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Abstract. Thick composites are increasingly used in the design of mechanical structures. Combined 

with low weight, they are generally resistant structures, which can support importante loads. In 

addition, depending on the number and nature of the materials used, it is possible to adapt properties 

for specific applications (damping structures).This work proposes the establishment of a new 

theoretical model of multilayer beam. The model, which is simple and easy handling, is intended for 

the subsequent establishment of a finite element. The goals are: 

- improve the refinement of the transverse displacement and transverse shear, avoiding the 

calculation of transverse shear, the use of correction factors, 

- keep only the usual displacement, 

- test the accuracy of the model compared with models from the literature (for an equivalent 

single-layer approach). 

The proposed approach is of the kinematics, the form adopted for the displacement field is justified 

from a dimensional point of view, by the equations of elasticity. The equations of motion and 

boundary conditions are obtained by applying the principle of virtual power. 

The validity of the model is tested on problems for which solutions (obtained by previous theories) 

exist. 

Introduction 

Indeed, there appears a discontinuity stress at interfaces, values a beam is a three-dimensional 

environment in which one dimension predominates over other side. Solve the three-dimensional 

elastic problems with boundary conditions leads to painful and heavy calculations, often difficult to 

use. When the beam is more multilayer composite, the boundary conditions of continuity of the 

motion vector and the constraint vector to the crossing of interfaces additional difficulties. It is 

therefore desirable, wherever possible, to reduce to three-dimensional theory, to obtain a 

formulation of a reference surface. 

 

The first theories developed were those type Kirchhoff - Love. They are first-order theories (so 

described because their linear dependence following the variable thickness). Normals are assumed 

not undergo rotation relative to the average surface. These theories bending, essentially applicable to 

thin structures, to which the effects of deflection (corresponding to the rotations around the fibers of 

the tangents to the reference surface) predominate over those due to shearing. Such theories are 

limited by the result and lead to sufficiently accurate in the following case results: 

 

- the height / length ratio is large, 

- the material is only weakly anisotropic. 

 



The application of such theories to multilayer composite beams can lead to errors of at least 30% for 

the calculation of strain and effort. It is therefore essential to refine. The various possibilities for the 

treatment of multilayer composite beams approaches can be grouped as follows: 

 

- monolayer equivalent approach, 

- continuity approach to interfaces, 

- three-dimensional approach. 

 

Monolayer equivalent approach. The multilayer here is homogenized. Is approximated in the first 

fields of displacement by means of a series expansion (as polynomial functions) following the 

variable thickness. These developments are often cubic. As outlined in its classification Whitney 

[1], this approach can be understood as a formulation where the displacement field has at least one 

C1 continuity across the thickness, covering the conventional beam models that appear when as 

special cases of this theory. 

However, the results of such calculations are not always the most accurate. Correction coefficients 

for transverse shear stresses in particular, tend to consider. 

The work of Love [2], Idlbi [3] using this type of method for anisotropic multilayered plates and 

shells, static. 

 

Continuity approach to interfaces. The overall structure is divided into sub-structures (actually 

corresponding to each layer). Is applied to each sub-structure theory Reissner-Mindlin type [4] [5], 

imposing a displacement field checking continuity at the interfaces between the different layers. 

Models of this type are relatively expensive, but possible to obtain more accurate results, especially 

as regards the calculation of the transverse shear stresses. 

We can cite the work of Di Sciuva [6] Touratier et al [7] He [8] Ossadzow et al [9] and most 

recently Abu Harb et al. [10].  

 

Three-dimensional approach. The three-dimensional approach is to obtain accurate three-

dimensional results, particularly useful as references. We can cite the work of Pagano [11] for 

plates, Ren [12] for symmetric multi-hulls and Srinivas [13] for sandwich structures. 

Adopting a three-dimensional approach, however, has utility in so far as the differential equations 

finally obtained, can be resolved. The use of such theories generally leads to complex systems 

where the high number of unknowns and potential linkages between the various variables, make 

resolution impossible. 

 

Theories of multilayer beams  

 

The ultimate goal of this work is to be able to treat problems involving thick structures, it was 

necessary to establish a general model of beam (which can be used to treat the case of thin or thick 

beams), while allowing accurate calculations. The original idea was to continue the work of  

Touratier, Idlbi, Karama and [14]. It considers possible refinements (terms of deflection, transverse 

shear). In this first approach, the cross s33 normal stress is introduced to take into account the 

behavior of thick structures. Continuity for the transverse shear and s33 is not guaranteed. A 

summary of the various models are listed below. 

 

 

 

 

 

 

 



Theories Displacement field 

Kirchhof-Love 

assumptions: 

• neglected shear 

• thin structures 
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• constant shear 

• thin structures 
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Reddy 

assumptions: 

• semi thick structures 

• symmetric 
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Di Sciuva  

assumptions: 

• anisotropic multilayer beam 

• piecewise linearity of the tangential 

displacement field 
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a  and  w a displacement point mean surface 
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 rotation shear in the planes (a, z)  

Uka : determined by the continuity of transverse 

shear interfaces functions 

H : Heaviside function 

He  

assumptions: 

• piecewise linearity of the field 

tangential displacement 

• continuity of transverse shear interfaces 

verification of the boundary conditions 

on the transverse shear (nullity on the 

upper and lower surfaces) 
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ha coefficient depending on the geometry (thickness 

parameter) and the material. 

Touratier  

assumptions: 

• Continuity of the transverse shear 

uninsured interfaces 
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a  and  w a displacement point mean surface 
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 shear deformation on the measured average area 

 

Variational Formulation 

 

The kinematic. Consider a composite beam, comprising a stack of N layers, assumed perfectly 

glued together. The total thickness of the structure is h. The behavior is considered by an orthotropic 

layer behavior. The beam in question is subject on its upper and lower surfaces, a transverse load (Pi 

and Ps, respectively). 



Kinematic restraint is in the following form: 
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with 0
1u  membrane the displacement in one direction 1, 1,w the rotation due to bending, w the 

deflection of the beam, 1g the shear strain measured on the mean transverse plane, 
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determine the characterizing nip. Direction 2 is assumed to be infinite. 

 

Operating boundary conditions. The Ua is assumed to be known, d and y only remain to be 

determined. Our kinematics, it is assumed that the membrane displacement u 1

0  is zero. The 

conditions on the normal stress can be written: 
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where Pi and Ps are the normal loads applied to the upper and lower skins of the multilayer 

structure. We have: 
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The introduction of terms d and y provides a non-zero normal stress distribution s33. 
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The deformation field is: 
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The transverse normal stress is given by: 
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The conditions on the top and bottom of the beam on the faces normal stress are written: 
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Final kinematic. Using the loading conditions on the upper and lower surfaces is defined for 

sandwiches or multi-beams kinematics follows: 
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Kinematics becomes: 
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Principle of virtual power. Are Hilbert spaces which represent all kinematically admissible 

displacements and all virtual velocities. To determine the equilibrium equations and natural 

boundary conditions of the problem studied, the principle of virtual power is applied: 

- The equilibrium equations " w
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Numerical results 

 

Bending of a simply supported beam thick under sinusoidal distributed load. The study is done 

in static; therefore, the virtual power of the amounts of acceleration is zero, so the first member of 

equation (13) disappears. For simple terms of support, the unknowns are deducted directly from 

equilibrium equations. The study consisted of analytical resolution, a comparison with existing 

models (Euler Bernoulli, Timoshenko and Reddy), a numerical solution is then performed on the 

software Abaqus finite element. The components of the forces of surface and volume are zero 

except f3 (Fig. 1). Value is then deducted 
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Figure 1: Thick beam simply supported under a sinusoidal loading 

 

Levy-type solutions are suitable for this problem: 

 

L

x
sinw=w 1

0

p
  and  

L

x
cos 1

01

p
gg =         (15) 

 

Levy-type solutions are adapted to this aim is therefore to determine the value of w0 et g0  by solving 

the system of Eq.25: 
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Analytical results. The error is calculated between the value determined by the analytically model 

studied and the value provided by Abaqus. The mesh size for the laminated beam is 32 elements 32 

along the length and across the width of elements. These meshes enable us to obtain a convergence 

quite decent. 
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Table 1. g0 values w0 and in the case of a laminated beam 

 

 w0  (m) g0 (m) 

Euler Bernouilli -1,935167.10
-4

 / 

Timoshenko -5,04081964.10
-4

 -1,5378936.10
-4

 

Reddy -6,039314.10
-4

 -2,2728823.10
-4

 

Present model -6,099273.10
-4

 -2,3506862.10
-4

 

 

  

 

��������� of the beam 

Figure 2. Membrane displacement (m) 

 

 
 

Figure 3. Transverse shear s13(x1=L) 

 

 



Table 2. Results for a laminated beam 
 Euler 

Bernouilli 

Timoshenko Reddy Present 

model 

Abaqus error 

U1(L,h/2) 1,337.10
-4

 1,3355.10
-4

 2,.573.10
-4

 2,125.10
-4

 2,018.10
-4

 5% 

U3(L/2,0) -1,935.10
-4

 -5,157.10
-4

 -6,110.10
6
 -6,166.10

-4
 -5,978.10

-4
 3,1% 

s11(L/2,0) 0 159168,1 159168 159168 127220 20% 

s11(L/2,h/4) -8,087.10
6 

-6,3895.10
5
 

-8,235.10
6
 

-502977,2 

-7,592.10
6
 

-608113,9 

-7,195.10
6 

-536269 

-7,3.10
6
 

-568420 

1,4% 

6% 

s13(L,h/4) / 

/ 

767448,75 

514084,5 

864853,44 

612601,56 

843713,87 

595790,13 

553590 

547030 

/ 

8,8% 

 

 

Conclusion 

 

The model studied improves the refinement of the transverse displacement and the transverse shear. 

Indeed, results from the model study are closer to those found numerically from the results from the 

previous models; and this, without using correction factors. 

Indeed, it appears a discontinuity stresses at the interfaces, the values found do not have a big gap 

with those given by Abaqus. 

The values from the model for cross s33 normal stress are quite comparable to those found 

numerically by finite elements, particularly in the case of the laminated beam. 
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