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Improvement on Delay-Dependent Robust Controller Design for Uncertain Takagi-Sugeno Fuzzy Systems with Time-Varying Delays

This paper deals with the analysis and design of robust controllers for a class of uncertain continuous time of Takagi-Sugeno (T-S) fuzzy systems with time varying delays. The closed-loop T-S fuzzy model is obtained using a Parallel Distributed Compensation (PDC) control law witch including both memoryless and delayed state feedback gains. Sufficient delaydependent controller design conditions for uncertain Takagi-Sugeno (T-S) fuzzy systems with time varying delays are derived in terms of linear matrix inequality (LMI). From a convenient choice of a Lyapunov-Krasovskii Functional (LF) associated with free weighting matrices techniques and Finsler's lemma, relaxed the LMI conditions are proposed to reduce the conservatism. A numerical example is presented to demonstrate the effectiveness of the proposed approach and the conservatism improvement regarding to previous results.

I. INTRODUCTION

In the recent decades, Takagi-Sugeno (T-S) fuzzy models [START_REF] Takagi | Fuzzy identification of systems and its applications to modeling and control[END_REF] have been extensively investigated due to their effectiveness in nonlinear control theory. They are described by fuzzy IF-THEN rules which represent local linear input-output relations of nonlinear systems. Moreover, when they are obtained through the sector nonlinearity approach [START_REF] Tanaka | Fuzzy control systems design and analysis: a linear matrix inequality approach[END_REF], they are able to match exactly a nonlinear system in a compact sets of its state space and thus becomes a powerful tool to deal with complex systems, including time delay systems. Time-delays are often observed in many areas of engineering systems such like networked control systems, chemical processes, pneumatic or hydraulic processes, nuclear reactors, telecommunications and so on. Thus, to control such dynamical systems, time-delays must be taken into account for controller synthesis in order to avoid instability and/or undesirable oscillations, i.e. the degradation of the considered system's performances.

According to the size or the nature of time-delays, the stability analysis of T-S fuzzy system with time-delay using Lyapunov-Krasovskii Functionals (LKF) can be classified into two major categories: delay-independent stability conditions [START_REF] Cao | Analysis and synthesis of nonlinear timedelay systems via fuzzy control approach[END_REF], [START_REF] Chen | Delay-dependent l2-linf control of linear systems with multiple time-varying state and input delays[END_REF] and delay-dependent ones [START_REF] Gassara | Robust control of t-s fuzzy systems with time-varying delay using new approach[END_REF], [START_REF] Li | New results on delay-dependent robust stability criteria of uncertain fuzzy systems with state and input delays[END_REF], [START_REF] Bourahala | Relaxed controller design conditions for takagi-sugeno systems with state timevarying delays[END_REF], [START_REF] Bourahala | A finsler-based result for the stability analysis of takagi-sugeno fuzzy models with interval time-varying delays[END_REF]. Delayindependent criterions are abble to check overall, uniform and asymptotic stability of time-delay systems for any arbitrary positive value of the delay. However, delay-dependent criterions guarantee stability only for all delay belonging into a specified range, i.e. including information regarding to the delays such as their maximal values or the bounds of their derivatives. It turns out that delay-dependent criterions lead to more relaxed results than delay-independent ones, especially when some informations about the delay are known with small sizes.

As usual, it is generally impossible to fully describe the dynamical behavior of a physical system for three main reasons: The first one is related to the presence of parasitic parameters or processes that are not completely known. The second one is that some control systems must operate in different operating ranges. The third reason relives to use of relatively simple or approximated models to get closer to a practical system, because of the limitation of available mathematical tools. Hence, to cope with these problems, robust controllers have to be designed to guarantee the stability of the controlled system in the presence of uncertainties, i.e. to achieve robust closed-loop stability. There exist recent studies in the field of robust control of uncertain nonlinear systems that focus on uncertain T-S fuzzy systems with time-varying delay see e.g. [START_REF] Gassara | Robust control of t-s fuzzy systems with time-varying delay using new approach[END_REF], [START_REF] Zhao | Robust stability and stabilization of uncertain ts fuzzy systems with time-varying delay: an input.output approach[END_REF], [START_REF] Li | New results on delay-dependent robust stability criteria of uncertain fuzzy systems with state and input delays[END_REF], [START_REF] Zhao | Stability and stabilization of delayed t-s fuzzy systems: A delay partitioning approach[END_REF], [START_REF] Bourahala | An lmi approach to robust h-infty control and stabilization analysis for uncertain ts fuzzy systems with state and input time-delays[END_REF] and references therein. in this works, the Lyapunov-Krasovksii functional (LKF) are widely used in order to determine the maximum allowable delay value with the aid of linear matrix inequalities (LMIs).

In order to get less conservative results, robust stability of fuzzy large-scale systems with time-varying delays by descriptor model transformation and Park's inequality was addressed in [START_REF] Park | A delay-dependent stability criterion for systems with uncertain time-invariant delays[END_REF]. A free-weighting matrices method associated with the extension of the Jensen's inequality has been proposed in [START_REF] Bourahala | Robust controller design for uncertain ts fuzzy systems with time-varying delays[END_REF], [START_REF] Li | New results on delay-dependent robust stability criteria of uncertain fuzzy systems with state and input delays[END_REF]. In [START_REF] Bourahala | An lmi approach to robust h-infty control and stabilization analysis for uncertain ts fuzzy systems with state and input time-delays[END_REF], an novel LMI-based robust H ∞ controller design criterion for uncertain T-S fuzzy systems with state and input time-delays have been presented. Recently, a delay partitioning approach has been proposed to further reduce the conservatism, see e.g. [START_REF] Zhao | Robust stability and stabilization of uncertain ts fuzzy systems with time-varying delay: an input.output approach[END_REF], [START_REF] Dey | Stability and stabilization of linear and fuzzy time-delay systems[END_REF] and references therein. We can find many other approaches in the literature based on various mathematical tools to reduce the conservatism, e.g. using the Jensen's inequality [START_REF] Gu | Stability of time-delay systems[END_REF], using the Wirtinger's inequality approach [START_REF] Tan | Stability and stabilization of t-s fuzzy systems with time delay via wirtinger-based double integral inequality[END_REF] or using the Finsler's lemma [START_REF] Bourahala | Relaxed controller design conditions for takagi-sugeno systems with state timevarying delays[END_REF].

In this paper, new relaxed LMI-based delay-dependent conditions for robust PDC controller design stabilizing uncertain T-S fuzzy models with state time-varying delays is proposed. The main contribution of this paper is summarized through three points: 1) the choice of a convenient augmented LKF candidate, 2) the application of an extension of the Jensen's inequality, 3) the application of the Finsler's lemma. In this context, a robust Parallel Distributed Compensation (PDC) control law, which includes both memoryless and delayed state feedbacks, will be considered for generalization purposes. Indeed, despite the fact that such controller requires to assume that the time-varying delay is available online, it will be shown that designing the delayed state feedback gains allows to significantly improve the conservatism reduction for high variation rates of the time-varying delay. To validate the proposed results, the conservatism of the proposed LMI conditions is compared to several previous results through an academic example.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

Let us consider an uncertain T-S fuzzy system with timedelays. The i th rule of this T-S fuzzy model (i = 1, ..., r) is given by:

Rule i : IF z 1 (t) is µ i1 and ... and z p (t) is µ ip THEN    ẋ(t) = (A i + ∆A i (t)) x(t) + A d i + ∆A d i (t) x (t -τ (t)) + (B i + ∆B i (t)) u(t) x(t) = φ(t), ∀t ∈ [-τ , 0] (1) 
where z(t) = [ z 1 (t) ... z p (t) ] ∈ R P is the vector of premises which is assumed to depend only on the state variables, i.e. the entries of the state vector x(t) ∈ R n , u(t) ∈ R m is the input vector, µ ij are fuzzy sets, the scalar function τ (t) ∈ [0, τ ] represents a time-varying delay with τ < +∞ and τ (t

) ≤ η < +∞, φ(t) is a vector-valued initial function for t ∈ [-τ , 0], A i ∈ R n×n , A d i ∈ R n×n and B i ∈ R n×m are known constant matrices, ∆A i (t) ∈ R n×n , ∆A d i (t) ∈ R n×n
and ∆B i (t) ∈ R n×m are unknown matrices representing Lebesgue measurable uncertainties, which can be rewritten as :

∆A i = H i δ(t)E ai (2) 
∆A d i = H i δ(t)E d ai (3) 
∆B i = H i δ(t)E bi (4) 
where

H i ∈ R n×q , E ai ∈ R q×n , E d ai ∈ R
q×n and E bi ∈ R q×m are known constant real matrices and δ(t) ∈ R q×q is an unknown real time-varying matrix satisfying:

δ T (t)δ(t) ≤ I (5) 
By using the center-average defuzzification, product inference and singleton fuzzifier, the global dynamics of the T-S fuzzy system (1) can be inferred as follows:

   ẋ(t) = r i=1 h i (z(t)) ((A i + ∆A i (t)) x(t) + A d i + ∆A d i (t) x(t -τ (t)) + (B i + ∆B i (t)) u(t)) (6) 
where h i (z(t)) are normalized membership functions obtained as:

h i (z(t)) = w i (z(t)) r i=1 w i (z(t)) , w i (z(t)) = r i=1 µ ij (z(t)) (7) 
where

µ ij (z j (t)) ∈ [0, 1] is the grade of membership of z j (t) in µ ij and h i (t) ≥ 0 hold the convex sum property r i=1 h i (z(t)) = 1.
Assumption 1: For stabilization purpose and when not explicitly stated in the sequel, the time-varying delay τ (t) is assumed to be available online at any time t.

To stabilize the uncertain T-S fuzzy models (1) we propose the following PDC control law:

u(t) = r i=1 h i (z(t)) K i X -1 x(t) + K d i X -1 x(t -τ (t)) (8) 
where, for i = 1, ..., r, K i ∈ R m×n , K d i ∈ R m×n and X > 0 are the controller gain matrices to be designed.

Note that the control law (8) requires assumption 1, which is considered as a general case to derive new design conditions. Then, it will be shown that straightforward simplifications may apply for particular cases such like constant delays.

In the sequel, the following notations are employed to simplify mathematical expressions.

Notations: Stars * in matrices denote bloc transpose quantities. One denotes H e (M ) = M + M T and the set of integer

I r = {1, ..., r}. Let us denote Āi = A i + ∆A i (t), Ād i = A d i + ∆A d i (t) and Bi = B i + ∆B i (t). More- over, for any set of matrices M i of appropriate dimen- sions,one denotes M h = r i=1 h i (z(t))M i and M hh = r i=1 r j=1 h i (z(t))h j (z(t))M ij .
Thanks to these notations, the considered T-S models with time-varying delays (6) can be rewritten as:

ẋ(t) = Āh x(t) + Ād h x (t -τ (t)) + Bh u(t) (9) 
as well as the control law (8) as:

u(t) = u m (t) + u d (t) (10) 
with

u m (t) = K h X -1 x(t) and u d (t) = K d h X -1 x(t -τ (t)
). Thus, from ( 9) and ( 10), the closed-loop dynamics can be represented as:

ẋ(t) = Āh + Bh K h X -1 x(t) + Ād h + Bh K d h X -1 x (t -τ (t)) (11) 
The purpose of this paper is to propose delay-dependent LMI-based conditions for the design of [START_REF] Zhao | Stability and stabilization of delayed t-s fuzzy systems: A delay partitioning approach[END_REF] such that the closed-loop system [START_REF] Bourahala | An lmi approach to robust h-infty control and stabilization analysis for uncertain ts fuzzy systems with state and input time-delays[END_REF] is globally asymptotically stable (GAS). Before deriving the main results, some lemmas, given bellow, will be useful to derive the proposed LMI-based conditions. Lemma 1 is derived from the Jensen's integral inequality [START_REF] Gu | Stability of time-delay systems[END_REF]. It will be used to provide much tighter bounding for cross terms and improve the conservatism as proposed in [START_REF] Li | New approach on robust stability for uncertain t-s fuzzy systems with state and input delays[END_REF].

Lemma 1: [START_REF] Li | New approach on robust stability for uncertain t-s fuzzy systems with state and input delays[END_REF] For any constant matrices

Q 11 = Q T 11 , Q 22 = Q T 22 , and Q 12 ∈ R n×n satisfying Q 11 Q 12 * Q 22 ≥ 0,
a positive scalar function τ (t) ≤ τ < +∞, and a vector function ẋ(t) : [-τ , 0] → R n , such that the following integrations are well defined, then:

-τ t t-τ x(s) ẋ(t) T Q 11 Q 12 * Q 22 x(s) ẋ(s) ds ≤ θ T (t)   -Q 22 Q 22 -Q T 12 Q 22 -Q 22 Q T 12 -Q 12 Q 12 -Q 11   θ(t) (12) 
with

θ(t) =   x(t) x(t -τ (t)) t t-τ (t) x(s)ds   .
Next, the Finsler's lemma [START_REF] Skelton | A unified algebraic approach to linear control design[END_REF], given below, will be used to relax the proposed LMI conditions by adding slack decision variables and decoupling the system's matrices from the Lyapunov-Krasovsky ones.

Lemma 2: [18] Let ξ ∈ R n , G ∈ R m×n and Q = Q T ∈ R n×n such that rank(G) < n.
The following statements are equivalent.

ξ T Qξ < 0, ∀ξ ∈ {ξ ∈ R n : ξ = 0, Gξ = 0} ( 13 
)
∃R ∈ R n×m : Q + H e (RG) ≺ 0 (14) 
Then, to cope with bounded uncertainties, the following usual lemma will be employed.

Lemma 3: [19] Let Q = Q T ,
H, E and be real matrices of appropriate dimensions and uncertain matrix δ(t) satisfying (3). The inequality:

Q + Hδ(t)E + E T δ T (t)H T ≤ 0 (15) 
is satisfied if there exists a scalar λ > 0 such that:

Q + λHH T + λ -1 E T E ≤ 0 (16) 
Finally, Lemma 4 will be used as relaxation scheme to reduce the conservatism due to the double sum fuzzy structure of the obtained parametrized LMIs [START_REF] Tuan | Parameterized linear matrix inequality techniques in fuzzy control system design[END_REF]. Note that, among relaxation lemmas, it constitutes a good compromise between complexity and computational burden, see [START_REF] Sala | On the conservativeness of fuzzy and fuzzy-polynomial control of nonlinear systems[END_REF] for more details on relaxation schemes. Lemma 4: [START_REF] Tuan | Parameterized linear matrix inequality techniques in fuzzy control system design[END_REF] For (i, j) ∈ {1, ..., r} 2 , Let Γ ij be matrices of appropriate dimensions. Γ hh ≺ 0 is satisfied if both the following conditions hold:

Γ ii ≺ 0, ∀i ∈ {1, ..., r} 2 r-1 Γ ii + Γ ij + Γ ji ≺ 0, ∀ (i, j) ∈ I 2 r , i = j (17) 

III. MAIN RESULT

This section aims at developing a novel LMI-based delay dependent conditions for the design of PDC controllers [START_REF] Zhao | Stability and stabilization of delayed t-s fuzzy systems: A delay partitioning approach[END_REF] which globally asymptotically stabilizes the uncertain T-S fuzzy system with time-varying delays [START_REF] Zhao | Robust stability and stabilization of uncertain ts fuzzy systems with time-varying delay: an input.output approach[END_REF]. The main result is proposed by the following theorem. 11) is globally asymptotically stabilized by the PDC controller [START_REF] Zhao | Stability and stabilization of delayed t-s fuzzy systems: A delay partitioning approach[END_REF] if there exist the real matrices with appropriate dimensions L = L T > 0, K j , K d j , X, P 11 = P T 11 , P 22 = P T 22 , P 12 ,

Q 11 = Q T 11 , Q 22 = Q T
22 and Q 12 , and the scalars ε 1 > 0, ε 2 > 0, ε 3 > 0 and λ i > 0 such that the following LMI-based conditions hold:

Γ ii < 0, ∀i ∈ I r (18) 2 r -1 Γ ii + Γ ij + Γ ji < 0, ∀ (i, j) ∈ I 2 r /i = j (19) 
P 11 P 12 * P 22 > 0 (20) 
Q 11 Q 12 * Q 22 > 0 (21) 
with:

Γ ij = Π + H e ( Gij ) + λ i Hi HT i ẼT ij * -λ ij I
where:

Π =     Π11 Π12 P 22 -Q T 12 P 11 + τ 2 Q 12 * Π22 Π23 0 * * -Q 11 P T 12 * * * τ 2 Q 22     with: Π11 = L + P 12 + P T 12 + τ 2 Q 11 -Q 22 , Π12 = -(1 -η)P 12 + Q 22 , Π22 = -(1 -η)L -Q 22 , Π23 = -(1 -η)P 22 + Q T 12 , Gij =    AiX + BiKj A d i X + BiK d j 0 -X ε1 (AiX + BiKj) ε1 A d i X + BiK d j 0 -ε1X ε2 (AiX + BiKj) ε2 A d i X + BiK d j 0 -ε2X ε3 (AiX + BiKj) ε3 A d i X + BiK d j 0 -ε3X    , Hi = H T i ε 1 H T i ε 2 H T i ε 3 H T i T ,
and:

Ẽij = E ai X + E bi K j + E d ai X + E bi K d j 0 0 
Proof: Let us consider the following LKF candidate:

V (t) = V 1 (t) + V 2 (t) + V 3 (t) (22) 
with:

V 1 (t) = θ T 1 (t)M θ 1 (t), (23) 
V 2 (t) = t t-τ (t)
x T (s)Sx(s)ds,

V 3 (t) = τ 0 -τ t t+s θ T 2 (w)N θ 2 (w)dwds, (24) 
where

θ 1 (t) = x(t) t t-τ (t) x(s)ds , θ 2 (t) = x(t) ẋ(t) M = M 11 M 12 * M 22 > 0, N = N 11 N 12 * N 22 > 0 
The closed-loop system (11) is GAS if:

V (t) = V1 (t) + V2 (t) + V3 (t) < 0 (26) 
Let us first focus on the time derivative of ( 23), one has:

V1 (t) = 2 x(t) t t-τ (t) x(s)ds T M ẋ(t) d dt t t-τ (t) x(s)ds (27) Since d dt t t-τ (t) x(s)ds = x(t)-(1-τ (t))x (t -τ (t))
, and assuming that τ (t) ≤ η, from (27) we have:

V1 (t) ≤ ζ T (t)Π 1 ζ(t) (28) 
with:

ζ(t) =     x(t) x(t -τ (t)) t t-τ (t) x(s)ds ẋ(t)     (29) 
and:

Π 1 =    He (M12) -(1 -η) M12 M22 M11 * 0 -(1 -η) M22 0 * * 0 M T 12 * * * 0   
Now, let us focus on the time derivative of ( 24), we have:

V2 (t) = x T (t)Sx(t)-(1-τ (t))x T (t-τ (t))Sx(t-τ (t)) (30)
That is to say:

V2 (t) = ζ T (t)Π 2 ζ(t) (31) 
where:

Π 2 =    S 0 0 0 0 -(1 -τ )S 0 0 0 0 0 0 0 0 0 0   
Then, let us focus on the time derivative of ( 25), one has:

V3 (t) = τ 2 θ T 2 (t)N θ 2 (t) -τ t t-τ θ T 2 (s)N θ 2 (s)ds (32) 
Then applying lemma 1 on the second right hand term of (32), we obtain:

V3 (t) ≤ τ 2 θ T 2 (t)N θ 2 (t) + θ(t) T Ñ θ(t) (33) 
with:

Ñ =   -N 22 N 22 -N T 12 N 22 -N 22 N T 12 -N 12 N 12 -N 11  
and θ(t) defined in [START_REF] Park | A delay-dependent stability criterion for systems with uncertain time-invariant delays[END_REF]. The inequality (32) can be rearranged as follows:

V3 (t) ≤ ζ T (t)Π 3 ζ(t) (34) 
with:

Π 3 =    τ 2 N 11 -N 22 N 22 -N T 12 τ 2 N 12 * -N 22 N T 12 0 * * -N 11 0 * * * τ 2 N 22   
Thus, from (28), ( 31), (34), the condition (26) is satisfied if:

ζ T (t)Πζ(t) < 0 ( 35 
)
where:

Π = Π 1 + Π 2 + Π 3
Now, let us rewrite the closed-loop T-S system with timevarying delays [START_REF] Bourahala | An lmi approach to robust h-infty control and stabilization analysis for uncertain ts fuzzy systems with state and input time-delays[END_REF] as:

(G hh + ∆G hh ) ζ(t) = 0 (36) 
with:

G T hh =     A h + B h K h X -1 T A d h + B h K d h X -1 T 0 -I     , ∆G T hh =     ∆A h + ∆B h K h X -1 T ∆A d h + ∆B h K d h X -1 T 0 0    
where ζ(t) is defined in (29). From ( 35) and (36), we can apply the lemma 2 and the uncertain closed-loop T-S system with time-varying delay [START_REF] Bourahala | An lmi approach to robust h-infty control and stabilization analysis for uncertain ts fuzzy systems with state and input time-delays[END_REF] is stable if there exists R ∈ R 4n×n such that:

Π + H e (R (G hh + ∆G hh )) < 0 (37) Let R T = X -T ε 1 X -T ε 2 X -T ε 3 X -T with X ∈ R n×n invertible and arbitrary scalars ε 1 , ε 2 , ε 3 . Let also D X = diag [ X X X X ]
T , after matrix expansion and multiplying (37) left by D X and right by D T X , and with the change of variables

P ab = X T M ab X, Q ab = X T N ab X ∀ (a, b) ∈ {1, 2} 2 , a ≤ b , L = X T SX, the inequality (37) yields: 
Π + H e Ghh + ∆ Ghh < 0

with Π defined in theorem 1 and: 3) and ( 4), the inequatity (38) can be rewritten as:

Ghh =     à Ãd 0 -X ε 1 à ε 1 Ãd 0 -ε 1 X ε 2 à ε 2 Ãd 0 -ε 2 X ε 3 à ε 3 Ãd 0 -ε 3 X     , ∆ Ghh =     ∆ à ∆ Ãd 0 -X ε 1 ∆ à ε 1 ∆ Ãd 0 -ε 1 X ε 2 ∆ à ε 2 ∆ Ãd 0 -ε 2 X ε 3 ∆ à ε 3 ∆ Ãd 0 -ε 3 X     where à = A h X + B h K h , Ãd = A d h X + B h K d h , ∆ à = ∆A h X + ∆B h K h and ∆ Ãd = ∆A d h X + ∆B h K d h . Expending ∆ Ghh with (2), (
Π + H e Ghh + H e Hh δ(t) Ẽhh < 0. (39) 
with

Hh = H T h ε 1 H T h ε 2 H T h ε 3 H T h T , Ẽhh = E ah X + E bh K h + E d ah X + E bh K d h 0 0
Then, applying lemma 3 and from (5), the inequality (39) is satisfied if:

Π + H e ( Ghh ) + λ h Hh HT h + λ -1 h ẼT hh Ẽhh < 0 (40)
where λ h is a scalar function. Now, applying the Schur complement, yields:

Θ + H e ( Ghh ) + λ h Hh HT h ẼT hh * -λ hh I < 0 (41) 
Then, applying lemma 2, one obtains the conditions proposed in theorem 1.

Remark 1 Let us point-out that the conditions expressed in theorem 1 are LMIs if the scalars ε 1 , ε 2 and ε 3 are prefixed. Note that, according to the proof of theorem 1 these scalars can be arbitrarily chosen. Nevertheless, they are useful to provide more degree of freedom to the four X -1 block elements of the slack decision matrix R, which comes from the use of the Finsler's lemma.. Hence in practice, to solve such kind of LMI conditions, these scalars are obtained from linear programming and searched in a logarithmically spaced family, e.g. (ε 1 , ε 2 , ε 3 ) ∈ 10 -6 , 10 -5 , ..., 10 6 3 . As stated in [START_REF] Jaadari | New controllers and new designs for continuous-time takagi-sugeno models[END_REF], this way of doing is generally outperforming the results obtained without these scalars.

Remark 2 One acknowledges that assumption 1, which is required to implement the control law [START_REF] Bourahala | A finsler-based result for the stability analysis of takagi-sugeno fuzzy models with interval time-varying delays[END_REF], may be challenging in practical applications. Nevertheless a straightforward simplification of theorem 1 can be considered for constant delays by setting η = 0. In this case, if the constant time delay is known, the implementation of the controller ( 8) is no longer challenging. Moreover, if the time delay is available online but its variation rate is unknown, a straightforward simplification of theorem 1 hold with L = 0, P 12 = 0 and P 22 = 0.

IV. ILLUSTRATIVE EXAMPLE

In this section, we will provide a numerical example to illustrate the effectiveness and the conservatism reduction of the above proposed theorem regarding to previous results. Therefore, let us consider the following academic uncertain T-S systems with time-varying delay given by:

ẋ(t) = 2 i=1 h i (z(t)) Āi x(t) + Ād i x(t -τ (t)) + Bi u(t) (42 
) with:

A 1 = 0 0.6 0 1 , A 2 = 1 0 1 0 , A d 1 = 0.5 0.9 0 2 , A d 2 = 0.9 0 1 1.6 , B 1 = 1 1 , B 2 = 1 1 , H 1 = H 2 = -0.03 0 0 0.03 E a1 = E a2 = -0.15 0.2 0 0.04 E d a1 = E d a2 =
-0.05 -0.35 0.08 -0.45 and with the membership functions given by:

h 1 (x 1 (t)) = 1/ 1 + e -2(x1(t)+π) , h 2 (x 1 (t)) = 1 -h 2 (x 1 (t))
Note that this academic uncertain system has been considered in many previous studies for conservatism comparison (see the references in Table 1).

Let us first illustrate the conservatism improvement provided by theorem 1 regarding to some previous studies, according to the feasibility fields of their respective LMI conditions. Figure 1 shows a comparison of the feasibility fields obtained from theorem 1, theorem 3 in [START_REF] Gassara | Robust control of t-s fuzzy systems with time-varying delay using new approach[END_REF] and corollary 2 in [START_REF] Li | New results on delay-dependent robust stability criteria of uncertain fuzzy systems with state and input delays[END_REF], for η ∈ [0, 3] and τ ∈ [0, 2.5]. As one can notice, theorem 1 provides the widest feasibility field. In Table 1, the maximal allowable upper bound of τ (t) (denoted maub(τ )) are collected from several previous studies in comparison to the ones obtained from theorem 1. The symbol "-" indicates that the result is non available from the considered study. Moreover, "m" denotes the number of delay partitions considered in [START_REF] Zhao | Robust stability and stabilization of uncertain ts fuzzy systems with time-varying delay: an input.output approach[END_REF]. As one can notice, among all the provided results, the ones obtained from theorem 3 provide the biggest allowable values of τ . The optimal solution of theorem 1 (for τ = 2.3521 and η = 3) provides the following PDC gains for the control law A simulation of the designed closed-loop uncertain system has been realized with the initial conditions x(0) = [ 2 1 ]

T , ∀t ∈ [-τ , 0], φ(t) = x(0) and with a time-varying delay τ (t) = τ 2 1 + sin 2η τ t , which satisfies τ = 2.3521 and η = 3. Moreover for this simulation, a random uncertain signal δ(t) has been considered. Figure 2 shows the obtained state trajectories, the control signal, the uncertain signal, as well as the time-varying delay. This clearly shows that the designed fuzzy controller is able to asymptotically stabilize the uncertain closed-loop fuzzy system (42) despite the presence of the uncertainties and the time-varying delay. V. CONCLUSION

In this paper, new delay-dependent LMI-based conditions for the design of robust PDC controllers dedicated to stabilize uncertain T-S fuzzy systems with time-varying delays have been presented. These have been shown less conservative than previous related results in the literature through an numerical example. The conservative improvement of the proposed result come from a convenient choice of a LKF, the application of the Finsler's Lemma and an improved Jensen's inequality. Further works will be conducted to alleviate the requirement on the time-varying delay τ (t) to be available online at any time t, for instance by introducing dedicated observers for its online estimation.

Theorem 1 :

 1 Let (i, j) ∈ I 2 r . For given scalars τ > 0 and η ≥ 0 such that τ (t) ∈ [0, τ ] with | τ (t)| ≤ η, the uncertain T-S fuzzy model with time varying delays (

Fig. 1 .

 1 Fig.1. Feasibility fileds obtained from theorem 1, theorem 3.3 in[START_REF] Gassara | Robust control of t-s fuzzy systems with time-varying delay using new approach[END_REF] and theorem 3 in[START_REF] Li | New results on delay-dependent robust stability criteria of uncertain fuzzy systems with state and input delays[END_REF].

  [START_REF] Bourahala | A finsler-based result for the stability analysis of takagi-sugeno fuzzy models with interval time-varying delays[END_REF]:K 1 = [ 21.989 -64.212 ] , K 2 = [ 20.834 -62.531 ] , K d 1 = [ 0.349 -2.801 ] , K d 2 = [ -1.125 -1.461 ] .

  0

TABLE I .

 I MAXIMUM ALLOWABLE UPPER BOUND OF τ (t)

	Considered results	η = 0	η = 0.6	η = 3	η unknown
	Theorem 4 in [10]	-	-	-	0.3991
	Theorem 3 in [5]	0.461	0.3941	0.2283	0.2321
	Theorem 2 in [23]	-	0.6072	-	-
	Theorem 2 in [24]	-	0.7896	-	-
	Theorem 2 in [25]	-	0.7780	-	-
	Theorem 3 in [6]	1.1644	1.0534	0.4780	0.4144
	Theorem 4 in [9]	-	-	1.135	-
	Theorem 1 in [13]	1.1648	1.0594	2.1813	0.9632
	Theorem 1 in this paper	1.1648	1.0731	2.3521	0.9654
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