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An unstable three dimensional KAM torus for the
quintic NLS

Nguyen Thuy Trung

NANTES - 2018

ContentsAbstract: We consider the quintic nonlinear Schrödinger on the circle. By ap-

plying a Birkhoff procedure and a KAM theorem, we exihibit a three dimension invariant

torus that is linearly unstable. In comparison, we also prove that two dimensional tori are

always linearly stable.

1. Introduction

We consider the non linear Schrödinger equation on the torus

(1.1) i∂tu+ ∂xxu = |u4|u, (t, x) ∈ R× T.

This is an infinite dimensional dynamic system on the phase space (u, ū) ∈ L2(T) endowed

with the symplectic form −idu ∧ dū. The flow u(t) preserves the Hamiltonian

h =

∫
T
|ux|2 +

1

3
|u|6dx,

and also, the mass and the momentum

L =

∫
T
|u|2dx, M =

∫
T
Im(u · ∇ū)dx.

Let us expand u and ū in Fourier basis:

u(t, x) =
∑
j∈Z

aj(t)e
ijx, ū(t, x) =

∑
j∈Z

bj(t)e
−ijx.

In this variables, the symplectic structure becomes −i
∑

j∈Z daj ∧ dbj. The Hamiltonian h

of the system reads

h =
∑
j∈Z

j2ajbj +
1

3

∑
j,`∈Z3;M(j,l)=0

aj1aj2aj3b`1b`2b`3 = N + P,

and the mass and the momentum

L =
∑
j∈Z

ajbj, M =
∑
j∈Z

jajbj,

1
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hereM(j, l) = j1+j2+j3−`1−`2−`3 denotes the momentum of the monomial aj1aj2aj3b`1b`2b`3 .

We can rewrite equation (??) into a system of infinite equations{
iȧj = j2aj + ∂P

∂bj
j ∈ Z,

−iḃj = j2bj + ∂P
∂aj

j ∈ Z.

In this article, we are interesting in the dynamic behavior near to 0 of solution of (??) in

two specific forms:

(1.2) u(t, x) = ap(t)e
ipxe−ip

2t + aq(t)e
iqxe−iq

2t +O(ε),

and

(1.3) u(t, x) = ap(t)e
ipxe−ip

2t + aq(t)e
iqxe−iq

2t + am(t)eimxe−im
2t +O(ε),

or more precisely the persistence of two and three dimensional linear invariant tori:

T2
c(p, q) = {|ap|2 = c1, |aq|2 = c2},(1.4)

T3
c(p, q,m) = {|ap|2 = c1, |aq|2 = c2, |am|2 = c3},(1.5)

with 0 < c1, c2, c3 � 1.

The first result of this paper is stated for two dimensional tori.

Theorem 1.1. Fix p, q ∈ Z, and s > 1
2
. There exists ν0 > 0, and for 0 < ν < ν0, there

exists Dν ⊂ [1, 2]2 asymptotically of full measure (i.e. meas([1, 2]2 \ Dν)→ 0 when ν → 0)

such that for ρ ∈ Dν , equation (??) admits a solution of the form

u(x) =
∑
j∈Z

aj(tω)eijx

where {aj}j is analytic function from T2 to `2
s satisfying uniformly in θ ∈ T2

|ap −
√
νρ1|2 + |aq −

√
νρ2|2 +

∑
j 6=p,q

(1 + j2)s|aj|2 = O(ν2).

Here ω is a nonresonant vector in R2 that satisfies

ω = (p2, q2) +O(ν2).

Furthermore, this solution is linearly stable.

For three dimensional tori, it is too complicated1 to consider the general case. In order

to apply KAM theorem ??, we avoid the case where there is ` ∈ Z solving equation 2

(1.6)

{
2j1 + j2 = 2j3 + `

2j2
1 + j2

2 = 2j2
3 + `2.

1the difficulty is to verify KAM hypotheses
2 in this case, the linear part a2j1aj2b

2
j3
b` + b2j1bj2a

2
j3
a` of the mode ` would create the instability, and the

energy would soon transfer mainly between four modes p, q,m, `, which was studied carefully in [?].
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In this paper, we will give here an example of (p, q,m) and ρ such that for ν small enough

the torus T3
νρ(p, q,m) = {|ap|2 = νρ1, |aq|2 = νρ2, |am|2 = νρ3} is linearly unstable. For

ε = 10−2, denote

D = D2 = [2− ε, 2 + ε]× [1− ε, 1 + ε]× [9− ε, 9 + ε].

Theorem 1.2. Fix p = −3, q = 10, m = −6, and s > 1
2
. There exists ν0 > 0, and for

0 < ν < ν0, there exists Dν ⊂ D asymptotically of full measure (i.e. meas(D \ Dν) → 0

when ν → 0) such that for ρ ∈ Dν , equation (??) admits a solution of the form

u(x) =
∑
j∈Z

aj(tω)eijx(1.7)

where {aj}j is analytic function from T3 to `2
s satisfying uniformly in θ ∈ T3

|ap −
√
νρ1|2 + |aq −

√
νρ2|2 + |am −

√
νρ3|2 +

∑
j 6=p,q,m

(1 + j2)s|aj|2 = O(ν2).(1.8)

Here ω is a non resonant vector in R3 that satisfies

ω = (32, 102, 62) +O(ν2).

Furthermore, this solution is linearly unstable.

In order to prove theorems ??, ??, we follow a general stratery developed in [?] for a system

of coupled nonlinear Schrödinger equations on the torus. Firstly, we apply a Birkhoff normal

form procedure (Proposition (??)) to kill the non resonances of P . Then we use sympletic

changes of variables to diagonalize the effective part into the form of h0. The hyperbolic

directions of torus T3
νρ(−3, 10,−6) are revealed in this step. Readers are suggested to take

a look at the original statement of KAM theorem in [?] for further understanding.

The study of finite dimensional tori in an infinite dimensional phase space was pioneered

by J. Bourgain [?] in 1988. However, the existence of unstable KAM tori in one dimensional

context was first proved by B. Grébert and V. Rocha [?] in 2017, where they studied the

system of coupled nonlinear Schrödinger equations on the torus. For the equation (??), in

case of u(0, x) supported maninly in four modes (p, q,m, s), which satisfy such a relation in

(??), the study of solutinon was studied carefully in [?] and [?]. In particular, in [?] they

proved the recurrent exchange of energy between those modes.

Acknowledgement : I wish to thank Professor Bernoit Grébert for motivating me to publish

this paper with numerous suggestions and discussions. I also wish to thank Le Quoc Tuan

and Lan Anh for computations in the appendix A.
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2. KAM theorem

In order to proof theorems ?? and ??, we recall a KAM theorem stated in [?].

We consider a Hamiltonian h = h0 + f, where h0 is a quadratic Hamiltonian in normal form

h0 = Ω(ρ) · r +
∑
a∈Z

Λa(ρ)|ζa|2.(2.1)

Here

• ρ is a parameter in D, which is a compact in the space Rn;

• r ∈ Rn are the actions corresponding to the internal modes (r, θ) ∈ (Rn × Tn, dr ∧ dθ) ;

• L and F are respectively infinite and finite sets, Z is the disjoint uninon L ∪ F ;

• ζ = (ζa)a∈Z ∈ CZ are the external modes endowed with the standard complex

symplectic structure −idζ ∧ dη. The external modes decomposes in a infinite part

ζL = (ζa)a∈L , corresponding to elliptic directions, which means Λa ∈ R for a ∈ L,

and a finite part ζF = (ζa)a∈F , corresponding to hyperbolic directions, which means

=Λa 6= 0 for a ∈ F ;

• L has a clustering structure L = ∪j∈NLj, where Lj are finite sets of cardinality

dj ≤ d <∞. If a ∈ Lj, we denote [a] = Lj and wa = j, for a ∈ F we set wa = 1;

• the mappings

Ω : D → Rn,(2.2)

Λa : D → C, a ∈ Z,(2.3)

are smooth;

• f = f(r, θ, ζ; ρ) is a perturbation, small compare to the integrable part h0.

Linear space Let s ≥ 0, we consider the complex weighted `2− space

Zs = {ζ = (ζa ∈ C, a ∈ Z) | ‖ζ‖s <∞},

where

‖ζ‖s =
∑
a∈Z

|ζa|2w2s
a .

Similarly we difine

Ys = {ζL = (ζa ∈ C, a ∈ L) | ‖ζL‖s <∞},

with the same norm. We endow Zs×Zs and Ys×Ys with the symplectic structure −idζ∧dη,
with η = ζ̄ .

A class of Hamiltonian functions. Denote ω = (ζ, η). On the space

Cn × Cn × (Zs × Zs)
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we define the norm

‖(r, θ, ω)‖s = max (|r|, |θ|, ‖ζ‖s) .

For σ > 0 we denote

Tnσ = {θ ∈ Cn : |=θ| < σ}/2πZn.

For σ, µ ∈ (0, 1] and s ≥ 0 we set

Os(σ, µ) = {r ∈ Cn : |r| < µ2} × Tns × {ω ∈ Zs × Zs : ‖ζ‖s < µ}.

We will denote points in Os(σ, µ) as x = (r, θ, ω). Let f : O0(σ, µ) × D → C be a

C1–function3, real holomorphic in the first variable x, such that for all ρ ∈ D, x ∈ Os(σ, µ) :

∇ωf(x, ρ) ∈ Zs × Zs

and

∇2
ωLωL

f(x, ρ) ∈ L(Ys, Ys)

are real holomorphic functions. We denote by T s(σ, µ,D) this set of functions. For f ∈
T s(σ, µ,D), we define

|∂jρf |σ,µ,D = sup
x∈Os(σ,µ); ρ∈D

max(|∂jρf |, µ
∥∥∂jρ∇ωf(x, ρ)

∥∥
s
, µ2

∥∥∇2
ωLωL

∂jρf(x, ρ)
∥∥),

and

[f ]sσ,µ,D = max
j=0,1

(|∂jρf |σ,µ,D).

Jet functions For any f ∈ T s(σ, µ,D), we define its jet fT (x) as the following Taylor

polynomial of f at r = 0 and ω = 0

fT (x) = f(0, θ, 0) + drf(0, θ, 0) · r + dωf(0, θ, 0)[ω] + 1/2d2
ωf(0, θ, 0)[ω, ω].

Infinite matrices For the elliptic variables, we denote byMs the set of infinite matrices

A : L × L → C such that A maps linearly Ys into Ys. We provide Ms with the operator

norm

|A|s = ‖A‖L(Ys,Ys) .

We say that a matrix A ∈Ms is in normal form if it is block diagonal and Hermitian, i.e.

Aβα = 0 for [α] 6= [β] and Aβα = Āαβ for α, β ∈ L.

In particular, if A ∈Ms is in normal form, its eigenvalues are real.

Normal form A quadratic Hamiltonian function is on normal form if it reads

h = Ω(ρ) · r + 〈ζL, Q(ρ)ηL〉+ 1/2〈ωF , K(ρ)ωF〉

3C1 regularity with respect to ρ in the Whitney sense
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for some vector function Ω(ρ) ∈ Rn, some matrix functions Q(ρ) ∈Ms on normal form and

K(ρ) is a matrix F × F → C symmetric in the following sense:Kβ
α = tKα

β .

Poisson brackets The Poisson brackets of two Hamiltonian functions is defined by

{f, g} = ∇θf · ∇rg −∇rf · ∇θg − i〈∇ωf, J∇ωg〉.

Remark 2.1. A function f is preserved under the flow u(t) if and only if it commutes with

h i.e. {f, h} = 0. By this, we have

{L, h} = {M, h} = 0.

Hypothesis A0 There exists a constant C > 0 such that

|Λa − |wa|2| ≤ C, ∀a ∈ L.

Hypothesis A1

|Λa| ≥ δ, ∀a ∈ L;

|=Λa| ≥ δ, ∀a ∈ F ;

|Λa − Λb| ≥ δ, ∀a, b ∈ Z, [a] 6= [b];

|Λa + Λb| ≥ δ, ∀a, b ∈ L.

Hypothesis A2 There exists δ > 0 such that for all Ω δ–close to Ω0 in C1 norm and for

all k ∈ Zn\{0} :

(1) either

|Ω(ρ) · k| ≥ δ ∀ρ ∈ D,

or there exists a unit vector z = z(k) ∈ Rn such that

(∇ρ · z) (Ω(ρ) · k) ≥ δ ∀ρ ∈ D;

(2) for all a ∈ L either

|Ω(ρ) · k + Λa| ≥ δ ∀ρ ∈ D,

or there exists a unit vector z = z(k) ∈ Rn such that

(∇ρ · z) (Ω(ρ) · k + Λa) ≥ δ ∀ρ ∈ D;

(3) for all α, β ∈ L and a ∈ [α], b ∈ [β] either

|Ω(ρ) · k + Λa ± Λb| ≥ δ ∀ρ ∈ D,

or there exists a unit vector z = z(k) ∈ Rn such that

(∇ρ · z) (Ω(ρ) · k + Λa ± Λb) ≥ δ ∀ρ ∈ D;
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(4) for all a, b ∈ F
|Ω(ρ) · k + Λa ± Λb| ≥ δ.

Theorem 2.2 (KAM theorem). Assume that hypothesis A0, A1, A2 are satisfied, f ∈
T s(σ, µ,D), f commutes with L,M and s > 1/2. Let γ > 0, there exists a constant C0 such

that if

[f ]sσ,µ,D ≤ C0δ, ε := [fT ]sσ,µ,D ≤ C0δ
1+γ,(2.4)

then there exists a Cantor set D′ ⊂ D asymptotically of full measure (i.e. meas(D\D′)→ 0

when ε→ 0) and there exists a symplectic change of variables Φ : Os(σ/2, µ/2)→ Os(σ, µ)

such that for all ρ ∈ D′

(h0 + f) ◦ Φ = h̃+ g

with h̃ = Ω(ρ)·r+〈ζL, Q(ρ)ηL〉+1/2〈ωF , K(ρ)ωF〉 on normal form, and g ∈ T s(σ/2, µ/2,D′)
with gT ≡ 0. Furthermore there exists C > 0 such that for all ρ ∈ D′

|Ω− Ω0| ≤ Cε, |Q− diag (Λa, a ∈ L) | ≤ Cε, |JK − diag (Λa, a ∈ F) | ≤ Cε.

As a dynamic consequence Φ ({0} × Tn × {0}) is an invariant torus for h0 +fand this torus

is linearly stable if and only if F = ∅ (see [?] ).

Here, the matrix J is of the form, (
0 −I
I 0

)
where I is identity matrix of size #F .

Remark 2.3. In [?], they constrained f in a restricted class instead of using commutation of f

with L,M since they considered a system of coupled NLS equation with more complicated

nonlinearities.

3. Applications

The Birkhoff normal form procedure. We recall a result proved in [?].

Proposition 3.1. There exist a canonical change of variable τ from Os(σ, µ) into Os(2σ, 2µ)

such that

h̄ = h ◦ τ = N + Z6 +R10,

where

• N is the term N(I) =
∑

j∈Z j
2|aj|2;
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• Z6 is the homogeneous polynomial of degree 6

Z6 =
∑
R

aj1aj2aj3b`1b`2b`3

where

R = {(j, `) ∈ Z3 × Z3 s.t j1 + j2 + j3 = `1 + `2 + `3, j2
1 + j2

2 + j2
3 = `2

1 + `2
2 + `2

3};
• R10 is the remainder of order 10, i.e a Hamiltonian satisfying

‖XR10(x)‖s ≤ C ‖x‖9
s

for all x ∈ Os(σ, µ);

• τ is close to the identity: there exists a constant C such that

‖τ(x)− x‖ ≤ C ‖x‖2

for all x ∈ Os(σ, µ).

Henceforth, since we do not care about constant, we shall write a . b in order to say

a 6 Cb.

Persistence of 2 dimensional tori.

Firstly, we want to study the persistence of the two dimensional invariant torus T2
νρ(p, q)

for equation (??) for ν small. Choose
ap = (νρ1 + r1(t))

1
2 eiθ1(t) =:

√
Ipe

iθ1(t)

aq = (νρ2 + r2(t))
1
2 eiθ2(t) =:

√
Iqe

iθ2(t)

aj = ζj j 6= p, q,

where {ρ1, ρ2} ∈ [1, 2]2 = D and ν is a small parameter.The canonical symplectic structure

now becomes

−idζ ∧ dη − dI ∧ dθ

with I = (I1, I2), θ = (θ1, θ2), ζ = (ζj)j and η = (ηj)j = (ζ̄j)j.

Let

Tlin
ρ := {(I, θ, ζ)||I − νρ| = 0, |=θ| < σ, ‖ζ‖s = 0}

and its neighborhood

Tρ(ν, σ, µ, s) := {(I, θ, ζ)||I − νρ| < νµ2, |=θ| < σ, ‖ζ‖s < ν1/2µ}.

We want to study the persistence of torus Tρ(ν, σ, µ, s). Indeed we have

Tρ(ν, σ, µ, s) ≈ Os(σ, ν1/2µ) = {(r, θ, ζ)||r| < νµ2, |=θ| < σ, ‖ζ‖s < ν1/2µ}.

By Theorem ?? we have

h ◦ τ = N + Z6 +R10.
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We see that the term N contributes to the effective part and the term R10 contributes to

the remainder term f. So we just need to focus on the term Z6. Let us split it:

Z6 = Z0,6 + Z1,6 + Z2,6 + Z3,6.

Here Z0,6, Z1,6, Z2,6 are homogeneous polynomial of degree 6 which contains respectively

external modes of order 0, 1, 2. Z3,6 is an homogeneous polynomial of degree 6 contains

external modes of at least order 3,this term contributes the remainder term.

Thank to Lemma 2.2 on [?], the term Z1,6 = 0. We have

Z0,6 = |ap|6 + |aq|6 + 9
(
|ap|4|aq|2 + |ap|2|aq|4

)
= (νρ1 + r1)3 + (νρ2 + r2)3 + 9 (νρ1 + r1) (νρ2 + r2) (νρ1 + r1 + νρ2 + r2)

= ν3(ρ3
1 + ρ3

2 + 9ρ2
1ρ2 + 9ρ2

2ρ1) + 3ν2
(
r1(ρ2

1 + 6ρ1ρ2 + 3ρ2
2) + r2(ρ2

2 + 6ρ1ρ2 + 3ρ2
1)
)

+ jet free

where the notation ”jet free” means that the remaining Hamiltonian has a vanishing jet.

For the term Z2,6, there are two cases that can happen.

First case

We assume that there is no solution4 {s, t} 6= {p, q} for

(3.1)

{
2p+ s = 2q + t

2p2 + s2 = 2q2 + t2.

Hence

Z2,6 = Z1
2,6 = 9

(
|ap|4 + |aq|4 + 4|ap|2|aq|2

) ∑
j 6=p,q

|aj|2 = 9ν2
(
ρ2

1 + ρ2
2 + 4ρ1ρ2

) ∑
j 6=p,q

|ζj|2+jet free.

Hence

h ◦ τ = he +R

where the effective Hamiltonian he reads

he =
(
p2 + 3ν2

(
ρ2

1 + 3ρ2
2 + 6ρ1ρ2

))
r1 +

(
q2 + 3ν2

(
ρ2

2 + 3ρ2
1 + 6ρ1ρ2

))
r2

+
∑
j

(
j2 + 9ν2

(
ρ2

1 + ρ2
2 + 4ρ1ρ2

))
|ζj|2

= Ω(ρ) · r +
∑
j 6=p,q

Λj|ζj|2

where

Ω(ρ) =

(
p2 + 3ν2 (ρ2

1 + 3ρ2
2 + 6ρ1ρ2)

q2 + 3ν2 (ρ2
2 + 3ρ2

1 + 6ρ1ρ2)

)
4it happens when q-p is odd
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and

Λj = j2 + 9ν2
(
ρ2

1 + ρ2
2 + 4ρ1ρ2

)
.

The remainder term R reads

R = R10 + Z3,6 + 3νρ1r
2
1 + r3

1 + 3νρ2r
2
2 + r3

2 + 9r1r2(r1 + r2)

+
(
r2

1 + r2
2 + 2ν(ρ1 + 2ρ2)r1 + 2ν(ρ2 + 2ρ1)r2

) ∑
j 6=p,q

|ζj|2.

In order to work on Os(σ, µ) we use the rescaling

(3.2) Ψ : r 7→ νr, ζ 7→ ν1/2ζ.

The symplectic structure now becomes

−νdr ∧ dθ − iνdζ ∧ dη.

By definition, this change of variables sendOs(σ, µ) to a neighborhood of Tρ(ν, σ, µ, s). Since

τ is close to identity, the change of variables Φρ = τ ◦ Ψ sends Os(σ, µ) to Tρ(ν, 2σ, 2µ, s).

By this change of variables, we have

h ◦ Φρ − C = (he +R) ◦Ψ = νh0 + νf

where C is a constant, h0 and f are defined by

h0 =
1

ν
he ◦Ψ f =

1

ν
R ◦Ψ.

By Theorem ??, R10 ∈ T s(σ, ν1/2µ,D). We check that the rest part of f is in T s(σ, µ,D).

By construction, f commutes5 with L and M. For estimating the norm of f, notice that R

contains only term of order at least 3 in ν and RT = RT
10 is of order 9/2 in ν, so that

[f ]sσ,µ,D . ν2

and

[fT ]sσ,µ,D . ν7/2.

So we have proved:

Theorem 3.2. Assume that for p, q ∈ Z there do not exist s, t solving the equation (??).

Then, the change of variables Φρ = τ ◦ Ψ is real holomorphic, symplectic and analytically

depending on ρ satisfying

• Φρ : Os(σ, µ)→ Tρ(ν, 2σ, 2ν, s);

5since h commutes with L, M and all the changes of variables are symplectic
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• Φρ puts the Hamiltonian h in normal form in the following sense:

1

ν
(h ◦ Φρ − C) = h0 + f

where C is a constant and the effective part h0 of the Hamiltonian reads

h0 = Ω(ρ) · r +
∑
j 6=p,q

Λj|ζj|2

with

Ω(ρ) =

(
p2 + 3ν2 (ρ2

1 + 3ρ2
2 + 6ρ1ρ2)

q2 + 3ν2 (ρ2
2 + 3ρ2

1 + 6ρ1ρ2)

)
and

Λj = j2 + 9ν2
(
ρ2

1 + ρ2
2 + 4ρ1ρ2

)
;

• The remainder term f belongs to T s(σ, µ,D) and satisfies

[f ]sσ,µ,D . ν2

and

[fT ]sσ,µ,D . ν7/2.

Second case

Assume that there are6 s, t 6= p, q solving (??), hence

Z2,6 = Z1
2,6 + 9(a2

pasb
2
qbt + b2

pbsa
2
qat) = Z1

2,6 + Zs,t

For the second term, let us rewrite it

9(νρ1 + r1)(νρ2 + r2)
(
e2i(θ1−θ2)ζsηt + e−2i(θ1−θ2)ηsζt

)
The effective part of this term is just given by

9ν2ρ1ρ2

(
e2i(θ1−θ2)ζsηt + e−2i(θ1−θ2)ηsζt

)
.

Notice that

{Is, ζsηt + ηsζt} = {It, ζsηt + ηsζt} = 0.

This gives us a clue that the above term does not effect to the stability of the solution.

In order to kill the angles, we introduce the symplectic change of variables Ψangles : Os(σ, µ)→
Os(σ, µ), (r1, r2, θ, ζ) 7→ (r′1, r

′
2, θ, ζ

′) defined by

ζ ′s = e2i(θ1−θ2)ζs
ζ ′t = ζt

ζ ′j = ζj, j 6= s, t, p, q

r′1 = r1 − 2|ζs|2

r′2 = r2 + 2|ζs|2.
6in this case, {p, q, s, t} is of the form {p, p+ 2n, p+ 3n, p− n}
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By this change of variables

h̃ = h̄ ◦Ψangles = C + he +R.

Here C is a constant given by

C = ν3(ρ3
1 + ρ3

2 + 9ρ2
1ρ2 + 9ρ2

2ρ1) + 9(νp2ρ1 + νq2ρ2).

The effective Hamiltonian he reads

he =
(
p2 + 3ν2

(
ρ2

1 + 3ρ2
2 + 6ρ1ρ2

))
r′1 +

(
q2 + 3ν2

(
ρ2

2 + 3ρ2
1 + 6ρ1ρ2

))
r′2

+
∑

j 6=p,q,s,t

(
j2 + 9ν2

(
ρ2

1 + ρ2
2 + 4ρ1ρ2

))
|ζ ′j|2 +

(
t2 + 9ν2

(
ρ2

1 + ρ2
2 + 4ρ1ρ2

))
|ζ ′t|2

+
(
s2 + 2p2 − 2q2 + ν2

(
21ρ2

2 − 3ρ2
1 + 36ρ1ρ2

))
|ζ ′s|2 + 9ν2ρ1ρ2(ζ ′sη

′
t + η′sζ

′
t).

It is on normal form

Ω(ρ) · r +
∑

j 6=p,q,s,t

Λj|ζ ′j|2 + Λs|ζ ′s|2 + Λt|ζ ′t|2 + 9ν2ρ1ρ2(ζ ′sη
′
t + η′sζ

′
t)

where Ω(ρ) and Λj are defined as in the first case except

Λs = t2 + ν2
(
21ρ2

2 − 3ρ2
1 + 36ρ1ρ2

)
.

In order to diagonalize he, we use a symplectic change of variables of the form{
ζt+ = 1√

1+α2 (ζ ′t + αζ ′s)

ζt− = 1√
1+α2 (ζ ′s − αζ ′t)

with α =
−2ρ21+2ρ22+

√
4ρ41+2ρ21ρ

2
2+4ρ42

3ρ1ρ2
. Then he can be diagonalized as

Ω(ρ) · r +
∑

j 6=p,q,s,t

Λj|ζj|2 + Λt+|ζt+|2 + Λt− |ζt− |2

where {
Λt+ = Λt − 9ν2ρ1ρ2α

Λt− = Λs + 9ν2ρ1ρ2α.

The remainder term R reads

R = R10 ◦Ψangles + Z3,6 ◦Ψangles + 3νρ1r
2
1 + r3

1 + 3νρ2r
2
2 + r3

2

+ 9r1r2(r1 + r2) +
(
r2

1 + r2
2 + 2ν(ρ1 + 2ρ2)r1 + 2ν(ρ2 + 2ρ1)r2

) ∑
j 6=p,q

|ζj|2

with r1 = r′1 + 2|ζs|2, r2 = r′2 − 2|ζs|2.
Using the rescaling Ψ introduced in (??), we get

(he +R) ◦Ψ = νh0 + νf.
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Since Ψangles : Os(σ, µ) → Os(σ, 3µ) and τ is closed to identity, we have τ ◦ Ψangles ◦ Ψ :

Os(σ, µ) → Tρ(ν, 2σ, 4µ, s). The study of f is the same as in the previous case. Then we

get:

Theorem 3.3. Assume that p, q, s, t satisfy the equation ??. The change of variables

Φρ = τ ◦ Ψangles ◦ Ψ is a real holomorphic transformations, analytically depending on ρ

satisfying

• Φρ : Os(σ, µ)→ Tρ(ν, 2σ, 4µ, s);

• Φρ puts the Hamiltonian h in normal form in the following sense:

1

ν
(h ◦ Φρ − C) = h0 + f

where C is a constant and the effective part h0 of the Hamiltonian reads

h0 = Ω(ρ) · r +
∑

j 6=p,q,s,t

Λj|ζj|2 + Λt+ |ζt+ |2 + Λt−|ζt−|2

with

Ω(ρ) =

(
p2 + 3ν2 (ρ2

1 + 3ρ2
2 + 6ρ1ρ2)

q2 + 3ν2 (ρ2
2 + 3ρ2

1 + 6ρ1ρ2)

)
and

Λj = j2 + 9ν2
(
ρ2

1 + ρ2
2 + 4ρ1ρ2

)
,

• The remainder term f belongs to T s(1, 1,D) and satisfies

[f ]sσ,µ,D . ν2

and

[fT ]sσ,µ,D . ν7/2.

Now we can finish the proof of Theorem ??.

Proof of Theorem ??. By Theorem ?? and ??, there exists a symplectic change of variables

Φρ, on a asymtotical set DνD = [1, 2]2, puts the Hamiltonian h = N + P in normal form

h0 + f, that satisfies,(see the appendix A) the hypotheses of KAM theorem ?? for δ = ν2,

ε = ν7/2 = δ7/4 and Ω0 = ω = (p2, q2) + O(ν2). So by KAM theorem, since the hyperbolic

set F is empty, the torus7

Tlin
ρ := {(I, θ, ζ)||I − νρ| = 0, |=θ| < 1, ‖ζ‖s = 0}

is linear stable. Here we denote I = (Ip, Iq).

�

7here we choose σ = 1
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Persistence of 3 dimensional tori. Assume that


ap = (νρ1 + r1(t))

1
2 eiθ1(t) =:

√
Ipe

iθ1(t)

aq = (νρ2 + r2(t))
1
2 eiθ2(t) =:

√
Iqe

iθ2(t)

am = (νρ3 + r3(t))
1
2 eiθ3(t) =:

√
Ime

iθ3(t)

aj = ζj j ∈ Z \ {p, q,m}

where ρ = (ρ1, ρ2, ρ3) ∈ D ⊂ R3 and ν is a small parameter. The canonical symplectic

structure now becomes

−idζ ∧ dη − dI ∧ dθ

with I = (Ip, Iq, Im), θ = (θ1, θ2, θ3), ζ = (ζj)j∈Z\{p,q,m} and η = (ηj)j∈Z\{p,q,m} = (ζ̄j)j∈Z\{p,q,m}.

The same as in two-modes case, we have

h̄ := h ◦ τ = N + Z6 +R10.

We see that as in the previous case, the term N contributes to the effective Hamiltonian

h0 and the term R10 contributes to the remainder term f. So we just need to focus on the

term Z6. Let us split it:

Z6 = Z0,6 + Z1,6 + Z2,6 + Z3,6.

Here, Z0,6 is homogeneous polynomial of degree 6 which just contains inner modes (p, q,m);

Z1,6, Z2,6 are homogeneous polynomials of degree 6 which contain outer modes of order 1

and 2. Z3,6 is an homogeneous polynomial of degree 6 contains outer modes of at least order

3, this term contributes the remainder term. We have:

Z0,6 = |ap|6 + |aq|6 + |am|6 + 9
∑

j,`∈{p,q,m}

|aj|4|a`|2 + 36|ap|2|aq|2|am|2

Even if it looks a bit more complicated, we deal with Z0,6 as in the previous case. We

assume that there is no solution to (??), so that Z1,6 = 0. For Z2,6, we have

Z2,6 =
∑
j1,j2,`

|aj1|2|aj2|2|a`|2 +
∑

s1,t1∈A

(
a2
j3
as1b

2
j4
bt1 + b2

j3
bs1a

2
j4
at1
)

+
∑

s2,t2∈B

(
a2
j5
aj6bj7bs2bt2 + b2

j5
bj6aj7as2at2

)
+
∑
s3,t3∈C

(
a2
j9
as3bj8bj10bt3 + b2

j9
bs3aj8aj10at3

)
+
∑
s4∈E

(
a2
j11
aj12bj13b

2
s4

+ b2
j11
bj12aj13a

2
s4

)
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with ji ∈ {p, q,m}, si, ti /∈ {p, q,m} and si 6= ti. The sets A, B, C, E are given by

A ↔

{
2j3 + s1 = 2j4 + t1
2j2

3 + s2
1 = 2j2

4 + t21
B ↔

{
2j5 + j6 = j7 + s2 + t2
2j2

5 + j2
6 = j2

7 + s2
2 + t22

C ↔

{
2j9 + s3 = j8 + j10 + t3
2j2

9 + s2
3 = j2

8 + j2
10 + t23

E ↔

{
2j11 + j12 = j13 + 2s4

2j2
11 + j2

12 = j2
13 + 2s2

4.

Assume that A,B, C, E are disjoint8 i.e. there is no s or t appearing in two of these sets. We

shall deal with each term one by one (in case it’s not empty).

The first term just depends on the actions, and we have

|aj1 |2|aj2|2|a`|2 = ν2ρj1ρj2|ζ`|2 + jet free.

The second and the fourth term are similar, since their effective parts are all of the form

9eiαζsηt + 9e−iαηsζt.

The idea to deal with these two terms is the same as that in the two-modes case. Since

{Is + It, ζsηt} = {Is + It, ζtηs} = 0,

these terms do not affect the stability of the flow. Since A,B, C, E are disjoint, and as in

the two-modes case, a change of variables that used to deal with a pair s, t only affect that

modes, i.e the changes of variables commute. We call Φ1 the composition of all changes of

variables used to deal with the sets A and C.
For the third term, its effective parts are of the form

18ν2ρj5
√
ρj6ρj7(e

iαζsζt + e−iαηsηt)

where α = θj7−θj6−2θj5 . For explicitness, we will consider the case j5 = p, j6 = q, j7 = m,

and s, t solve the following equation

(3.3)

{
2p+ q = m+ s+ t

2p2 + q2 = m2 + s2 + t2,

then α = θ3 − θ2 − 2θ1. An example for this could be (p, q,m, s, t) = (−3, 10,−6, 1, 9). In

order to kill the angles, we introduce the symplectic change of variables Ψang,1 : Os(σ, µ)→
Os(σ, 3µ); (r, θ, ζ) 7→ (r′, θ, ζ ′) defined by

8this is the case for the example considered in theorem ??
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ζ ′s = ie−iαηs η′s = ieiαζs
ζ ′t = ζt η′t = ηt
ζ ′j = ζj, η′j = ηj j 6= s, t, p, q

r′1 = r1 + 2|ζs|2

r′2 = r2 + |ζs|2,
r′3 = r3 − |ζs|2.

The effective part related to s, t is of the form

(3.4) Λs|ζ ′s|2 + Λt|ζ ′t|2 − 18iν2ρ1
√
ρ2ρ3(ζ ′sη

′
t + η′sζ

′
t)

where

Λt = t2 + 9ν2(ρ2
1 + ρ2

2 + ρ2
3 + 4ρ1ρ2 + 4ρ2ρ3 + 4ρ3ρ1)

and

Λs = t2 + 3ν2(−ρ2
1 + ρ2

2 + 5ρ2
3 − 6ρ1ρ2 + 12ρ2ρ3 + 6ρ3ρ1).

Denoting a = Λt−Λs

2
and b = Λt+Λs

2
, we diagonalize (??) by the symplectic change of vari-

ables9 {
ζt− = 1√

1−α2 (ζ ′s − iαζ ′t) ηt− = 1√
1−α2 (η′s − iαη′t)

ζt+ = 1√
1−α2 (ζ ′t + iαζ ′s) ηt+ = 1√

1−α2 (η′t + iαη′s)

where

α = −a−
√
a2 − 182ν4ρ2

1ρ2ρ3

ν2ρ1
√
ρ2ρ3

.

Then (??) becomes

Λt+ |ζt+ |2 + Λt−|ζt−|2

where Λt± = b±
√
a2 − 182ν4ρ2

1ρ2ρ3. We see that two modes t+, t− correspond to hyperbolic

direction if and only if a2−182ν4ρ2
1ρ2ρ3 < 0, a condition related to the choice of ρ. Precisely,

for ρ ∈ D1 = [1, 2]3, we have Λt± ∈ R while for ρ = (2, 1, 9) we have a = 0 and a2 −
182ν4ρ2

1ρ2ρ3 = −182ν4ρ2
1ρ2ρ3 < 0. Hence, there exist ε > 0(choose ε = 10−2) such that for

ρ ∈ D2 = Dε = [2− ε, 2 + ε]× [1− ε, 1 + ε]× [9− ε, 9 + ε] we have |=Λt±| > ν2. We call Φ2

the composition of changes of variables related to B.
For the set E , without loss of generality, assume that

(3.5)

{
2p+ q = m+ 2s

2p2 + q2 = m2 + 2s2.

9√−1 = i
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Then, using the symplectic change of variables Ψang,2 : Os(σ, µ) → Os(σ, 2µ); (r, θ, ζ) 7→
(r′, θ, ζ ′) defined by



ζ ′s = eiα/2ζs η′s = e−iα/2ηs
ζ ′j = ζj, η′j = ηj j 6= s, p, q

r′1 = r1 + |ζs|2

r′2 = r2 + 1
2
|ζs|2

r′3 = r3 − 1
2
|ζs|2.

The effective part related to s becomes

(3.6) Λs|ζ ′s|2 + ν2ρ1
√
ρ2ρ3(ζ ′2s + η′2s )

where

Λs = 3ν2(2ρ2
1 + ρ2

2 − ρ2
3 + 9ρ1ρ2 + 3ρ3ρ1)

If Λs 6= 0, we can diagonalize (??) into 1−β2

1+β2 Λs| ζ
′
s+βη′s√

1−β2
|2 with β satisfying Λsβ = (1 −

β2)ν2ρ1
√
ρ2ρ3, otherwise we rewrite it into iν2ρ1

√
ρ2ρ3( ζ

′
s+iη′s√

2

η′s+iζ′s√
2

), however meas{ρ ∈
R3 : Λs = 0} = 0. We call Φ3 the composition of all changes of variables related to E .

By construction of Φi and definition of Os(σ, ν), the composition Φ3 ◦ Φ2 ◦ Φ1 mapping

Os(σ, ν) into Os(σ, 3ν). Using the rescaling Ψ introduced in (??), as the previous case we

get

Theorem 3.4. Assume that the equation (??) with j1, j2, j3 ∈ {p, q,m} has no solution in

Z and A, B, C, E are disjoint. The change of variables Φρ := Ψ ◦ Φ3 ◦ Φ2 ◦ Φ1 ◦ τ is a

holomorphic, symplectic transformation, and analytically depending on ρ ∈ D, satisfying

• Φρ : Os(σ, µ)→ Tρ(ν, 2σ, 4µ, s);

• Φρ puts the Hamiltonian h in normal form in the following sense:

1

ν
(h ◦ Φρ − C) = h0 + f

where C is a constant and the effective part h0 of the Hamiltonian reads

h0 = Ω(ρ) · r +
∑
a∈Z

Λa|ζa|2

where

Ω(ρ) =

 p2 + 3ν2 (ρ2
1 + 3ρ2

2 + 3ρ2
3 + 6ρ1ρ2 + 6ρ1ρ3 + 12ρ2ρ3)

q2 + 3ν2 (ρ2
2 + 3ρ2

1 + 3ρ2
3 + 6ρ1ρ2 + 6ρ2ρ3 + 12ρ1ρ3)

m2 + 3ν2 (ρ2
3 + 3ρ2

1 + 3ρ2
2 + 6ρ1ρ3 + 6ρ3ρ2 + 12ρ2ρ1)


• Z is the disjoint union L ∪ F ; L corresponds to elliptic part, and F corresponds to

hyperbolic part;
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• the remainder term f belongs to T s(σ, µ,D) and satisfies

[f ]sσ,µ,D . ν2

and

[fT ]sσ,µ,D . ν7/2.

Proof of theorem ??. By theorem ??, for (p, q,m) = (−3, 10,−6) and ρ ∈ Dν ⊂ D2, there

exists a symplectic change of variables Φ1 on Dν puts the Hamiltonian h = N+P in normal

form h0 + f, that satisfies,(see appendix A) assumptions of KAM theorem ?? for δ = ν2,

ε = ν7/2 = δ7/4 and Ω0 = ω = (32, 102, 62) +O(ν2). So by KAM theorem, the torus

Tlin
ρ = {(I, θ, ζ)||I − νρ| = 0, |=θ| < 1, ‖ζ‖s = 0}

is linearly unstable.

�

4. Appendix A

In this appendix, we will verify the hypothesis A0, A1, A2 of Theorem ?? for the Hamil-

tonian in our applications. The hypothesis A0, A1 is trivial, so we focus on A2.

4.1. Two-modes case. The first case In this case, we have F = ∅ and the other estimates

are trivial. For the hypothesis A2, we recall that

Ω(ρ) =

(
p2 + 3ν2 (ρ2

1 + 3ρ2
2 + 6ρ1ρ2)

q2 + 3ν2 (ρ2
2 + 3ρ2

1 + 6ρ1ρ2)

)
and

Λj = j2 + 9ν2
(
ρ2

1 + ρ2
2 + 4ρ1ρ2

)
.

Let k = (k1, k2) ∈ Z2/{0} and z = z(k) = (k2,k1)
|k| , then we have

(∇ρ · z)(Ω(ρ) · k) = 6ν2
(
3(ρ1 + ρ2)k2

2 + 3(ρ2 + 3ρ1)k2
1 + 4(ρ1 + ρ2)k1k2

)
|k|−1

≥ 6√
2
ν2|k|

and

(∇ρ · z)Λj = 18ν2((ρ1 + 2ρ2)k2 + (ρ2 + 2ρ1)k1)|k|−1.

Choosing δ = 4ν2, we get the hypothesis A2 (1). Since (∇ρ · z)(Λj − Λ`) = 0, the estimate

of small divisor Ω · k + Λj − Λ` is followed. To estimate the small divisors Ω · k + Λj and

Ω · k + Λj + Λ` we use the fact that f commute with both the mass L and momentum M.
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We just need to control small divisors Ω · k + Λj and Ω · k + Λj + Λ` whenever eik·θηj ∈ f
and eik·θηjη` ∈ f , respectively. We have for the mass and momentum:

L = ν(ρ1 + ρ2) + r1 + r2 +
∑
j

|ζj|2

and

M = ν(pρ1 + qρ2) + pr1 + qr2 +
∑
j

j|ζj|2.

By conservation of L, we have

{eik·θηj,L} = ieik·θηj(k1 + k2 + 1) = 0.

Therefore, for A2 (2) we just have to study the case k1 + k2 = −1. In this situation

(∇ρ · z)(Ω(ρ) · k + Λj) = 6ν2|k|−1
(
3(ρ1 + ρ2)k2

2 + 3(ρ2 + ρ1)k2
1 + 4(ρ1 + ρ2)k1k2

)
+ 6ν2|k|−1 (3(ρ1 + 2ρ2)k2 + 3(ρ2 + 2ρ1)k1)

= 6ν2|k|−1
(
(ρ1 + ρ2)k2

2 + (ρ2 + ρ1)k2
1 + 2(ρ1 + ρ2)

)
+ 6ν2|k|−1 (3ρ2k2 + 3ρ1k1 − 3(ρ1 + ρ2))

= 6ν2|k|−1
(
2(ρ1 + ρ2)k2

1 + (5ρ1 − ρ2)k1 − 3ρ2

)
.

This term is greater than δ except the cases k = (−1, 0) and (0,−1). The conservation of

M gives us

{eik·θηj,M} = ieik·θηj(pk1 + qk2 + j) = 0.

For k ∈ {(−1, 0), (0,−1)}, this implies j ∈ {p, q}, which is excluded.

We consider the small divisor Ω·k+Λj+Λ` in the same way. The conservation of the mass L
gives us k1+k2 = −2 and then by computation we get k ∈ {(0,−2), (−2, 0), (−1,−1), (−3, 1), (1,−3)}.
The conservation of the momentum gives us pk1 + qk2 + j + ` = 0. We have

Ω · k + Λj + Λ` = N(p, q, j, `) + µ(ρ, k, )

where N(p, q, j, `) = p2k1 + q2k2 + j2 + `2 and µ(ρ) very small for |k| ≤ 4. We see that

N(p, q, j, `) ∈ Z, so N(p, q, j, `) ≤ δ if and only if p2k1 + q2k2 + j2 + `2 = 0. Combined with

conservation of the momentum, this gives

for the case k = (−1,−1)

p+ q = j + ` and p2 + q2 = j2 + `2

for the case k = (−2, 0)

2p = j + ` and 2p2 = j2 + `2

for the case k = (0,−2)

2q = j + ` and 2q2 = j2 + `2



20

for the case k = (−3, 1)

3p = q + j + ` and 3p2 = q2 + j2 + `2

for the case k = (1,−3)

3q = p+ j + ` and 3q2 = p2 + j2 + `2.

In all these cases, we get j, ` ∈ {p, q} which is excluded.

The second case We see that Ω and {Λj}j 6=p,q,s,t are all the same as the previous case

except Λt+ and Λt− .We remind that{
2p+ s = 2q + t

2p2 + s2 = 2q2 + t2.

Thank to Lemma 2.2 in [?], {p, q, s, t} is in form of {p, p + 2n, p + 3n, p − n}. Without

loss of generality, we can assume that10 p = 0, so we have q = −2t. For Ω · k + Λt+ and

Ω·k+Λt− , by conservation the momentum, we just need to consider the case when k satisfies

pk1 + qk2 + t = 0 i.e. k2 = 1/2, which is not an integer. For Ω · k + Λt± ± Λj, again by

conservation of the momentum, we have{
pk1 + qk2 + t± j = 0

p2k1 + q2k2 + t2 ± j2 = 0

i.e. {
j = ∓(2k2 − 1)n

j2 = ∓(4k2 + 1)n2.

This system has two solutions for j, either j = 0(= p) or j = 3m(= s), which are both

excluded.

4.2. Three modes case. It is too complicated to verify all the possibility, in this appendix

we just do with an implicit example where (p, q,m) = (−3, 10,−6), which we are interesting

in Theorem ??. In this situation, we have C, E are all empty, A = {−14, 2} and B = {9, 1}.
Recall that

Ω(ρ) =

 p2 + 3ν2 (ρ2
1 + 3ρ2

2 + 3ρ2
3 + 6ρ1ρ2 + 6ρ1ρ3 + 12ρ2ρ3)

q2 + 3ν2 (ρ2
2 + 3ρ2

1 + 3ρ2
3 + 6ρ1ρ2 + 6ρ2ρ3 + 12ρ1ρ3)

m2 + 3ν2 (ρ2
3 + 3ρ2

1 + 3ρ2
2 + 6ρ1ρ3 + 6ρ3ρ2 + 12ρ2ρ1)


and

Λj = j2 + 9ν2(ρ2
1 + ρ2

2 + ρ2
3 + 4ρ1ρ2 + 4ρ2ρ3 + 4ρ3ρ1) j 6= −14,−6,−3, 2, 1, 9, 10.

10using the change of variables j=j-p
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The hypothesis A0 and A1 are trivial. For hypothesis A2 (1), let k = (k1, k2, k3) ∈ Z3/{0},
k′ = (k2 + k3, k1 + k3, k2 + k1) and z = z(k) = k′

|k′| , then we have

(∇ρ · z)(Ω(ρ) · k) =6ν2|k′|−1[ρ1(3k2
2 + 3k2

3 + k1k2 + k1k3 + 6(k1 + k2 + k3)2)

+ ρ2(3k2
1 + 3k2

3 + k1k2 + k2k3 + 6(k1 + k2 + k3)2)

+ ρ3(3k2
2 + 3k2

1 + k3k2 + k1k3 + 6(k1 + k2 + k3)2)].

This term is greater than δ = ν2. Since (∇ρ · z)(Λj − Λ`) = 0, the estimate of small divisor

Ω · k + Λj − Λ` is followed.

For hypothesis A2 (2), (3), choose z = z(k) = − k
|k| , then we have

(∇ρ · z)(Ω(ρ) · k) =− 6ν2|k|−1[ρ1(k2
1 + 3k2

2 + 3k2
3 + 6k1k2 + 6k1k3 + 12k2k3)

+ ρ2(k2
2 + 3k2

1 + 3k2
3 + 6k1k2 + 6k2k3 + 12k1k3)

+ ρ3(k2
3 + 3k2

2 + 3k2
1 + 6k3k2 + 6k1k3 + 12k2k1)]

and

(∇ρ · z)Λj = −18ν2|k|−1[ρ1(k1 + 2k2 + 2k3) + ρ2(k2 + 2k1 + 2k3) + ρ3(k3 + 2k2 + 2k1)].

For Ω · k+ Λj, by conservation of the mass, we just need to estimate this divisor in the case

k1 + k2 + k3 = −1, then by computation we have

|(∇ρ · z)(Ω(ρ) · k + Λj) = 6ν2|k|−1[ρ1(2k2
1 − 6k2k3 + 3k1 + 3) + ρ2(2k2

2 − 6k1k3 + 3k2 + 3)

+ ρ3(2k2
3 − 6k2k1 + 3k3 + 3)]

≥ 6ν2|k|−1[ρ1(2k2
1 −

3

2
(k1 + 1)2 + 3k1 + 3) + ρ2(2k2

2

− 3

2
(k2 + 1)2 + 3k2 + 3) + ρ3(2k2

3 −
3

2
(k3 + 1)2 + 3k3 + 3)]

= 3ν2|k|−1[ρ1(k2
1 + 3) + ρ2(k2

2 + 3) + ρ3(k2
3 + 3)]

≥ ν2.

For Ω · k + Λj + Λ`, again we have k1 + k2 + k3 = −2 by conservation of the mass, hence

|(∇ρ · z)(Ω(ρ) · k + Λj) =6ν2|k|−1[ρ1(2k2
1 − 6k2k3 + 6k1 + 12) + ρ2(2k2

2 − 6k1k3 + 6k2 + 12)

+ ρ3(2k2
3 − 6k2k1 + 6k3 + 12)]

≥ 6ν2|k|−1[ρ1(2k2
1 −

3

2
(k1 + 1)2 + 6k1 + 12) + ρ2(2k2

2

− 3

2
(k2 + 2)2 + 6k2 + 12) + ρ3(2k2

3 −
3

2
(k3 + 2)2 + 6k3 + 12)]

= 3ν2|k|−1[ρ1(k2
1 + 12) + ρ2(k2

2 + 12) + ρ3(k2
3 + 12)]

≥ ν2.
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The set B For ρ ∈ D2: we have

|=Λ1±| > ν2 = δ

so that

|Ω · k + Λ1+ − Λ1− | ≥ 2ν2 > δ.

For Ω · k+ Λ1+ + Λ1− , by the conservation of the mass and the momentum, we just need to

estimate this small divisor if 
k1 + k2 + k3 + 2 = 0

−3k1 + 10k2 − 6k3 + 2 = 0

9k1 + 100k2 + 36k3 + 2 = 0

k1, k2, k3 ∈ Z

This equation system has no solution11.

The set A For Ω · k + Λ2± and Ω · k + Λ2± + Λj again by the conservation of the mass

and the momentum, we have

(∗)


k1 + k2 + k3 + 1 = 0

−3k1 + 10k2 − 6k3 + 2 = 0

9k1 + 100k2 + 36k3 + 4 = 0

(∗∗)


k1 + k2 + k3 + 2 = 0

−3k1 + 10k2 − 6k3 + 2 + j = 0

9k1 + 100k2 + 36k3 + 4 + j2 = 0.

It is easy to see that (∗) has no solution in Z3. For (∗∗) we have j ≡ −k2 − 2 (mod 3) and

j2 ≡ −k2 − 4 (mod 9). If j ≡ ±1 (mod 3) then we have k2 ≡ 0, 2 (mod 4) and k2 = 4

(mod 9), which can not both happen. If j ≡ 0 (mod 3) then we have k2 ≡ 1 (mod 4) and

k2 = 5 (mod 9), which again can not happen. For Ω · k + Λ2± − Λj, because of changes of

variables, we have

Λ2+ = Λ2 − g(ρ1, ρ2, ρ3)

Λ2− = Λ2 − g(ρ1, ρ2, ρ3) + 12(ρ2
3 − ρ2

2 + 3ρ1ρ3 = 3ρ2ρ1)

with g(x, y, z) = µ2
√

81y2z2 + (−18xy + 18xz − 6y2 + 6z2)2−µ2(−18xy+18xz−6y2+6z2).

By the conservation of the mass we just need to consider the case k1 + k2 + k3 = 0, then

(∇ρ · z)(Ω · k + Λ2± − Λj) =12µ2|k|−1[ρ1(k2
2 + k2

3 − k2k3 − 2k2 + k3)

+ ρ2(k2
1 + k2

3 − k1k3 + 2k1 − k3)

+ ρ3(k2
2 + k2

1 − k2k1 + 3k1 − 3k2)]± (∇ρ · z)g

≈ 12|k|µ2ρ± |(∇ρ · z)g|.

11with the implicit form of {p, q,m, s, t} in appendix B, we can solve for general p, q,m
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By the conservation of the momentum we have{
−3k1 + 10k2 − 6k3 + 2− j = 0

9k1 + 100k2 + 36k3 + 4− j2 = 0.

The solution of this equation system that closest to the origin is k = (−975, 195, 780) and

with such a big k, (∇ρ · z)(Ω · k + Λ2± − Λj) is far greater than δ.

5. Appendix B

In this appendix, we try to solve the set B in general{
2p+ q = m+ s+ t

2p2 + q2 = m2 + s2 + t2.

Let q′ = q − p, m′ = m− p, s′ = s− p, t′ = t− p, it becomes{
q′ = m′ + s′ + t′

q′2 = m′2 + s′2 + t′2.

This give us m′s′ + t′s′ + t′m′ = 0, hence s′ = − m′t′

m′+t′
. Assume more that s′, t′,m′ have

no common divisor except ±1. Let k is a prime common divisor of t′ and m′, i.e. t′ =

t”k, m′ = m”k, then s′ = − km”t”
m”+t”

. Since k - s, we have k | t” + m”, i.e. t” = kh − m”,

hence s′ = −m”(kh−m”)
h

= −km” + m”2

h
∈ Z. Let h = (−1)sgn(h)Πpkii , x = Πp

[
ki
2

]

i and

y = (−1)sgn(h)Πp
ki−2[

ki
2

]

i , with pi is prime divisor of h. Then, h = x2y and we need xy | m”,

i.e. m” = ryx. By this, s′ = −kxyr + r2y, m′ = kryx, t′ = k2x2y − ryx. Since s′, t′,m′

have no common divisor except ±1, we have y = ±1. Assume that y = 1, and kx = n,

then s′ = r2 − nr, m′ = nr, t′ = n2 − nr and q′ = n2 − nr + r2. In general, we have

{p, q,m, s, t} = {p, p+ k(n2 − nr + r2), p+ knr, p+ k(r2 − nr), p+ k(n2 − nr)}.
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[6] B. Grébert and V. Rocha. Stable and unstable time quasi periodic solutions for a system of coupled

NLS equations. arXiv:1710.09173 [math.AP] (2017).
[7] E. Hauss and M. Procesi. KAM for Beating Solutions of the Quintic NLS Comm. Math. Phys 354,

(Sep., 2017), 3, pp 11011132.
[8] M. Procesi and C. Procesi. Normal Form for the Schrödinger equation with analytic non–linearities

Comm. Math. Phys, 312 (2012) n.2, 501-557.


