the
process by moving from Xn to the points Xn+1, X?

n+1 on the lower hyperbola uv = 1.
Note that we can easily do it preserving the above properties (i)–(iii); recall that we
have a choice of transition probabilities αn, α?n.

5.3. Why the constructed weight belongs to classical A2. It is of independent
interest to observe that even classical Acl

2 , containing many more intervals as competi-
tors, is not sufficient for a square root bound. We will show that the example above
indeed belongs to the classical A2 and that [w]

2,D = [w]
2,cl

.

The following argument is borrowed from [8]. Let X : I0 → R2 be a vector-valued
function, X(t) = (w(t), w(t)−1).

Consider the trajectory

γ(t) := 〈X〉[t,1] , t ∈ I0 = [0, 1].

Notice that γ(0) = (w0, v0) is the starting point. Let βk be the left endpoint of the
interval Ik, then

γ(βk) = (1− βk)Xk, Xk = (uk, vk).(5.10)

Since the weight is constant on the interval Ik+1 \ Ik we see that on this interval the
trajectory of γ(t) in the uv plane is exactly the line segment joining the points Xk and
Xk+1 (note that this segment is the part of the interval [X?

k , Xk]).
Indeed, since both w and w−1 are constant on Ik+1 \ Ik, both u and v coordinates of

γ(t) have a form

a+ bt

1− t =
a+ b

1− t − b,
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so both coordinates are affine functions of the variable s = 1/(1 − t). Therefore the
trajectory indeed lies on a line segment. The monotonicity of the change of variables
s = 1/(1− t) together with (5.10) insure that this segment is exactly [Xk, Xk+1].

Clearly the trajectory of γ(t) is convex (increasing slopes, see (iii) in Section 5.2.4
above), piecewise linear, and it belongs to the domain

ΩA := {(u, v) ∈ R2 : 1 ≤ uv ≤ A}.

The line segments at the endpoints of the curve γ if extended to the line liees below
the graph uv = A (here we should agree that on the final interval In we concatenated
the weight along the line segment not intersecting the previous line segments and the
boundary uv = A).

Take arbitrary 1 ≥ b > a ≥ 0. Since

γ(a) =
1− b
1− a · γ(b) +

b− a
1− a · 〈X〉[a,b],

it follows from a simple geometry that 〈X〉[a,b] ∈ ΩQ0 . The figure below illustrates the

equation above. Notice that the segment [〈X〉[a,b], γ(a)] lies below the convex curve
γ(t) and below its tangent at t = 0. This ensures that 〈X〉[a,b] belongs to ΩA.

γ(a)

γ(b)

〈
X
〉

[a, b]
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6. No bounds in terms of A∞

In this section we prove Theorem 3.3. We show that in the non-homogeneous setting,
if [w]∞,cl <∞ then we can choose a filtration so that the sum

1

|J |
∑
I⊆J

αI+α
I
−(〈w〉

I+
− 〈w〉

I−
)2

αI+〈w〉I− + αI−〈w〉I+
|I|

can be very large (so no bound in terms of A∞,cl
characteristics can be obtained).

Indeed, Take w(x) = x on [0, 1]. It is not difficult to check that [w]∞,cl
is finite. Let

ε > 0 be a sufficiently small number (we will specify it later). We will construct the
filtratrion as follows (parent → children)

I0 := [0, 1]; I−0 := [0, ε], I+
0 := [ε, 1];

I1 := I+
0 ; I−1 := [ε, 2ε], I+

1 := [2ε, 1];

. . .

Ik−1 := [(k − 1)ε, 1]; I−k−1 := [(k − 1)ε, kε], I+
k−1 := [kε, 1]

Then

〈w〉I−k−1
=
ε(2k − 1)

2
; 〈w〉I+k−1

=
1 + εk

2
;

αI−k−1
:=

ε

1− ε(k − 1)
; αI+k−1

:=
1− εk

1− ε(k − 1)
.

Let’s say we make N steps. Then

N∑
k=1

αI−k−1
αI+k−1

(〈w〉I−k−1
− 〈w〉I+k−1

)2

αI−k−1
〈w〉I+k−1

+ αI+k−1
〈w〉I−k−1

|Ik−1| =
1

2

N∑
k=1

(1− εk)(1− ε(k − 1))2

(1 + εk) + (1− εk)(2k − 1)
.

Choose ε = 1
N

. Then

1

2

N∑
k=1

(1− εk)(1− ε(k − 1))2

(1 + εk) + (1− εk)(2k − 1)
>

1

8

N∑
k=1

(1− k/N)3

k

>
1

8

N∑
k=1

1− 3k/N

k

>
1

8
(ln(N − 1)− 3)

and it becomes very large as N →∞.

7. Estimate in terms of martingale AD∞ for homogeneous filtrations

In this section we prove Theorem 3.4.
Since everything scales correctly, we can assume without loss of generality that the

starting interval I0 of our filtration is I0 = [0, 1].
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Let D = D(I0) denote all n-adic intervals I ⊂ I0.

7.1. Bellman functional and its properties. For a non-negative function w on an
interval I let N = Nw

I be its normalized distribution function,

Nw
I (t) := |I|−1 |{x ∈ I : w(x) > t}| , t ≥ 0,(7.1)

Trivially the normalized distribution function Nw
I satisfies the martingale dynamics,

namely, if Ik are the children of I, then

Nw
I =

∑
k

αkN
w
Ik
, where αk = |Ik|/|I|.

On the set of distribution functions consider the Bellman functional

B(N) =

∫ ∞
0

ψ(N(t))dt

with ψ(s) = s− s ln(s).
We will need the following well-known fact, see [1, Theorem IV.6.7].

Lemma 7.1. Let w be a non-negative function on I0 = [0, 1] and let N = Nw
I0

be
its distribution function. Then ‖MI0w‖L1 and B(N) are equivalent in the sense of

two-sided estimates (with some absolute constants).

Let N = N0 and N1 be two distribution functions, and let ∆N := N1−N . We want
to compute the second derivative of the function θ 7→ B(N + θ∆N).

Let Nθ := N + θ∆N , and let

uθ :=

∫ ∞
0

Nθ(t)dt.

If we think of the function Nθ as of the distribution function of a function wθ on, say,
[0, 1], then uθ is the average of the function wθ. Also, denote

∆u := u1 − u0 =

∫ ∞
0

∆N(t)dt.(7.2)

Then we calculate

d2

dθ2
B(Nθ) =

d2

dθ2

∫ ∞
0

ψ(Nθ(t))dt = −
∫ ∞

0

(∆N(t))2

Nθ(t)
dt.

Using the Cauchy–Schwartz inequality we get, see [14, Lemma 5.1], that

− d2

dθ2
B(Nθ) >

(∫∞
0

∆N(t)dt
)2∫∞

0
Nθ(t)dt

=
|∆u|2
uθ

.

Then using the Taylor’s formula we get, see [14, Corollary 5.2]

Lemma 7.2. Let N1, N2 and N be distribution functions such that N = (N1 +N2)/2
and N = N(N1,2) <∞. Let ∆N = N1 −N and ∆u is defined by (7.2). Then

B(N)− B(N1) +B(N2)

2
≥ 1

2
· (∆u)2

u
,(7.3)

where, recall u =
∫∞

0
N(t)dt.
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Using this lemma one can easily get the result for the dyadic filtration. To get it for
the n-adic filtration some extra work is needed.

Definition 7.3. Recall that a Haar function on an interval I ∈ D is a function h = h
I

supported on I, constant on children of I and such that
∫
I
h
I
dx = 0.

A Haar function h
I

is called elementary if it is non-zero on at most 2 children of I.

Thus any elementary Haar function h
I

can be represented as h
I

= c
I

(
1
Ik1
− 1

Ik2

)
,

Ik1 , Ik2 ∈ ch I.

Lemma 7.4. Let D be an n adic filtration. Any Haar function h on an interval I ∈ D
can be represented as a sum of at most n elementary Haar functions hk, and moreover

|h| =
∑
k

|hk|(7.4)

Proof. We prove it using induction in n. The case n = 2 is trivial.
Suppose the lemma is proved for n− 1. Let Ik be the children of I. We write h as

h =
n∑
k=1

ηk1Ik .

Since
∫
h

dx = 0 there exist k1, k2 such that ηk1 > 0, ηk2 < 0.
For µ1 := min(|ηk1|, |ηk2|) define

h1 := µ1

(
1
Ik1
− 1

Ik2

)
, h1 := h− h1.

Clearly, h1 is an elementary Haar function, h is a Haar function and

|h| = |h1|+ |h1|.(7.5)

Note, that h1 is supported on at most n−1 intervals. Applying the induction hypothesis
we get the decomposition h =

∑
k hk. Identity (7.4) follows from (7.5). �

7.2. Proof of Theorem 3.4. We need to estimate the left hand side of (4.14), i.e. the
sum

(7.6)
1

|I0|
∑

I∈D(I0)

(w, h
I
)2

L2

‖h
I
‖2

L2(w)

Recall that for an interval I ∈ D
I
, we note Nw

I
the distribution function (7.1). We

want to show that

|I|B(N
I
)−

∑
Ik∈ch I

|Ik|B(N
Ik

) ≥ 2

n2

(w, hI)
2
L2

‖hI‖2
L2(w)

(7.7)

Then summing over all I ∈ D(I0) and taking into account that B(N
I
) ≥ 0 we get that∑

I∈D(I0)

(w, hI)
2
L2

‖hI‖2
L2(w)

≤ n2

2
B(N

I0
) . n2‖M

I0
w‖

L1(I0)
;
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the last inequality here follows from Lemma 7.1. By the definition of A∞

‖M
I0
w‖

L1(I0)
≤ [w]∞,cl

〈w〉
I0
|I0| = [w]∞,cl

〈w〉
I0
,

so the theorem is proved modulo the main inequality (7.7).
To proof (7.7) let us decompose the Haar function h

I
into the sum of elementary

Haar functions h
I,k

, h =
∑

k hI,k , see Lemma 7.4.

It follows from (7.4) that

‖h
I,k
‖
L2(w)

≤ ‖h
I
‖
L2(w)

.(7.8)

Certainly

(w, h
I
)
L2 =

n∑
k=1

(w, h
I,k

)
L2 ,

so there exists a k so that

|(w, h
I,k

)
L2 | >

1

n
|(w, h

I
)
L2 |.(7.9)

Without loss of generality (by rearranging the intervals, if necessary) we can assume
that this k = 1 and that the elementary Haar function h

I,1
is a dyadic Haar function

supported on the first two n-adic subintervals I1 and I2 of I.
Denote I1 = I1 ∪ I2. Then

N
I

=
2

n
N
I1

+
1

n

n∑
k=1

N
Ik
, and N

I1
=

1

2

(
N
I1

+N
I2

)
By concavity of B we get

|I|B(N
I
) >

n∑
k=3

|I|
n
B(Nk) +

2

n
|I|B

(
N1 +N2

2

)
.

Note that for the elementary Haar function h
I,1

(w, h
I,1

)2

L2

‖h
I,1
‖2

L2(w)

=

(
〈w〉

I1
− 〈w〉

I2

)2

〈w〉
I1

|I1| = 4

(
〈w〉

I1
− 〈w〉

I1

)2

〈w〉
I1

|I1|

Then applying Lemma 7.2 and noticing that ∆u in (7.3) us exactly 〈w〉
I1
− 〈w〉

I1
we

get

|I1|B
(
N1 +N2

2

)
>
|I1|
2

(B(N1) +B(N2)) + 2
(w, h

I,1
)2

L2

‖h
I,1
‖2
L2(w)

by (7.3)

>
|I1|
2

(B(N1) +B(N2)) +
2

n2

(w, hI)
2
L2

‖hI‖2
L2(w)

by (7.8) and (7.9).

The main inequality (7.7), and so the theorem is proved.
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7.3. Some remarks. It is a remarkable result of [4] that for any Q ⊂ Rn we have
superexponential bound

1

|Q| |{x ∈ Q : f(x)− 〈f〉Q ≥ λ}| ≤ e−λ
2/(2‖S∞f‖2∞)(7.10)

for any λ ≥ 0 and any f with ‖S∞f‖∞ <∞, where the square function S∞ is defined
as follows

S∞f =

 ∑
I∈D(Q)

‖∆
I
f‖2
∞1

I

1/2

.

The superexponential estimate allowed Wilson [18] to obtain weighted Lp estimates for
the square function in terms of the maximal function, namely for any 0 < p < ∞ we
have ∫

|MDf |
pwdx .

n,p
[w]p/2∞

∫
(S∞f)pwdx(7.11)

For the standard dyadic filtration S∞ coincides with our square function S, so the
result of Wilson (for p = 2) gives for the standard dyadic filtration the statement of
Theorem 3.4. However, this approach does not give Theorem 3.4 for n-adic filtration
with n ≥ 3, because the superexponential estimate (7.10) should be first proved for
our square function S. And the square function S∞ is significantly larger than S: one
can easily construct an example of a function with ‖Sf‖∞ ≤ 1 and unbounded S∞f .
So Theorem 3.4 is a new result.

We should mention that it is possible using some ideas from the proof of Theorem
3.4 to prove the estimate (7.10) for our square function S. The reasoning from [18]
then allows us to get the estimate (7.11) for our square function, but this will be a
subject of a separate paper.

8. Upper bound for the square function

In this section we sketch a proof of the harder estimate (3.5) in Theorem 3.6; the
easier estimate (3.6) was proved earlier in Section 4.1.

Trivial reasoning shows that it is sufficient to prove the estimate for an atomic
filtration on I0 = [0, 1].

The proof is based on the sparse domination of the square function.
Recall that a collection S ⊂ D is called sparse if for any J ∈ S∑

I∈chS J

|I| ≤ |J |/2.

Given a sparse family S the sparse square function SS is defined as

SSf(x) :=

(∑
I∈S

〈|f |〉2
I
1
I
(x)

)1/2
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Lemma 8.1. Let f ∈ L1(I0). There exist a sparse collection S ⊂ D (depending on f)
such that

Sf(x) . SSf(x) a.e.

Proof. The construction is pretty standard, we just outline it.
It is well known that the operator S has weak type 1-1, see [3]. The maximal function

MD also has weak type 1-1, so there exists constant C such that∣∣∣{x ∈ J : S
J
f(x) > C}

⋃
{x ∈ J : MD

J
f(x) > C}

∣∣∣ ≤ |J |/2;(8.1)

here S
J

is the localized square function

S
J
f(x) :=

( ∑
I∈D(J)

|∆
I
f(x)|2

)1/2

.

We start from the interval I0. We define the stopping intervals I ∈ S1(I0) to be the
maximal (by inclusion) intervals I ∈ D(I0) such that either

〈|f |〉
I
> C〈|f |〉

I0
or

∑
J∈D(I0):I$J

|∆
J
f(x)|2 > C2〈|f |〉2

I0
;

here C is from (8.1) and clearly S = S
I0

.

By (8.1) we have
∑

I∈S1(I0) |I| ≤ |I0|/2, and

Sf(x)2 ≤ 3C2〈|f |〉2
I0

1
I0

+ 2C2
∑

I∈S1(I0)

〈|f |〉
I
1
I

+
∑

I∈S1(I0)

S
I
f(x)2.

Repeating this procedure for stopping intervals I ∈ S1(I0) and iterating, we get the
conclusion of the lemma. �

Proof of estimate (3.5). It is sufficient to show that for a sparse family S
‖SSf‖L2(w)

. [w]1/2
2,D

[w−1]1/2
∞,D
‖f‖

L2(w)

Denoting g = wf , so f = w−1g we can rewrite this estimate as

‖SS (gw−1)‖
L2(w)

. [w]1/2
2,D

[w−1]1/2
∞,D
‖g‖

L2(w−1)
(8.2)

So, we need to estimate ∑
I∈S

〈|g|w−1〉2
I
〈w〉

I
|I|(8.3)

(the left hand side in (8.2) squared). But as we already discussed above in Section 4.2,
the martingale Carleson Embedding Theorem implies that it is sufficient to estimate
(8.3) on functions g = 1

J
, J ∈ D. Namely, if for all J ∈ D∑
I∈S:I⊂J

〈w−1〉2
I
〈w〉

I
|I| ≤ C〈w−1〉

J
|J |

then for all g ∈ L2(w−1), the sum (8.3) is bounded by 4C‖g‖2

L2(w−1)
.
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Estimating we get ∑
I∈S:I⊂J

〈w−1〉2
I
〈w〉

I
|I| ≤ [w]

2,D

∑
I∈S:I⊂J

〈w−1〉
I
|I|

≤ [w]
2,D‖MJ

(w−1)‖
L1

≤ [w]
2,D [w−1]∞,D .

�
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