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ScienceDirect
The genomes of most plant species are dominated by

transposable elements (TEs). Once considered as ‘junk DNA’,

TEs are now known to have a major role in driving genome

evolution. Over the last decade, it has become apparent that

some stress conditions and other environmental stimuli can

drive bursts of activity of certain TE families and consequently

new TE insertions. These can give rise to altered gene

expression patterns and phenotypes, with new TE insertions

sometimes causing flanking genes to become transcriptionally

responsive to the same stress conditions that activated the TE

in the first place. Such connections between TE-mediated

increases in diversity and an accelerated rate of genome

evolution provide powerful mechanisms for plants to adapt

more rapidly to new environmental conditions. This review will

focus on environmentally induced transposition, the

mechanisms by which it alters gene expression, and the

consequences for plant genome evolution and breeding.
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Introduction
Transposable elements (TEs) account for the largest

fraction of historically called ‘junk DNA’, that is, DNA

stretches without an obvious protein-coding or regulatory

functional relevance for the organism. As their name

suggests, TEs are mobile within the genome. While type

I TEs (retrotransposons) generate an RNA intermediate

for a ‘copy-and-paste’ strategy; type II TEs (DNA trans-

posons) move as DNA via a ‘cut-and-paste’ mechanism

[1]. Both types are sub-divided into classes and clades,

based on sequence homology and on whether or not the

TEs encode their own transposition machinery. The most

abundant TE classes in plant genomes are long terminal
www.sciencedirect.com 
repeat retrotransposons (LTRs) and miniature inverted-

repeat TEs (MITEs). Although numerous studies on TEs

have been conducted in the model plant Arabidopsis
thaliana, this species is an outlier regarding TE content:

TEs make up only 10% of the A. thaliana genome, while

they account for 85% in maize [2,3] and for 20–40% in

rice, depending on species and cultivar [4�]. These spe-

cies differ not only in absolute TE content, but also in the

proportion of TE classes: while type I TEs (LTRs in

particular) are the most abundant type in A. thaliana and

maize [2,3], rice has four times more DNA transposons

than retrotransposons (recently reviewed in [5]). This

indicates a long and divergent history of TE expansion

during plant evolution, with the current situation reflect-

ing a balance between the TEs amplification strategy

and the host’s defense against resource-requiring genetic

parasites.

Plants have evolved intricate regulatory machineries to

subdue TE mobility and to prevent transposition (recent

reviews in [6–8]). Nonetheless, plant genomes carry sig-

natures of massive TE bursts as well as of constant low-

frequency transposition [9,10], and it has been postulated

that some of these events can act as drivers of genome

evolution, expansion, and plasticity [11,12]. Moreover,

there is increasing evidence that TEs also play a key role

in regulating gene expression. Two possible components

of this evolutionary role are reviewed in the following.

Consequences of TE insertions for adjacent
genes
The regulation of TE activity and the consequences for

the host genome do not only depend on the class of the

element but to a large extent also on the site of its

insertion. The context-dependent TE regulation is

reviewed in detail in [13��]. The accumulation of TEs

in gene-poor heterochromatin like pericentromeric

regions may be the result of efficient selection against

active elements, but many TEs, particularly non-autono-

mous DNA transposons, are frequent near (<2 kb up-

stream or downstream) or within genes. Such insertions in

protein-coding genes can result in altered expression or

modified transcriptional responsiveness of that gene in

different ways (Figure 1).

Insertion of a TE into the coding sequence of a gene can

disrupt gene function, particularly if located within an

exon. This generally results in complete loss-of-function

mutations or drastic changes of the encoded protein.

Intronic TEs can also have similar effects, for example

by altering splicing patterns [14��,15], but may sometimes

be spliced out correctly, or alter the ORF marginally.
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Effects of TE insertions on gene expression. Consequences of TE transpositions into gene-coding regions depend on the exact location of the

insertion and the configuration of the genomic locus. Exonic insertions most frequently lead to truncated or aberrant transcripts; in case of a

matching open reading frame (ORF) in the TE sequence, it can result in exonization and the formation of an alternative translatable allele. TEs in

introns can have a variety of effects: they can be spliced out, leading to an unaltered transcript, or give rise to new isoforms through exonization,

truncation, alternative splicing, or a combination thereof. Outside the transcribed region, TE insertions can disrupt enhancers or regulatory

promoter elements, either reducing or potentiating transcription. Spreading of TE-derived epigenetic marks such as DNA methylation (indicated by

black pins) into the promoter region usually leads to transcriptional silencing.
Insertion of the TE outside the coding region can inter-

fere with promoter functionality, either by disrupting cis-

regulatory regions or transcription start sites, both of

which reduce or abolish transcription, or by providing a

TE-contained promoter element that boosts gene tran-

scription (see [12,16] for recent reviews of the effects of

TEs on gene expression in plants and animals, respec-

tively). Tightly linked is the second mode by which TE

insertion in proximity to a gene can influence the expres-

sion: if the TEs becomes epigenetically silenced, for

example, by RNA-directed DNA methylation (RdDM,

reviewed in [17]), their silenced chromatin state can

spread to the promoter of neighbouring genes [13��]
and suppress their expression.

Examples of functionally relevant TEs are known in

tomato [18], melon [19], and orange trees [20], but most

prominently in the TE-rich crops rice and maize. This is

not surprising as two thirds of maize genes and up to 85%

of rice genes have a TE in close proximity (<1 kb) [3,5].

In maize, TEs were found to be associated with major

traits such as flowering time [21]; others showed a signa-

ture of selection during domestication [22,23] and adap-

tation to temperate zones [24��]. In this last study,
Current Opinion in Plant Biology 2018, 42:23–29 
genome-wide association (GWA) mapping in maize

inbred lines from temperate and tropical/subtropical cul-

tivars identified an association of a 82-bp long MITE in

the promoter of the NAC-type transcription factor

ZmNAC111 with drought tolerance [24��]. The presence

of the MITE correlated with lower ZmNAC111 expres-

sion, most likely via RdDM-mediated transcriptional

suppression, and higher sensitivity to drought. In rice,

phosphate starvation leads to methylation changes pref-

erentially in TEs located close to genes strongly up-

regulated under these conditions [25�]. However, meth-

ylation changes occurred after the transcriptional changes

and might thus be a consequence rather than the cause of

the shift in expression.

It should be noted that TE-mediated gene regulation is

not restricted to TEs located in promoter regions. A

remarkable study of somaclonal variation in oil palm

revealed that spontaneous loss of DNA methylation at

an intronic TE caused aberrant splicing of the homeotic

gene DEFICIENS transcript, resulting in mantled and

thus agronomically useless fruits [14��]. Even when

located downstream of a protein-coding sequence, TEs

can regulate gene expression: in A. thaliana, exposure to
www.sciencedirect.com
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hyperosmotic stress resulted in loss of DNA methylation

at a TE downstream of CARBON NITROGEN INSENSI-
TIVE 1 (CNI1) [26�], in turn leading to the expression of

an antisense long non-coding RNA (lncRNA) that is

likely responsible for the down-regulation of the CNI1
sense transcript. A more general analysis of long inter-

genic non-coding RNAs (lincRNAs) in A. thaliana, maize,

and rice revealed a common pattern of stress-induced

lincRNAs coinciding with TEs. Thereby, new TE inser-

tions might enlarge the reservoir of additional and stress-

responsive regulatory transcripts with direct influence on

the expression level of host genes [27].

Stress-induced TE mobilisation and
consequences for genome plasticity
The examples mentioned above demonstrate that the

regulatory effect of TE insertions on adjacent genes are
Figure 2
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especially evident under challenging conditions. This is

plausible as some TE families contain stress-responsive

elements (SREs) in their own promoters and are them-

selves responsive to external triggers such as biotic and

abiotic stress. Stress-induced TE transcription and in

some cases transposition have been observed under dif-

ferent stress conditions and for different classes of TEs

[28,29]. SREs are most frequent in some LTR families

but also occur in at least one family of MITEs [30]. Upon

transposition, these TE-contained SREs can act as new

cis-regulatory elements and confer stress-responsiveness

to nearby protein-coding genes, thus modifying their

functional spectrum (Figure 2). For example, the

copia-like retrotransposon ONSEN of A. thaliana responds

to heat stress and can confer heat-responsiveness to genes

that are near the new insertion sites [31,32]. Similarly,

mPing, a MITE DNA transposon in rice confers its own
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conditions
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responsiveness to different abiotic stresses to other genes

when inserting in their proximity [33]. Stress-inducible

TE families seem to preferentially locate close to protein-

coding genes. Whether this reflects some selectivity

during insertion, or positive selection of the new regula-

tory potential is difficult to disentangle. TEs containing

heat-response elements (HREs) are more highly con-

served across members of the Brassicaceae than TEs

lacking HREs, suggesting they may be under positive

selection [34]. In the most comprehensive study to date

on the role of TEs in stress-inducible gene regulation, out

of 576 TE families, 20 were found enriched near genes

up-regulated by abiotic stress (heat, cold, salt stress or

UV), while 3 TE families were enriched near down-

regulated genes [35��]. Most importantly, a comparison

of TE insertions among three different cultivars revealed

that stress-responsiveness strongly depends on the pres-

ence of the TE, thus showing that TE polymorphisms can

underlie allelic variation in stress responsiveness.

The idea that genetic diversity generated by TEs might

facilitate adaptation to stressful conditions (Figure 3), first

presented by [11], has been experimentally validated for

many cases and is comprehensively reviewed [36��].
Under natural conditions, such adaptations take genera-

tions to manifest themselves and to get fixed in a popu-

lation where the new trait is beneficial. However, these

events are also of interest for plant breeding, for example

mPing-dependent stress-responsiveness in rice cultivars

[30]. Moreover, accelerating and amplifying such adaptive

potential seems possible: coupling heat stress exposure

with the combined application of a DNA demethylating

agent and a Polymerase II inhibitor boosted the mobiliza-

tion of the heat-responsive ONSEN TE in Arabidopsis,

generating progeny with high variation regarding pheno-

typic and stress-responsiveness [37��]. If this approach can

be transferred to crop species, it might enable a semi-

directional mutagenesis for accelerated plant breeding. It

is important to note that stress-induced effects of TEs on

gene expression have only been observed for a minority of

TE families to date, and examples of stress-induced TE

mobility are even rarer. As this field is receiving increasing

attention, it will be interesting to see how widespread this

phenomenon is.

Impact of TE activity over evolutionary time
The sometimes quite different TE load and distribution

between closely related species in different habitats offer

great opportunities to learn about the role of TEs for

stress resistance over evolutionary time scales. Differ-

ences in total TE content and relative abundance of

different TE families are responsible for most of the

genomic variation between different Brassicaceae [38–

40]. Mating system shifts from outcrossing to selfing are

unlikely to be responsible: although selfing species gen-

erally have fewer TEs and less new TE insertions com-

pared to outcrossers, they do not differ in abundance of
Current Opinion in Plant Biology 2018, 42:23–29 
particular TE families [41–43]. Large differences in

abundance of Gypsy and Copia TEs are also observed

among Asteraceae and in particular at the base of the

Heliantheae (sunflower), where they are thought to play a

role in speciation and are correlated with annual versus

perennial life cycles [44,45].

Recent studies have identified over 23 000 de novo TE

gains and losses within a population of natural A. thaliana
accessions [46��,47��]. New TE insertions generally

occurred at low allele frequencies within the population,

suggesting that the majority of events had been deleteri-

ous. However, they were overrepresented at some loci,

including Nucleotide-binding domain Leucine-rich

Repeat (NLR) defense genes, where in some cases they

seem to have been advantageous [47��]. Many of the new

transposon insertions were in linkage disequilibrium with

neighbouring SNPs and thus represent an additional

source of genetic diversity not picked up using SNP-

based markers [46��]. Interestingly, accessions originating

from geographic regions with more variable temperatures

also had more insertions of the heat-activated ONSEN,
including some in the first intron of Flowering Locus C

(FLC), a key flowering time regulator. These insertions

appear to confer an early flowering phenotype, suggest-

ing that activation of ONSEN by warming temperatures

may have played a role in the emergence of the rapid

cycling in some A. thaliana accessions after the last

glaciation [47��].

This principle might be paralleled in man-made evolu-

tion: compared to their closest wild relatives, domesti-

cated rice cultivars have a striking reduction in the

number of TEs located within genes, especially of those

in exons. Domestication of rice is also correlated with the

gain or loss of TEs at loci involved in flowering time and

photosynthetic efficiency [22,23], as well as major domes-

tication-associated loci such as Grain incomplete filling 1
and Black hull 4 [4�]. Another example is maize where

breeding efforts to adapt ancestral tropical maize varieties

to temperate climate zones has resulted in some TE

insertions shifting from low allele frequency in the tropi-

cal ancestors to medium to high TE allele frequencies in

the cold-tolerant lines. Some of these TEs show signs of

selection and some are close to loci involved in flowering

time and photoperiod response [48�].

Conclusions and outlook
It is now clear that TE-derived DNA sequences are not

mere ‘junk DNA’ but play a fundamental role in regulat-

ing gene expression and are an important source of

genetic variation in plants. This is highlighted by the

massive changes in TE abundance and diversity that

occurred during domestication [4�] and as a result of

breeding efforts [35��,48�]. Stress-activated TEs can con-

fer new transcriptional responses to the genes flanking

their insertion sites. In addition to spontaneously
www.sciencedirect.com
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Figure 3
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Transposon-based evolution of stress resistance. Stress-induced new insertions of a transposon create many deleterious genotypes, while those

with TE-linked enhanced stress resistance are enriched by natural selection or breeding over time.
occurring random mutations, this provides an additional

source of variation on which selection can act to quickly

evolve phenotypes adapted to the stress. The ability to

artificially boost TE activity provides an extra source of

variation for breeding, which is likely to be of increasing

importance in the future.

A substantial fraction of recent studies has focused on a

few temperature-induced TE families. It is likely, how-

ever, that many other environmental conditions or even
www.sciencedirect.com 
biotic interactions can induce additional TE families, and

this needs to be explored in future work. Research with A.
thaliana can now be complemented by investigating other

plants with larger, more complex genomes, thanks to

recent advances in sequencing technology and bioinfor-

matic approaches. It is also apparent that additional layers

of complexity exist, such as the widespread horizontal

transfer of TEs between different plant species [49], and

even from parasitic arthropods to plants [50]. Further

investigation of these processes in a larger array of
Current Opinion in Plant Biology 2018, 42:23–29
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organismic interactions will provide valuable insights in

coming years.

Finally, despite all potential benefits of TEs in evolu-

tionary adaptation and optimized breeding, the dual

nature of TEs as parasites and helpers should not be

forgotten, and their blessings come along with a curse.

The circumstances of transposon bursts, preferences of

insertion sites, and the life cycle of many elements are not

fully understood. Like in classical mutagenesis with

chemical or physical treatments, unwanted side effects

are likely and cannot be excluded, and new TE-related

phenotypes must be thoroughly tested for genetic and

epigenetic stability. However, detrimental and beneficial

events can teach us both principles, and well-established

advantageous interactions between TEs and genes might

serve as templates for more precise and targeted genome

editing and breeding.

Conflict of interest
The authors declare that no conflicts of interest exist.

Acknowledgements

This work was supported by the Austrian Academy of Sciences (ÖAW), the
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