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1 Introduction

The study considers both free and forced vibrations of struc-

tures with a cyclic symmetry under geometrical nonlinearity. This

class of systems appears in the model of a bladed disk or a space

antenna �1,2�. It leads to nonlinear differential equations of the

second order, linearly coupled, in which the nonlinearity appears

by cubic terms. In the linear case, most of the natural frequencies

appear in pair due to the perfect symmetry of the problem. These

natural frequencies are related to deformed shapes with nodal di-

ameters �3�. For weakly coupled and weakly mistuned systems,

localization can take place, leading to motions that are confined

on only a few substructures. In the nonlinear case, the study of

free vibrations relies on the definitions of nonlinear normal modes

�NNMs�, which have led to many scientific papers �4,5�. Unlike

the linear system, the number of NNMs can exceed the number of

DOFs. The other NNMs arise from bifurcations. In both free and

forced cases, if the ratio between the coupling of the substructure

and the nonlinearity is small, Vakakis �6� showed that nonlinear

localization can take place in a perfectly symmetric system. When

this ratio increases, bifurcations occur and nonlinear localization

disappears. Traveling wave motions have also been detected in

such systems �1,7�. In recent works, Peeters �1,8� used a shooting

method coupled with a continuation algorithm to study the NNMs

of a system with a cyclic symmetry. Similar and nonsimilar

NNMs have been found. Moreover, he studied the modal interac-

tions between modes. He showed that these interactions can occur

even if the natural frequencies of the modes are not commensu-

rable, and he detected a countable infinity of such interactions.

The aim of this paper is to study both free and forced nonlinear

vibrations of a bladed disk using the harmonic balance method

�HBM� coupled with an arc length continuation. This study em-

phasizes the numerous bifurcations that can happen in this kind of

system. Attention has been paid to the localization phenomenon

and particularly to the link between nonsymmetric loading and
localization. The effect of the force amplitude on the solutions is
also studied.

2 Simplified Model

Consider a structure with a cyclic symmetry made of n identical
substructures called sectors. As a result of its dimension and its
materials and because of the external effort, such sectors can ex-
periment large deflections, leading to geometrical nonlinearity.
Many papers have studied the effect of geometrical nonlinearity
on thin structures. Among others, Benamar et al. �9� and Amabili
�10� focused on the case of thin rectangular plates with large
deflection. The case of circular shells has been studied by Touzé et
al. �11�, and the case of beams has been studied by Lewandowski
�12,13�. Here, the computation of our simplified mathematical
model for a structure with cyclic symmetry is described. Each
sector is modeled by a thin rectangular plate clamped on one edge
to a fixed frame. The coupling between the substructure is realized
by a linear stiffness �Fig. 1�a��.

Let us consider a single plate P with dimensions Lx, Ly, and

thickness h in a Cartesian system of coordinates �O ,x ,y ,z�,
clamped on the edge �x=0�. The displacement of a point with

coordinates �x ,y ,z� in the direction �Ox� ��Oy�, �Oz�� is denoted

by u �v, w� �Fig. 1�b��.
The Love–Kirchhoff hypothesis for the displacement, the use of

the Von Karman nonlinear strain-displacement relationships, and
the standard bidimensional Hooke law �14� lead to the following

expression for the elastic strain energy U for one single plate:
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where E is the Young modulus and � is the Poisson ratio. By

neglecting rotary inertia and the term u̇2+ v̇
2 �since it is in O�h2�,

which is small compared with ẇ2, which is in O�1��, the kinetic

energy T of a rectangular plate is given by

T =
1

2
�h�

x=0

Lx �
y=−Ly/2

Ly/2

ẇ2dxdy �2�

In the remainder of this paper, only a harmonic force, orthogo-

nal to the plate, localized in �x f ,y f�= �Lx ,0� is considered. The

work W due to such an excitation is given by

W = w�Lx,0�A f cos��t� �3�

where � is the excitation frequency, t is the time, and A f is the
force amplitude.

Let us come back to the structure with cyclic symmetry. For

1� j�n, w j denotes the transverse displacement of the plate num-

ber j, U j is its strain energy, T j is its kinetic energy, and W j is the

work due to external forces on this plate. U j, T j, and W j are

obtained by substituting w by w j in Eqs. �1�–�3�. The coupling
between substructures is modeled by massless linear stiffness of

value k. This stiffness is positioned in a point �xr ,yr�= �Lx /4,0�
for all plates. The energy V j of such stiffness between plates j and

j+1 is given by

V j =
1

2
k�w j�xr,yr� − w j+1�xr,yr��

2 for 1 � j � n �4�

with convention j+1=1 if j=n �cyclic symmetry�.
The total energies Ut, Tt, Vt, and Wt are then given by the sum

over the number of plates n of the different local energies U j, T j,

V j, and W j. The discretization of the transverse displacement w j is
now introduced. This discretization is done by a Rayleigh–Ritz
method �15�, and it allows us to have a simplified model of the

system. Transverse displacements w j are interpolated by

w j�x ,y , t�=�i=1
N �i

j�t��i�x ,y�, where ��i� are kinematically admis-

sible shape functions, �i
j is the contribution of the shape function

�i in the displacement w j, and N is the number of shape functions
used for the interpolation. This method leads to a discretized prob-

lem with nN unknowns ��i
j�1�i�N,1�j�n.

In this paper, one proposes to study a system with six identical

substructures �n=6�, of which displacements are interpolated by a

single Ritz shape function �N=1�. This will lead to a problem with

six degrees of freedom, which will be used for numerical compu-

tation. The retained shape function for the example is �
= �x /Lx�2; it satisfies the boundary condition clamped at x=0. By

using Lagrange’s equations one finally obtained the following
equations of motion:

Ẍ + KX + �X3 = F�t� �5�

with X= �� j�1�j�6, the convention X3= �� j
3�1�j�6, and K a matrix

defined by

K =	
� + 2c − c 0 0 0 − c

− c � + 2c − c 0 0 0

0 − c � + 2c − c 0 0

0 0 − c � + 2c − c 0

0 0 0 − c � + 2c − c

− c 0 0 0 − c � + 2c



�6�

where �, c, �, and F are defined by
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5
,

c =
1

256

k

m
, F j�t� =

A f
j cos�	t�

m
�7�

3 Resolution Method: Harmonic Balance Method

3.1 Principle of the HBM. The HBM is a widely spread
method for solving nonlinear differential equations. One of the
advantages of this method is that it can weakly or strongly treat a
nonlinear system in the same way. It can be used for the problem
with friction �16,17� or geometrical nonlinearity �12,18�. The

HBM consists in finding periodic solutions X of Eq. �5� of the
form

X�t� = A0 + �
k=1

Nh

Ak cos�k	t� + Bk sin�k	t� �8�

where Nh is the number of retained harmonics. Substituting Eq.
�8� in Eq. �5� and projecting the result on the trigonometric base

�1, �cos�k	t� , sin�k	t��1�k�Nh
�, one obtains a set of n�2Nh+1� al-

gebraic nonlinear equations with n�2Nh+1�+1 unknowns

�Ak�0�k�Nh
, �Bk�1�k�Nh

, and 	. The most important parameter in

this method is the number Nh of retained harmonics. This number
is not known a priori, so convergence studies are needed to ensure

a good estimation of the solution. On one hand, the higher Nh is,

the better the solution. But on the other hand, when Nh is too high,
computations may require much time and memory. However, in
many cases, few harmonics are needed to ensure good conver-
gence leading to a reasonable system size.

(a) Simplified model of a bladed disc (b) Rectangular plate and system of coordinates

Fig. 1 Retained model and system of coordinates for a rectangular plate
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3.2 Numerical Procedure: Arc Length Continuation. In a
general way, the algebraic system obtained by the HBM can be
reformulated as

G�Y,	� = 0 �9�

where Y is a vector of dimension n�2N+1� containing the un-

knowns �Ak�0�k�N and �Bk�1�k�N, and G is a nonlinear function

taking its values in a space of dimension n�2N+1�. This system is

going to be solved by an arc length continuation method. Continu-
ation methods consist in numerically finding a series of points

�Yi ,	i�0�i�M, which verifies the convergence criterion G�Yi ,	i�
�
, where 
 is a small parameter that determines the accuracy of
the solution. In an arc length continuation, solutions are param-

etrized by the arc length s, so that �Yi ,	i�= �Y�si� ,	�si��. The

method takes place in two steps: a predictor step, which gives an
estimation of the solution, and a corrector step, which corrects the
solution until the convergence criterion is achieve. In the study, a
tangent predictor and the Newton–Raphson corrector have been
chosen. Further explanations about continuation techniques can be
found in Ref. �19�.

3.3 Stability of Solutions and Bifurcations. The stability of
periodic solutions is determined by the Floquet theory. It needs
the computation of the monodromy matrix and of its eigenvalues.
A detailed presentation of the method is given in Ref. �19�. Here,
the focus is on the bifurcation that the system can withstand.
There are two ways of detecting a bifurcation. First, by monitor-
ing the eigenvalues of the monodromy matrix: If some eigenval-
ues go outside the unit circle, then there is a bifurcation; the type
of the bifurcation is determined by the way that the eigenvalues
leave the unit circle. The second method to detect bifurcations is

by monitoring the determinant �Jy� of the Jacobian matrix �Jy�
=�GÕ�Y of the system in Eq. �9�: When this determinant is zero at

some point, then the matrix �Jy� is singular, and this point is a

bifurcation point. The type of bifurcation is determined by the

range of the matrix �JyJ	� �where J	=�GÕ�	�. For a turning

point, the range of �JyJ	� is n, and there is no particular treatment

to apply since the arc length continuation can handle turning

points. For a branching point, the range of �JyJ	� is at most n

−1, so there is at least two tangent vectors T= �TyT	�t such that

�JyJ	�T=0. There are two ways of computing the bifurcated

branches. The first method is to add a small perturbation to the

function G�Y ,	� in the vicinity of the bifurcation point. Since

branching points are structurally unstable, the perturbation breaks
the bifurcation. Once another branch has been detected with the
continuation algorithm, one removes the perturbation and carries
on the continuation �19�. The other method is to compute the

eigenvectors �i of the matrix �Jy� associated with the zero eigen-

value at the bifurcation point. The eigenvectors �i indicate the
directions to be followed �14�.

4 Free Vibrations of a System With Six DOFs

The first objective of this paper is to estimate the free solutions
of the system in Eq. �5�. The natural approach is to use the NNMs,
which have led to numerous publications. A survey about NNMs
is given in Refs. �4,5�. The most used definition of NNM is the
one given by Rosenberg in Ref. �20�, in which he defines the
NNMs by the vibrations in unison of a free and undamped system.
Other approaches to define NNMs exist; they are based on geo-
metrical arguments such as the invariant manifold definition pro-
posed by Shaw and Pierre �21� or based on the normal form
theory �11�.

In this section, the underlying linear system of Eq. �5� will first
be studied. This will give starting points for the study of the non-
linear system. Then, the search for the NNMs of the system in Eq.
�5� by the HBM, coupled with an arc length continuation, will be
carried out.

Numerical values for the physical parameters are introduced:

Lx=1.5 m, Ly =0.3 m, h=0.03 m, E=210 GPa, �=0.3, and k

=8�105 N m−1, which correspond to the following values for

the parameters of Eq. �5�: �=8.7662�103 s−2, c=148.36 s−2,

and �=4.6752�107 m−2 s−2.

4.1.1 Modal Analysis of the Underlying Linear System. The

underlying linear system of problem in Eq. �5� is given by Ẍ

+KX=F�t�. Linear normal modes �LNMs� are given by the reso-

lution of the eigenvalue problem K�=	2�. Matrix K have single
and double eigenvalues, but double eigenvalues represent the ma-
jority �3�. With each double eigenvalue are associated two distinct
deformed shapes, which are not uniquely defined. The mode

shapes are characterized by their number of nodal diameters p.

The eigenvalues and eigenvectors of matrix K are given by �the

linear frequencies are given in rad s−1�

	0 = �� = 93.63�0 = �1,1,1,1,1,1�

	1 = �� + c = 94.42�1
c = �1,1,0,− 1,− 1,0�

�1
s = �1,1/2,− 1/2,− 1,− 1/2,1/2�

	2 = �� + 3c = 95.98�2
c = �1,− 1,0,1,− 1,0�

�2
s = �1,− 1/2,− 1/2,1,− 1/2,− 1/2�

	3 = �� + 4c = 96.75�3 = �1,− 1,1,− 1,1,− 1� �10�

4.1.2 Nonlinear Normal Modes. In this section, the nonlinear
normal modes of the system in Eq. �5� are computed with the
algorithm described earlier. NNM branches are computed by start-
ing from the corresponding linear normal mode at low amplitudes.
These branches are termed the backbone curves, and they are
represented in an energy- frequency plot as in �1�. The energy
considered here is defined by

E�X� =�A02 + �
k

�Ak
2 + Bk

2� �11�

where Ak and Bk are the HBM coefficients defined in Eq. �8�.
Since the nonlinearity is odd and because there is no damping in
Eq. �5�, only odd harmonics and cosine terms are retained in the

development of X �the last condition corresponds to a phase con-
dition in which all initial velocities are set to zero�. A convergence
study with the number of harmonics on the zero nodal diameter
mode showed that a good approximation can be obtained when
retaining only the first and the third harmonic. This approximation

holds for amplitudes of vibration up to the plate thickness h. We
suppose that this remark holds for all NNMs. Therefore, the

NNMs of the system in Eq. �5� are sought of the form X�t�
=A1 cos�	t�+A3 cos�3	t�.

4.1.3 Natural Nonlinear Normal Modes. We call a natural
NNM a NNM that is directly born from a LNM at low magnitudes
of vibration. Since there are six LMNs, there will be six natural
NNMs. They are represented in Figs. 2 and 3. The first noticeable
feature in these figures is the frequency-energy �or amplitude�
dependence of the NNMs. In addition to the dependence of their
oscillation frequency, the NNMs may also have their modal
shapes varying with the amplitude of vibration: These are non-

similar NNMs. NNMs born from the LNM shapes �i
c �i=0, 1, 2,

or 3� defined in Eq. �10� are similar NNMs, and NNMs born from

the LNM shapes �i
s �i=1,2� are nonsimilar NNMs. For double

modes, the two backbone curves associated with the p nodal di-

ameter mode �p=1 or 2� are different �Fig. 3�. This is because the

number of sectors is of the form n=2m with m odd. As we shall
see, other NNM branches bifurcate from these backbone curves.

3



4.1.4 Bifurcated NNMs. This section focuses on the NNM
with three nodal diameters �NNM3D�. By using the procedure
described in Sec. 3.3, several branching point bifurcations have
been detected and bifurcated branches have been computed. They
are represented in Fig. 4 �dashed curves� along with the backbone
curve of NNM3D �continuous curve�. The mode shapes of bifur-

cated branches for a frequency about 190 rad s−1 are also de-
picted in Fig. 4. The bifurcated branches correspond to localized
NNMs. It means that only one �strongly localized� or several
�weakly localized� sectors have a non-negligible amplitude of mo-
tion, the others remaining virtually motionless �6�. Such localiza-

tion phenomenon was already observed in a linear mistuned sys-

tem �22�, but here, and in general nonlinear system with cyclic

symmetry, it occurs without a structural disorder. The spatial con-

finement of the energy causes the responses of some sectors to be

high and might lead to a premature failure of the blades.

4.1.5 Traveling Waves. All the NNMs computed so far corre-

spond to standing wave motions in the sense that the DOFs vi-

brate in a synchronous way as in Rosenberg’s definition of NNMs.

Some papers �1,7� refer to traveling wave motions in which vibra-

tions are not synchronous anymore. For Vakakis �7�, these travel-
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ing waves arise from a 1:1 internal resonance between the two
modes associated with the same number of nodal diameter. Be-
cause of the phase difference between the DOFs, a different phase
condition is considered for traveling wave NNM computation.
Sine terms are re-introduced in the HBM development of solution

X in order to take into account the phase difference. Therefore, X
is now sought of the following form:

X�t� = A1 cos�	t� + B1 sin�	t� + A2 cos�3	t� + B2 sin�3	t�

�12�

Well chosen starting points enable the computation of traveling
waves propagating in the clockwise or anticlockwise direction.
The backbone curves of traveling waves are given in Fig. 5�a�. By
monitoring the Jacobian matrix, as indicated in Sec. 3.3, a branch
that bifurcates from the traveling wave with two nodal diameters
has been found. This bifurcated branch is quite noticeable because
it can be seen as a weakly localized traveling wave since only
three of the six sectors vibrate with a non-negligible amplitude. To
illustrate the phase difference between coordinates, we plotted in
Fig. 5�b� the time series of the six blades for the two nodal diam-
eter, localized traveling wave motions.

5 Forced Vibrations

Results from the previous section �free vibrations� are in agree-
ment with the literature regarding structure with cyclic symmetry
under geometric �cubic� nonlinearity �1,2,7�. They highlight the
complexity of the free dynamic of such structures. Obviously, this
complexity is going to come back in forced vibrations. We here
propose to study the impact of the different external loading on
the forced response. Simulations are carried out for the structure
with six DOFs, which correspond to Eq. �5�. Numerical param-

eters are the same as in the previous section. In order to have a
finite amplitude response, a damping term is added to Eq. �5�,
which becomes

Ẍ + Ẋ + KX + �X3 = F�t� �13�

where  is a damping coefficient defined by =	0 /200.
The right hand side of Eq. �13� is considered to be of the form

F�t�=AF cos��t�, where AF stands for the shape and magnitude

of the external force and � stands for the excitation frequency.
Solutions are computed by the HBM. The stability of solutions is
investigated using the Floquet theory, and bifurcations are de-
tected as described in Sec. 3.3. Since the nonlinearity is odd, only
odd harmonics are retained in the HBM approximation. A conver-
gence study of the stability with the number of retained harmonics
showed that keeping the first and the third harmonic is sufficient
enough to ensure valid results on stability. Therefore, solutions of

Eq. �13� are sought of the form X�t�=A1 cos��t�+B1 sin��t�
+A3 cos�3�t�+B3 cos�3�t�. Three kinds of excitation will be

considered. First, low engine order excitation, then localized ex-
citation, and finally, detuned excitation. In all cases, a parametric
study with the force amplitude as a parameter has been carried
out. Because of symmetry, only one �or four� of the six sectors are
going to be represented.

5.1 Low Engine Order Excitation With Zero Nodal
Diameters. In this section, the forced response of the system in

Eq. �13� is studied for an excitation F�t�, which takes the shape of

the zero nodal diameters LNM. This means that F�t� is of the form

F�t� = AF cos��t� with AF = a f�0 �14�

The effect of the force amplitude a f on the form and on the
stability of solutions is studied. For low force amplitudes �Fig.

−10 −9 −8 −7 −6 −5 −4 −3
90

100

110

120

130

140

150

log( E )
F

re
q
u
e
n
c
y

ω
(r

a
d
/s

)

1−Diameter

2−Diameter

Localized 2−Diameter

(a) Backbone curves of localized traveling waves

0 0.05 0.1 0.15 0.2
1

2

3

4

5

6

7

time (s)

s
e
c
to

r

(b) Time series of the 2D localized traveling wave for ω ≈ 112rad.s
−1

Fig. 5 Backbone curves of traveling wave motions and time series of the two nodal diam-
eters localized traveling wave

90 92 94 96 98
0

2

4

6

8

10

12

x 10
−4

Frequency ω rad/s

A
m

p
lit

u
d
e

(m
)

sector n°1

(a) a f = 1/20

90 92 94 96 98
0

0.5

1

1.5

2

2.5

3
x 10

−3

Frequency ω rad/s

A
m

p
lit

u
d
e

(m
)

sector n°1

(b) a f = 1/8

Fig. 6 Nonlinear forced response for a low engine order with zero nodal diameter „–,
stable; …, unstable; –.–, linear response…

5



6�a��, the response of the nonlinear system is close to the one of
the underlying linear system, and the solution is stable for all

frequencies �. By increasing the force amplitude �Fig. 6�b��, an
unstable zone is generated between two turning points. When the
force amplitude is increased again �Fig. 7�, a second zone of in-
stability is generated after the second turning point. This second
zone takes birth through a branching point bifurcation. By using
the branch switching method described in Sec. 3.3, a bifurcated
branch of solution has been computed. The bifurcated branch is
stable for a few points at the beginning of the curve, and then an
instability is generated through a Hopf bifurcation. The area near
the peak of the bifurcated solution is stable and corresponds to a
weakly localized motion �framed areas of Fig. 7�.

5.2 Localized Excitation. In this section, the external loading
acts on only one sector �the first one�; therefore the force is given
by

F�t� = a f�1,0,0,0,0,0�Tcos��t� �15�

The forced response has been computed for several values of

the amplitude a f. Results are depicted in Figs. 8 and 9�a�. Because
of symmetry, only the response for four of the six sectors has been

represented. For values of amplitudes from a f =0 to a f =a f
s

�0.8 /4, the nonlinear response is topologically equivalent to the

response of the underlying linear system �Fig. 8�a��. When a f is

larger than a f
loc�0.9125 /4, stable forced localization occurs �Fig.

9�a��: For a well chosen excitation frequency �between 98 rad s−1

and 100 rad s−1�, only the excited sector vibrates with a non-

negligible amplitude, and this kind of motion is stable. Moreover,

the part of the curve corresponding to forced localization is posi-

tioned around the backbone curve of the strongly localized NNM,

which has been computed in the previous section �free vibration�.
These results are in agreement with those of Vakakis presented in

Ref. �23�. When a f
s �a f �a f

loc �Fig. 8�b��, it is possible to find

another type of solution. These new solutions are represented by a

closed curve in the amplitude-frequency diagram. They are not

tied up with the basic nonlinear response, but they are positioned

around the backbone curve of the strongly localized NNM. Sta-

bility analysis shows that some parts of the closed curves can be

stable for points that have much larger amplitudes than the basic

nonlinear solution. Since the closed curves are not tied up with the

basic nonlinear response, they are unreachable with a unique con-

tinuation scheme. To compute the closed curves, a sequential con-

tinuation with a fixed frequency and with the force amplitude a f as
a parameter has been used. The starting point was taken from the
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part of the curve that corresponds to forced localization �for a f

�a f
loc�; then, the force amplitude was decreased by continuation

until a f �a f
loc. The results obtained this way have been used as

starting points for the arc length continuation. The method for
closed curve detection is illustrated in Fig. 9�b�. The new kind of
solution makes us think that forced localization is the result of the
fusion of the closed curves with the basic nonlinear solution when

a f =a f
loc. Whereas the basic nonlinear solution seems to be weakly

nonlinear since it is close to the linear solution, there exist stable
solutions �the closed curve�, which have a large vibration ampli-
tude and which could be attained depending on initial conditions.
This remark is important because the closed curves could be eas-
ily missed by a classical continuation scheme, thus leading to a
wrong design of the structure.

5.3 Detuned Low Engine Order With Zero Nodal Diam-
eter Excitation. It has been seen that in the case of low engine
order excitation the system response is simpler than in the case of
localized excitation. However, we have to keep in mind that real-
istic excitations are not perfectly symmetric. So, now, the external
forces are considered detuned; that is, a perturbation is added to

the low engine order excitation. The perturbation is assumed to act
only on the force amplitude. The external forces are then given by

F�t� = �� + 
�cos��t� �16�

where � is a linear deformed shape and 
 is a vector characteriz-
ing the perturbation. Because of the projection in the HBM, add-
ing a perturbation to the force is equivalent to adding a perturba-

tion to the function G�Y ,	� defined in Eq. �9�. Then, the

branching point bifurcations, which are structurally unstable will
disappear �19�. Thus, bifurcated branches will be part of the non-
linear solution and will be obtained by the continuation method.

Here, only a low engine order with zero nodal diameters is
considered, but similar results could be obtained with the other
vibration modes. Finally, the perturbation is assumed to act only
on the first coordinate of the force. Therefore, we have

F�t� = a f�1 + 
1,1,1,1,1,1�Tcos��t� �17�

where 
1 corresponds to the detuning percentage of the force with
a zero nodal diameter. In the remainder of this paper, the force

amplitude a f will be set to a f =1 /4. Simulations start with 

=1%. Results are represented in Fig. 10. As expected, the bifur-
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cated branch of the case 
=0% �Fig. 7� is now a part of the

solution. When 
1 becomes larger than 26%, it is possible to com-
pute a secondary solution that corresponds to a closed curve. This

kind of solution is represented in Fig. 11�a� for 
1=40%. This
closed curve has stable parts, and it merges with the basic nonlin-

ear solution for 
1=70% �Fig. 11�b��. In this example, the closed
curve has been detected when the detuning is larger than 26%,
which is a quite significant detuning level. However, the threshold
for the detection of the closed curve is highly dependent on the
damping of the system: For a smaller damping, the closed curves
would have appeared sooner.

6 Conclusion

In this study, the free and forced response of a system with
cyclic symmetry under geometric nonlinearity has been computed.
The discretized equation has been obtained by a Rayleigh–Ritz
method. Solutions were computed by the harmonic balance
method, stability was investigated using the Floquet theory, and
bifurcations were computed through a branch switching algo-
rithm. In the free case, in addition to natural nonlinear normal
modes, other vibration modes were detected by studying the
branching point bifurcation of the system. Some of the bifurcated
solutions correspond to localized nonlinear modes. Traveling
wave motions have also been detected in this study. In the forced
case, when the excitation is localized to one of the substructure or
sufficiently detuned, in addition to the basic nonlinear response,
another kind of solution has been detected. This secondary solu-
tion is represented by a closed curve in the amplitude frequency
diagram, and it merges with the basic nonlinear solution when
increasing the force amplitude, leading to forced nonlinear local-
ization. For low engine excitations, we computed several bifur-
cated branches, which also correspond to stable localized motions.
This study is based on a simple model; therefore, the results re-
main at a theoretical level. However, this paper highlights the
complex dynamics of a system with cyclic symmetry under geo-
metrical nonlinearity. Of importance is the detection of closed
curve solutions, which can be stable and which may play an im-
portant role during the design of such a mechanical system.

Nomenclature

Ak, Bk � HBM coefficients

F�t� � time domain external forces

G�Y ,	� � algebraic system given by the HBM

Jy, J	 � Jacobian of G with respect to Y or 	

Knl � nonlinear stiffness

M, K � mass and linear stiffness matrices

X�t� � time domain vector of DOF

Y � vector of HBM coefficient

Lx, Ly, h � plate length, width, and thickness

T, U � kinetic and strain energy

V � strain energy of a linear stiffness

W � work due to external forces

u, v, w � displacements

�i
j � Ritz coordinates �DOF�

�i
c, �i

s � linear deformed shapes

�i � Ritz shape functions

� � density

	, � � free frequency, excitation frequency
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