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Abstract

We are concerned with the sign of the solutions of non-cooperative
systems when the parameter varies near a principal eigenvalue of the
system. With this aim we give precise estimates of the validity inter-
val for the Antimaximum Principle for an equation and an example.
We apply these results to a non-cooperative system. Finally a coun-
terexample shows that our hypotheses are necessary. The Maximum
Principle remains true only for a restricted positive cone.
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1 Introduction

In this paper we use ideas concerning the Anti-Maximum Principle due to
Clément and Peletier [5] and later to Arcoya Gamez [3] to obtain in Section
2 precise estimates concerning the validity interval for the Anti-maximum
Principle for one equation. An example shows that this estimate is sharp.
The Maximum Principle and then the Anti-Maximum Principle for the case
of a single equation have been extensively studied later for cooperative ellip-
tic systems (see the references ([1],[6],[7],[8],[10],[12]). The results in [10], are
still valid for systems(with constant coefficients) involving the p-Laplacian.
Some results for non-cooperative systems can be found e.g. in [4],[11]. Very
general results concerning the Maximum Principle for equations and coop-
erative systems for different classes (classical, weak, very weak) of solutions
were given by Amann in a long paper [2], in particular the Maximum Princi-
ple was shown to be equivalent to the positivity of the principal eigenvalue.
Here in Section 3, we consider a non-cooperative 2 × 2 system with con-
stant coefficients depending on a real parameter µ having two real principal
eigenvalues µ−

1 < µ+
1 . We obtain some theorems of Anti-Maximum princi-

ple type concerning the behavior of different cones of couples of functions
having positivity (or negativity) properties. We give several results of this
type for values of µ−

1 < µ but close to µ−
1 by combining the usual Maximum

Principle and the results for the Anti-Maximum Principle in Section 2.
Finally a counterexample is given showing that the Maximum Principle does
not hold in general for non cooperative systems, but a (partial, under an
additional assumption) Maximum Principle for µ < µ−

1 is also obtained.

2 Estimate of the validity interval for the anti-

maximum principle

Let Ω be a smooth bounded domain in IRN . We consider the following
Dirichlet boundary value problem

−∆z = µz + h in Ω , z = 0 on ∂Ω, (2.1)

where µ is a real parameter. We associate to (2.1) the eigenvalue problem

−∆ϕ = λϕ in Ω , ϕ = 0 on ∂Ω. (2.2)

We denote by λk, k ∈ IN∗ the eigenvalues (0 < λ1 < λ2 ≤ ...) and by ϕk a
set of orthonormal associated eigenfunctions. We choose ϕ1 > 0.
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Hypothesis (H0): We write

h = αϕ1 + h⊥ (2.3)

where
∫

Ω
h⊥ϕ1 = 0 and we assume α > 0 and h ∈ Lq, q > N if N ≥ 2 and

q = 2 if N = 1.

Theorem 1 : We assume (H0) and λ1 < µ ≤ Λ < λ2. There exists a
constant K depending only on Ω, Λ and q such that, for λ1 < µ < λ1+ δ(h)
with

δ(h) =
Kα

‖h⊥‖Lq

, (2.4)

the solution z to (2.1) satisfies the antimaximum principle, that is

z < 0 in Ω; ∂z/∂ν > 0 on ∂Ω, (2.5)

where ∂/∂ν denotes the outward normal derivative.

Remark 2.1 The antimaximum principle of Theorem 1, assuming α > 0,
is in the line of the version given by Arcoya Gamez [3].

Lemma 2.1 We assume λ1 < µ ≤ Λ < λ2 and h ∈ Lq, q > N ≥ 2. We
suppose that there exists a constant C1 depending only on Ω, q, and Λ such
that z satisfying (2.1) is such that

‖z‖L2 ≤ C1‖h‖L2 . (2.6)

Then there exist constants C2 and C3, depending only on Ω, q and Λ such
that

‖z‖C1 ≤ C2‖h‖Lq and ‖z‖Lq ≤ C3‖h‖Lq . (2.7)

Remark 2.2 Hypothesis 2.6 cannot hold, unless h is orthonal to ϕ1. In-
deed, letting µ go to λ1, 2.6 implies the existence of a solution to 2.1 with
µ = λ1. Note that in the proof of Theorem 1, Lemma 2.1 is used for h
orthogonal to ϕ1.

2.1 Proof of Lemma 2.1

All constants in this proof depend only on Ω, Λ and q.

Claim: ‖z‖Lq ≤ C3‖h‖Lq .
If the claim is verified then, by regularity results for the Laplace operator
combined with Sobolev imbeddings

‖z‖C1 ≤ C4‖z‖W 2,q ≤ C5(Λ‖z‖Lq + ‖h‖Lq ). (2.8)
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From the claim and regularity results we deduce (2.7).

Proof of the claim:

- Step 1 We consider the sequence pj = 2 + 8j
N

for j ∈ IN . Observe that
for any j, W 2,pj →֒ Lpj+1 and that there exists a constant H(j) such that

∀v ∈ W 2,pj , ‖v‖Lpj+1 ≤ H(j)‖v‖
W

2,pj . (2.9)

The relation (2.9) is obvious if 2pj ≥ N and for 2pj < N we have

Npj
N − 2pj

− pj+1 =
2pjpj+1 − 8

N − 2pj
> 0

and the result follows by classical Sobolev imbedding.

- Step 2 We consider z satisfying (2.1). For j = 0, we derive from (2.6)
and Hölder inequality that

‖z‖L2 ≤ C5‖h‖Lq . (2.10)

By induction we assume that z ∈ Lpj with pj < q and that

‖z‖Lpj ≤ K(j)‖h‖Lq . (2.11)

By Hölder inequality,

‖µz + h‖Lpj ≤ Λ‖z‖Lpj + |Ω|
q−pj

qpj ‖h‖Lq .

By regularity results for the Laplace operator:

‖z‖
W

2,pj ≤ C(j)(Λ‖z‖Lpj + |Ω|
q−pj

qpj ‖h‖Lq ) ≤ C(j)(ΛK(j)+ |Ω|
q−pj

qpj )‖h‖Lq .

Using (2.9) the relation (2.11) holds for j + 1 and the induction is proved.

- Step 3 Let J be such that pJ+1 ≥ q > pJ . After J iterations we get by
(2.11)

‖z‖Lq ≤ C6‖z‖LpJ+1 ≤ C6K(J + 1)‖z‖W 2,p ≤
C7K(J + 1)‖µz + h‖LpJ ≤ C8(Λ‖h‖Lq + ‖h‖LpJ ) ≤ C9‖h‖Lq ,

which is the claim. •
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2.2 Proof of Theorem 1

- Step 1: We prove the following inequality:

‖z⊥‖C1 ≤ C2‖h⊥‖Lq . (2.12)

We derive from (2.3)

z =
α

λ1 − µ
ϕ1 + z⊥, (2.13)

with z⊥ solution of

−∆z⊥ = µz⊥ + h⊥ in Ω ; z⊥ = 0 on ∂Ω. (2.14)

By the variational characterization of λ2:

λ2

∫

Ω

|z⊥|2 ≤
∫

Ω

|∇z⊥|2 = µ

∫

Ω

|z⊥|2 +

∫

Ω

z⊥h⊥.

Hence

‖z⊥‖L2 ≤ 1

λ2 − Λ
‖h⊥‖L2 .

By Lemma 2.1, we derive (2.12).

- Step 2: Close to the boundary:
We show now that on the boundary ∂z

∂ν
(x) > 0. and near the boundary

z < 0.
Since ∂ϕ1/∂ν < 0 on ∂Ω, we set

A := min∂Ω|∂ϕ1/∂ν| > 0. (2.15)

By a continuity argument there exists ε > 0 such that

dist(x, ∂Ω) < ε ⇒ ∂ϕ1/∂ν(x) ≤ −A/2. (2.16)

Hence by (2.12) to (2.16) , for any x ∈ Ω such that dist(x, ∂Ω) < ε, and if

0 < µ− λ1 <
αA

4C2‖h⊥‖Lq

,

we have

∂z

∂ν
(x) =

α

λ1 − µ

∂ϕ1

∂ν
(x) +

∂z⊥

∂ν
(x) ≥ α

λ1 − µ

∂ϕ1

∂ν
(x)− C2‖h⊥‖Lq ,

hence
∂z

∂ν
(x) ≥ α

2(λ1 − µ)

∂ϕ1

∂ν
(x) > 0. (2.17)
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Therefore ∂z
∂ν
(x) > 0 on ∂Ω. Moreover since z = ϕ1 = 0 on ∂Ω, we deduce

from (2.17) that, for x ∈ Ω with dist(x, ∂Ω) < ε′ ≤ ε/2 (ε′ small enough),

z(x) ≤ α

2(λ1 − µ)
ϕ1(x) < 0,

where ε′ does not depend on µ.
- Step 3: Inside Ω:
We consider now Ωε′ := {x ∈ Ω, dist(x, ∂Ω) > ε′}. Set

B := min
Ωε′

ϕ1(x) > 0.

We have in Ωε′ by (2.12) and (2.13)

z(x) =
α

λ1 − µ
ϕ1(x) + z⊥(x) ≤ α

λ1 − µ
B + C2‖h⊥‖Lq < 0

if we choose

µ− λ1 <
αmin(B,A/2)

C2‖h⊥‖Lq

.

We derive now Theorem 1. •

2.3 An example

Let N = 1, Ω =]0, 1[ and h = h1ϕ1 + h2ϕ2 with h1 > 0, h2 > 0. We note
that

ϕ1(x)− sϕ2(x) = sinπx(1− 2scosπx) > 0 (2.18)

in Ω implies s ≤ 1/2. For this example, taking µ = λ1 + ε, ε > 0, we have:

z =
h1

λ1 − µ
ϕ1 +

h2
λ2 − µ

ϕ2 = −h1
ε

(

ϕ1 −
εh2

h1(λ2 − λ1 − ε)
ϕ2

)

.

If the Antimaximum Principle holds, z < 0 in Ω, and by ( 2.18), we have

εh2
h1(λ2 − λ1 − ε)

≤ 1

2
,

hence

ε ≤ h1(λ2 − λ1)

2h2(1 +
h1

2h2
)
≤ h1(λ2 − λ1)

2h2
.

We obtain an estimate of δ(h) similar to that in Theorem 1.

6



3 A non-cooperative system

Now we will consider the 2× 2 non-cooperative system depending on a real
parameter µ:

−∆u = au + bv + µu + f in Ω, (S1)

−∆v = cu + dv + µv + g in Ω, (S2)

u = v = 0 on ∂Ω. (S3)

or shortly
−∆U = AU + µU + F in Ω , U = 0on ∂Ω. (S)

Hypothesis (H1) We assume b > 0 , c < 0, and

D := (a− d)2 + 4bc > 0. (3.19)

3.1 Eigenvalues of the system

As usual we say that µ is an eigenvalue of System (S) if (S1) − (S3) has a
non trivial solution U = (u, v) 6= 0 for F ≡ 0 and we say that µ is a principal
eigenvalue of System (S) if there exists U = (u, v) with u > 0, v > 0 solution
to (S) with F ≡ 0.
Notice that, since (S) is not cooperative, it is not necessarily true that there
is a lowest principal eigenvalue µ1 and that the maximum principle holds if
and only if µ1 > 0 (Amann [2]).
We seek solutions u = pϕ1, v = qϕ1 to the eigenvalue problem where, as
above, (λ1, ϕ1) is the principal eigenpair for −∆ with Dirichlet boundary
conditions.
Principal eigenvalues correspond to solutions with p, q > 0. The associated
linear system is

(a+ µ− λ1)p + bq = 0,

cp + (d+ µ− λ1)q = 0,

and it follows from (H1) that (a + µ − λ1) and (d + µ − λ1) should have
opposite signs. We should have

Det(A+ (µ− λ1)I) = (a+ µ− λ1)(d+ µ− λ1)− bc = 0,

which implies by (H1) that the condition on signs is satisfied and this what-
ever the sign of µ could be. (Notice that D > 0 implies that both roots are
real and that D = 0 gives a real double root).
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We have then shown directly that our system has (at least) two principal
eigenvalues. Their signs will depend on the coefficients. If, for example,
a < λ1, d < λ1, the largest one is positive. We will denote the two principal
eigenvalues by µ−

1 and µ+
1 where

µ−
1 := λ1 − ξ1 < µ+

1 := λ1 − ξ2, (3.20)

where the eigenvalues of Matrix A are:

ξ1 =
a+ d+

√
D

2
> ξ2 =

a+ d−
√
D

2
.

Remark 3.1 Usually the Maximum Principle holds if and only if the first
eigenvalue is positive. Here by replacing −∆ by −∆+K with K > 0 large
enough we may get µ−

1 > 0. Nevertheless the maximum principle needs an
additional condition (see Theorem 4 and its remark).

3.2 Main Theorems

3.2.1 The case µ−
1

< µ < µ+
1

We assume in this subsection that the parameter µ satisfies:

(H2) µ−
1 < µ < µ+

1 .

Theorem 2 Assume (H1), (H2), and

(H3) d < a,

(H4) f ≥ 0, g ≥ 0, f, g 6≡ 0, f, g ∈ Lq, q > N if N ≥ 2 ; q = 2 if N = 1.

Then there exists δ > 0, independent of µ, such that if

(H5) µ < µ−
1 + δ,

we get

u < 0, v > 0 in Ω;
∂u

∂ν
> 0,

∂v

∂ν
< 0 on ∂Ω.

Remark 3.2 If in the theorem above we reverse signs of f, g, u, v that is
f ≤ 0, g ≤ 0, f, g 6≡ 0, then for µ satisfying (H5), we get

u > 0, v < 0 in Ω;
∂u

∂ν
< 0,

∂v

∂ν
> 0 on ∂Ω.

Note that the counterexample in subsection (3.3) shows that for f, g of op-
posite sign( fg < 0), u or v may change sign.
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Theorem 3 Assume (H1), (H2), and

(H ′
3) a < d,

(H ′
4) f ≤ 0, g ≥ 0, f, g 6≡ 0 , f, g ∈ Lq, q > N if N ≥ 2 ; q = 2 if N = 1.

Then there exists δ > 0, independent of µ, such that if

(H5) µ < µ−
1 + δ,

we obtain

u < 0, v < 0 in Ω;
∂u

∂ν
> 0,

∂v

∂ν
> 0 on ∂Ω.

Remark 3.3 If in the theorem above we reverse signs of f, g, u, v that is
f ≥ 0, g ≤ 0, f, g 6≡ 0, then for µ satisfying (H5), we get

u > 0, v > 0 in Ω;
∂u

∂ν
< 0,

∂v

∂ν
< 0 on ∂Ω.

Note that, by the changes used in the proof of the theorem above, the coun-
terexample in subsection (3.3) shows that for f, g with same sign (fg > 0),
u or v may change sign.

3.2.2 The case µ < µ−
1

We assume in this Section that the parameter µ satisfies:

(H ′
2) µ < µ−

1 .

Theorem 4 Assume (H1), (H
′
2), and

(H ′
3) a < d,

(H ′′
4 ) f ≥ 0, g ≥ 0, f, g 6≡ 0, f, g ∈ L2.

Assume also t∗g − f ≥ 0, t∗g − f 6≡ 0 with

t∗ =
d− a+

√
D

−2c
.

Then

u > 0, v > 0 in Ω;
∂u

∂ν
< 0,

∂v

∂ν
< 0 on ∂Ω.

Remark 3.4 As above we can reverse signs of f, g, u, v .
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3.3 Counterexample: a > d

We consider the system in 1 dimension

−u” = 4u + v + µu + f in I :=]0;π[,

−v” = −u + v + µv + g in I,

u(0) = u(π) = v(0) = v(π) = 0.

λ1 = 1 and λ2 = 4; ϕ1 = sinx, ϕ2 = sin 2x. We compute µ−
1 = 1 − 5+

√
5

2
.

Choose f = ϕ1 − 1
2
ϕ2 ≥ 0 and g = kf with k 6= 0 to be determined later.

We obtain
u = u1ϕ1 + u2ϕ2 and v = v1ϕ1 + v2ϕ2,

where

u1 =
k − µ

µ2 + 3µ+ 1
, u2 =

µ− k − 3

2(µ2 − 3µ + 1)
,

1/ Choosing µ = −3 < µ−
1 , we get v1 = −1 and v2 =

1−3k
38

. Therefore

−v = ϕ1 +
3k − 1

38
ϕ2,

and for 3k−1
38

> 1
2
, v changes sign. Hence Maximum Principle does not hold.

2/ Choosing µ−
1
< µ = µ−

1
+ ǫ, k = µ−

1
+ ǫ2, we have

u2
u1

=

(

µ− k − 3

k − µ

)(

µ2 + 3µ+ 1

2(µ2 − 3µ+ 1)
,

)

=

(

3 + ǫ

ǫ

)

( √
5− ǫ

(9 + 3
√
5)− (6 +

√
5)ǫ+ ǫ2

)

.

So that u2

u1
→ ∞ as ǫ → 0. Hence for these f > 0, g < 0, u changes sign. •.

3.4 Proofs of the main results

3.4.1 Some computations and associate equation

In the following we introduce

γ1 =
1

2
(a+ d+ 2µ−

√
D) = λ1 + µ− µ+

1 ; (3.21)

γ2 =
1

2
(a+ d+ 2µ+

√
D) = λ1 + µ− µ−

1 , (3.22)

and some auxiliary results used in the proofs of our results.
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Lemma 3.1 We have

(L1) µ < µ+
1 ⇔ γ1 < λ1.

(L2) µ−
1 < µ ⇔ λ1 < γ2.

(L3)
√
D < a− d ⇔ d+ µ < γ1 < γ2 < a+ µ.

(L4)
√
D < d− a ⇔ a+ µ < γ1 < γ2 < d+ µ.

(L5) µ < µ+
1 + δ ⇔ γ1 < λ1 + δ.

(L6) µ < µ−
1 + δ ⇔ γ2 < λ1 + δ.

3.4.2 Proofs of Theorems 2 and 3

Proof of Theorem 2, a > d:
We introduce now

w = u+ tv, (3.23)

with

t =
a− d+

√
D

−2c
=

2b

a− d−
√
D

(3.24)

so that
−∆w = γ1w + f + tg inΩ; w|∂Ω = 0. (3.25)

We remark that

t =
b

γ1 − d− µ
=

b

a+ µ− γ2
=

γ1 − a− µ

c
=

d+ µ− γ2
c

. (3.26)

Note first that Hypothesis (H3) implies t > 0 and a − d >
√
D. By (H2),

(H4), and (L1) in Lemma 3.1, γ1 < λ1, and we apply the Maximum Principle
which gives w > 0 on Ω and ∂w

∂ν
< 0 on ∂Ω. We compute

a+ µ− b

t
= a+ d+ 2µ− γ1 = γ2, (3.27)

and since v = (w − u)/t, we derive

−∆u = (a+ µ− b

t
)u+

b

t
w + f = γ2u+

b

t
w + f,
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where b
t
w + f > 0. From (H5) and (L6), γ2 ≤ λ1 + δ1, where

δ1 := δ(
b

t
w + f), (3.28)

we deduce from the Antimaximum Principle that u < 0 on Ω and ∂u
∂ν

> 0
on ∂Ω. Hence cu+ g > 0.
Now (H2), (L1) and (L3) imply d+µ < γ1 < λ1 and the Maximum Principle
applied to (S2) gives v > 0 on Ω and ∂v

∂ν
< 0 on ∂Ω.

We apply now Section 1 to estimate δ1.

h :=
b

t
w + f = (γ1 − d− µ)w + f = σϕ1 + h⊥. (3.29)

First we compute σ:Here we show that this is not the case for non-cooperative
systems (with maybe µ−

1
< 0).

In this paper we use ideas concerning the Anti-Maximum Principle due to
Clément and Peletier [5] (see also [9]) in order to study non-cooperative 2×2
systems. In Section 2 we obtain precise estimates concerning the validity
interval for the Anti-maximum Principle for one equation. We include an
example.
In Section 3, we consider a non-cooperative 2×2 system with constant coeffi-
cients depending on a real parameter µ having two real principal eigenvalues
µ−
1 < µ+

1 . We obtain some theorems concerning the behavior of different
cones of couples of functions having positivity (or negativity) properties. We
give several results of this type for values of µ−

1 < µ but close to µ−
1 by com-

bining the usual Maximum Principle and the results for the Anti-Maximum
Principle in Section 2. We actually prove only one of such theorems, all the
others are proved just by making suitable changes of variables. A (partial,
under an additional assumption) Maximum Principle for µ < µ−

1 is also
obtained.
Set f = αϕ1 + f⊥, g = βϕ1 + g⊥, w = κϕ1 + w⊥. Since

−∆w = γ1w + f +
b

γ1 − d− µ
g,

we calculate:

σ = α+ (γ1 − d− µ)κ = α
λ1 − d− µ

λ1 − γ1
+ β

b

λ1 − γ1
.

Now we estimate ‖h⊥‖L2 .

−∆w⊥ = γ1w
⊥ + f⊥ +

b

γ1 − d− µ
g⊥.
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The variational characterization of λ2 gives

(λ2 − γ1)‖w⊥‖L2 ≤ ‖f⊥‖L2 +
b

γ1 − d− µ
‖g⊥‖L2 .

We derive from ( 3.29)

‖h⊥‖L2 ≤ ‖f⊥‖L2+(γ1−d−µ)‖w⊥‖L2 ≤ λ2 − d− µ

λ2 − γ1
‖f⊥‖L2+

b

λ2 − γ1
‖g⊥‖L2 .

Reasoning as in Lemma 2.1, we show that there exists a constant C3 such
that

‖h⊥‖Lq ≤ C3

(

λ2 − d− µ

λ2 − γ1
‖f⊥‖Lq +

b

λ2 − γ1
‖g⊥‖Lq

)

. (3.30)

In fact for proving (3.30) we use the same sequence than that in Lemma 2.1
and we show by induction that

‖z⊥‖Lpj ≤ K(j)
(

‖f⊥‖Lq + ‖g⊥‖Lq

)

.

Now we apply the antimaximum principle to the equation

−∆u = γ2u+ h.

This is possible since by (L6) in Lemma 3.1, λ1 < γ2 < λ1 + δ2 = λ1 + δ(h)
where, as in Theorem 1, δ(h) = Kσ

‖h⊥‖Lq
.

Moreover we notice that λ1 − γ1 = µ+
1 − µ ≤ µ+

1 − µ−
1 and therefore, since

α > 0 and β > 0 by (H4),

σ = α
λ1 − d− µ

λ1 − γ1
+ β

b

λ1 − γ1
≥ A := α

λ1 − d− µ+
1

µ+
1 − µ−

1

+ β
b

µ+
1 − µ−

1

,

and from (3.30), we obtain

‖h⊥‖Lq ≤ B := C3

(

λ2 − d− µ−
1

λ2 − λ1

‖f⊥‖Lq +
b

λ2 − λ1

‖g⊥‖Lq

)

.

From the computation above we can choose δ2 =
KA
B which does not depend

on µ, and the result follows. •
Proof of Theorem 3: a < d. We deduce this theorem from Theorem
2 by change of variables. Set â = d, d̂ = a , û = v, v̂ = −u and f̂ = g ,
ĝ = −f . f̂ ≥ 0, ĝ ≥ 0, imply û < 0, v̂ > 0. We get Theorem 3. •

13



3.4.3 Proof of Theorem 4

Since a < d, we have t∗ = d−a+
√
D

−2c
> 0. With now the change of variable

w = −u+ t∗v, as in [4] (see also [11]) , we can write the system as

−∆u = γ1u+ (b/t∗)w + f inΩ, (3.31)

−∆v = γ1v − cw + g inΩ (3.32)

−∆w = γ2w + (t∗g − f) inΩ, (3.33)

u = v = w = 0 on ∂Ω.

Now µ < µ−
1
, and it follows from (L2) in Lemma 3.1 that γ1 < γ2 < λ1.

From (3.33) it follows from the Maximum Principle that w > 0. Then in
(3.32) −cw + g > 0, and again by the Maximum Principle v > 0. Finally,
since (b/t∗)w + f > 0 in (3.31), again by the Maximum Principle u > 0. •.
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