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Introduction

Cramér's original theorem (see [START_REF] Cramér | Sur un nouveau théorème-limite de la théorie des probabilités[END_REF]) about the large deviations of empirical means of independent and identically distributed real-valued random variables has led to an extensive literature. Several proofs of it were given by Chernoff, Bahadur, Ranga Rao, Petrov, Hammersley, and Kingman (see [START_REF] Chernoff | A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations[END_REF], [START_REF] Bahadur | On deviations of the sample mean[END_REF], [START_REF] Petrov | On the probabilities of large deviations for sums of independent random variables[END_REF], [START_REF] Bahadur | Some Limit Theorems in Statistics[END_REF], [START_REF] Hammersley | Postulates for subadditive processes[END_REF], and [START_REF] Kingman | Subadditive Processes. École d'Été de Probabilités de Saint-Flour V-1975[END_REF]). The result was extended to higher dimensions by Sethuraman, Borovkov, Rogosin, Hoeffding, Sievers, Bartfai, and many others (see [START_REF] Sethuraman | On the probability of large deviations of families of sample means[END_REF], [START_REF] Sethuraman | On the probability of large deviations of the mean for random variables in D[0, 1][END_REF], [START_REF] Borovkov | O central~no predel~no teoreme v mnogomernom sluqae[END_REF], [START_REF] Hoeffding | On probabilities of large deviations[END_REF], [START_REF] Sievers | Multivariate probabilities of large deviations[END_REF], [START_REF] Bártfai | Large deviations of the sample mean in Euclidean spaces[END_REF]). At the same time, Sanov's theorem (see [START_REF] Sanov | On the probability of large deviations of random variables[END_REF]) and its generalizations (see, e.g., [START_REF] Hoadley | On the probability of large deviations of functions of several empirical cdf's[END_REF]), and the study of large deviations of random processes (see, e.g., [START_REF] Varadhan | Asymptotic probabilities and differential equations[END_REF]) gave rise to Donsker and Varadhan's setting of large deviation principles in separable Banach spaces (see [START_REF] Donsker | Asymptotic evaluation of certain Markov process expectations for large time III[END_REF]). In this unifying setting, if we assume the exponential tightness of the sequence of empirical means, or equivalently the boundednes of the pressure in a neighborhood of the origin, then a full large deviation principle can be proved. Independently, the physicist Lanford imported the subadditive argument, developed by him and Ruelle in statistical physics, into Cramér's theory (see [START_REF] Ruelle | Correlation functionals[END_REF] and [START_REF] Lanford | Entropy and Equilibrium States in Classical Statistical Mechanics[END_REF]). Bahadur and Zabell (see [START_REF] Bahadur | Large deviations of the sample mean in general vector spaces[END_REF]) took advantage of this new method to generalize Cramér's theory to locally convex spaces, to simplify some proofs, and to provide a good synthesis of the previous texts. By the way, they revealed that, if you replace the exponential tightness by the less restricting convex tightness, you still have the exponential decay for large deviation events associated with a convex set and the convex duality between negentropy and pressure. Among many others, the standard texts of Azencott, de Acosta, Deuschel, Stroock, Dembo, Zeitouni, and Cerf summarize the successive developments of the theory (see [START_REF] Azencott | Grandes déviations et applications[END_REF], [START_REF] De Acosta | On large deviations of sums of independent random vectors. Probability in Banach spaces V[END_REF], [START_REF] Deuschel | Large Deviations[END_REF], [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF], [START_REF] Cerf | On Cramér's theory in infinite dimensions[END_REF]).

Here, we prove the general results of Cramér's theory in separable Banach spaces without assuming extra hypotheses. Our arguments rely on geometrical and topological properties of Banach spaces, in the spirit of [START_REF] Bahadur | Large deviations of the sample mean in general vector spaces[END_REF] and [START_REF] Cerf | On Cramér's theory in infinite dimensions[END_REF], and enable to complete some known partial conclusions. The main one is the large deviation upper bound for all convex sets, which is even valid in a nonasymptotic form. We deduce that the closure of the domain of the entropy coincides with the closed convex hull of the law of the variables. Another goal of the present text is to shed a new light on the theory, providing efficient and simple proofs. For instance, to prove the convex duality between the negentropy -s and the pressure p, we prove the equality p = (-s) * using the convex tightness of the probability measures on a Banach space and Fatou's lemma (see [START_REF] Dinwoodie | Identifying a large deviation rate function[END_REF] for a similar proof when the full large deviation principle is assumed), whereas usual proofs show the dual equality s = -p * by means of convex regularity and Cramér's theorem in R, which in turn relies on an approximation by simpler variables (discrete in [START_REF] Chernoff | A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations[END_REF], bounded in [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF]) and a limit theorem (Stirling's formula in [START_REF] Chernoff | A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations[END_REF], the law of large numbers in [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF]). By the way, we intensively exploit the nice properties of convex sets to simplify proofs and establish the equivalence between convex regularity and convex tightness (which clarifies the appendix of [START_REF] Bahadur | Large deviations of the sample mean in general vector spaces[END_REF]). It appears that our methods can be generalized to locally convex spaces, but technical points may have hidden the heart of our new proofs. We also show how Varadhan-like lemmas provide unifying results and, eventually, we prove a Varadhan-like lemma for concave functions which embraces both the nonasymptotic upper bound for convex sets and the equality p = (-s) * . After setting the stage and stating the results (Sect. 2), we first give a short proof of the weak large deviation principle (Sect. 3). Then we prove the large deviation upper bound for convex sets and deduce the clear identification of the closure of the domain of the entropy (Sect. 4). Section 5 is devoted to the proof of the convex duality between negentropy and pressure. Finally we prove the general convex upper bound à la Varadhan (Sect. 6). Except for the classic Fenchel-Moreau theorem (see [START_REF] Moreau | Fonctionnelles convexes. Séminaire sur les Équations aux Dérivées Partielles[END_REF]), proofs of convex analysis are provided; complementary notions can be found in general texts like [START_REF] Moreau | Fonctionnelles convexes. Séminaire sur les Équations aux Dérivées Partielles[END_REF] and [START_REF] Rudin | Functional Analysis[END_REF].

Setting and results

Let X be a separable Banach space, B the Borel σ-algebra over X , and µ a probability measure on (X , B). Let (X n ) n 1 be a sequence of independent and identically distributed random variables with law µ. For all n 1, let X n be the empirical mean

(X 1 + X 2 + • • • + X n )/n. Definition 1. The entropy of the sequence (X n ) n 1 is the function s : X → [-∞, 0] defined by ∀x ∈ X s(x) := inf ε>0 lim inf n→∞ 1 n log P X n ∈ B(x, ε)
where B(x, ε) denotes the open ball of radius ε centered at x in X .

By construction, the entropy s is the greatest function that satisfies the lower bound:

(LB) for all open subsets G, lim inf n→∞ 1 n log P X n ∈ G sup x∈G s(x).
One says that the sequence (X n ) n 1 satisfies a large deviation principle if, in addition, it satisfies the upper bound:

(UB) for all closed subsets F , lim sup n→∞

1 n log P X n ∈ F sup x∈F s(x).
Conditions so that (UB) be satisfied, such as exponential tightness of the sequence (X n ) n 1 , are given in standard texts (see [START_REF] Donsker | Asymptotic evaluation of certain Markov process expectations for large time III[END_REF], [START_REF] Bahadur | Large deviations of the sample mean in general vector spaces[END_REF], [START_REF] Azencott | Grandes déviations et applications[END_REF], [START_REF] De Acosta | On large deviations of sums of independent random vectors. Probability in Banach spaces V[END_REF], [START_REF] Deuschel | Large Deviations[END_REF], [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF] and [START_REF] Cerf | On Cramér's theory in infinite dimensions[END_REF]). Here, as in [START_REF] Bahadur | Large deviations of the sample mean in general vector spaces[END_REF] and [START_REF] Cerf | On Cramér's theory in infinite dimensions[END_REF], we are interested in weaker upper bounds that do not require additional hypotheses. For instance, the following result is well-known (see, e.g., [START_REF] Donsker | Asymptotic evaluation of certain Markov process expectations for large time III[END_REF] or [START_REF] Bahadur | Large deviations of the sample mean in general vector spaces[END_REF]).

Theorem 1. The sequence (X n ) n 1 satisfies a weak large deviation principle, i.e. it satisfies the compact upper bound:

(UB k ) for all compact subsets K, lim sup n→∞ 1 n log P X n ∈ K sup x∈K s(x).
The upper bound is known also for open convex sets (see [START_REF] Bahadur | Large deviations of the sample mean in general vector spaces[END_REF]), but the proof for closed convex sets is omitted. Here we prove the better nonasymptotic versions of them.

Theorem 2. The sequence (X n ) n 1 satisfies the nonasymptotic closed convex upper bound: 

(UB cc )
lim n→∞ 1 n log P X n ∈ C = sup n 1 1 n log P X n ∈ C = sup x∈C s(x) .
The proof we give here does not rely on hypothesis ( Ĉ) of [14, Sect. 3.1], or assumption 6.1.2 of [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF], but simply on the convex tightness of µ introduced in [START_REF] Bahadur | Large deviations of the sample mean in general vector spaces[END_REF] and it generalizes more easily 1 . Theorem 2 appears to be very convenient in the study of large deviations of means of independent and identically distributed random variables. For instance, consider the domain of the entropy dom(s) = {s > -∞}. Denote by co supp(µ) the convex hull of the support of the measure µ.

Theorem 3. The closure of the domain of the entropy s is the closed convex hull of the support of the measure µ, i.e.

dom(s) = co supp(µ) .

The result is only partially proved in [START_REF] Bahadur | Large deviations of the sample mean in general vector spaces[END_REF] and [START_REF] Cerf | On Cramér's theory in infinite dimensions[END_REF]. We give a complete proof. Another consequence of theorem 2 is the link between entropy and pressure. Let X * denote the topological dual of X and let p :

X * → (-∞, +∞] be the pressure 2 of the sequence (X n ) n 1 defined by ∀λ ∈ X * p(λ) := lim sup n→∞ 1 n log E e nλ(Xn) = log E e λ(X 1 )
which reduces to the log-Laplace transform of µ.

Theorem 4. The pressure p and the negentropy -s are convex-conjugate functions, i.e.

∀λ ∈ X * p(λ) = sup x∈X (λ(x) + s(x)) =: (-s) * (λ) (1) 
and ∀x ∈ X -s(x) = sup λ∈X * (λ(x) -p(λ)) =: p * (x) . (2) 
Equation ( 2) is well-known (see, e.g., [START_REF] Bahadur | Large deviations of the sample mean in general vector spaces[END_REF], [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF] and [START_REF] Cerf | On Cramér's theory in infinite dimensions[END_REF]) and standard proofs rely on three ingredients: Chebyshev's inequality, the open half-space upper bound3 , which is a particular case of (UB oc ), and Cramér's theorem in R. Equation (1) follows from equation ( 2) by proving that p is convex and lower semi-continuous (see [START_REF] Cerf | On Cramér's theory in infinite dimensions[END_REF], chapter 12). Here we give a simple original proof of equation ( 1) from which we deduce equation [START_REF] Bahadur | Some Limit Theorems in Statistics[END_REF]. Even in X = R, it provides a new proof of Cramér's theorem (see [START_REF] Cerf | A Short Proof of Cramér's Theorem in R[END_REF]). Notice that equation ( 1) is similar to Varadhan's lemma (remember the first definition of the pressure p). The present proof relies on Varadhan-like versions of the lower bound and compact upper bound:

Lemma 1. The sequence (X n ) n 1 satisfies the lower bound à la Varadhan:

(VLB) for all lower semi-continuous functions f :

X → [-∞, +∞), lim inf n→∞ 1 n log E e nf (Xn) sup x∈X (f (x) + s(x)) .
Lemma 2. The sequence (X n ) n 1 satisfies the compact upper bound à la Varadhan:

(VUB k ) for all upper semi-continuous functions f : X → [-∞, +∞) such that {f > -∞} is relatively compact, lim sup n→∞ 1 n log E e nf (Xn) sup x∈X (f (x) + s(x)) .
Interestingly enough, lemma 2 provides a Varadhan-like version of the convex upper bounds, which in turn implies theorems 2 and 4:

Theorem 5. The sequence (X n ) n 1 satisfies the nonasymptotic convex upper bounds à la Varadhan:

(VUB cc ) for all upper semi-continuous concave functions f : X → [-∞, +∞), lim sup n→∞ 1 n log E e nf (Xn) = sup n 1 1 n log E e nf (Xn) sup x∈X (f (x) + s(x)) ;
and:

(VUB oc ) for all concave functions f : X → [-∞, +∞) such that C = {f > -∞} is open and f | C is upper semi-continuous, lim n→∞ 1 n log E e nf (Xn) = sup n 1 1 n log E e nf (Xn) sup x∈X (f (x) + s(x)) .
3 Proof of theorem 1

The proof of the weak large deviation principle relies on two key arguments: subadditivity and what may be called "the principle of the largest term" (see [START_REF] Lewis | Entropy, concentration of probability and conditional limit theorems[END_REF]). The former is the purpose of proposition 2 and the latter that of proposition 3. Beforehand, we need two very handy properties of open convex sets.

Proposition 1. Let C be an open convex subset of X containing 0. Then t>0 tC = X , (3) 
i.e. C is an absorbing subset of X , and

δ∈(0,1) (1 -δ)C = C . (4) 
Proof. To show (3), let x ∈ X . Since the mapping a ∈ R → ax ∈ X is continuous and C is a neighborhood of 0, there is α > 0 such that αx ∈ C. Setting t = 1/α, we get x ∈ tC. As for (4), let x ∈ C. Since the mapping a ∈ R → ax ∈ X is continuous and C is a neighborhood of x, there is α > 0 such that (1 + α)x ∈ C. Defining δ ∈ (0, 1) by

1 -δ = 1/(1 + α), we get x ∈ (1 -δ)C, whence C ⊂ δ∈(0,1) (1 -δ)C
and the converse inclusion is trivial.

Proposition 2 below is fundamental in Cramér's theory. Here is a short proof relying on the proposition above.

Proposition 2. Let C be an open convex subset of X . Then

lim n→∞ 1 n log P X n ∈ C = sup n 1 1 n log P X n ∈ C . Proof. The result is trivial if C = ∅. Now suppose 0 ∈ C, otherwise consider (X n -x) n 1
for some x ∈ C. Let n, m 1 and write n = qm + r the Euclidean division of n by m with r ∈ {1, 2, . . . , m}. Let δ ∈ (0, 1). Using the convexity of C, the independence of X 1 , X 2 , . . . , X n , and the fact that

X n = m n q-1 k=0   1 m (k+1)m i=km+1 X i   + 1 n n i=mq+1 X i ,
we get

P X n ∈ C P X m ∈ n qm (1 -δ)C q P X 1 ∈ n r δC r .
Since r m and C is an absorbing subset of X (see proposition 1 (3)),

P X 1 ∈ nδ r C r P X 1 ∈ nδ m C m ---→ n→∞ 1 .
Hence, remembering that qm n,

lim inf n→∞ 1 n log P X n ∈ C lim inf n→∞ q n log P X m ∈ n(1 -δ) qm C 1 m log P X m ∈ (1 -δ)C
and the proof is completed by taking the limit when δ → 0 (see proposition 1), and then the supremum over m 1.

Notice that proposition 2 is more generally valid for algebraically open convex sets that are measurable, i.e. measurable convex sets that satisfy properties (3) and (4) of proposition 1 and their translates, i.e. measurable convex sets that are equal to their algebraic interior (see [START_REF] Zălinescu | Convex analysis in general vector spaces[END_REF]).

The next simple but useful result is well-known and may be called the "principle of the largest term" (see, e.g., [13, Lemma 1.2.15], [START_REF] Lewis | Entropy, concentration of probability and conditional limit theorems[END_REF], and [START_REF] Cerf | On Cramér's theory in infinite dimensions[END_REF]). We give its proof for the sake of completeness.

Proposition 3. Let u 1 , u 2 , . . . , u r be [0, +∞]-valued sequences. Then

lim sup n→∞ 1 n log r i=1 u i (n) = max 1 i r lim sup n→∞ 1 n log u i (n).
Proof. From the double inequality

max 1 i r u i (n) r i=1 u i (n) r max 1 i r u i (n),
we get

lim sup n→∞ 1 n log r i=1 u i (n) = lim sup n→∞ 1 n log max 1 i r u i (n).
Moreover

lim sup n→∞ 1 n log max 1 i r u i (n) = lim n→∞ max 1 i r sup k n 1 k log u i (k) = max 1 i r lim n→∞ sup k n 1 k log u i (k) , since the function max : [-∞, +∞] r → [-∞, +∞] is continuous.
Proof of theorem 1. Let K be a compact subset of X and α > 0. For all x ∈ K, apply proposition 2 and choose ε > 0 such that

lim n→∞ 1 n log P X n ∈ B(x, ε) max(s(x) + α, -1/α) .
Since K is compact, there is a finite subcover

K ⊂ B 1 ∪ B 2 ∪ • • • ∪ B r with B i = B(x i , ε i
). Now apply propositions 3 and 2 to get

lim sup n→∞ 1 n log P X n ∈ K lim sup n→∞ 1 n log r i=1 P X n ∈ B i = max 1 i r lim n→∞ 1 n log P X n ∈ B i max 1 i r max(s(x i ) + α, -1/α) max sup x∈K s(x) + α, -1/α
and finally let α → 0.

Proofs of theorems 2 and 3

To prove the convex upper bounds, we will simply extend the compact (convex) upper bound to convex sets using the convex tightness of the measures on (X , B). The idea can be traced back to [START_REF] Bahadur | Large deviations of the sample mean in general vector spaces[END_REF] and the proof given here is shorter and complete.

Proposition 4. Any probability measure ν on (X , B) is convex tight, i.e. for all α > 0, there exists a compact convex subset K of X such that ν(K) > 1 -α.

Proof. Let ν be a probability measure on (X , B) and let α > 0. Since X is metric, separable, and complete, ν is tight, i.e. there is a compact subset K 1 of X such that ν(K 1 ) > 1 -α (see [START_REF] Billingsley | Convergence of probability measures[END_REF], theorem 1.3). Then K = co(K 1 ) the closed convex hull of K 1 is compact (see [START_REF] Dunford | Linear operators. Part I: General theory[END_REF], theorem V.2.6) and satisfies ν(K) > 1 -α.

To prove (UB cc ), we also need a fact similar to proposition 2.

Proposition 5. Let C be a measurable convex subset of X . Then

lim sup n→∞ 1 n log P X n ∈ C = sup n 1 1 n log P X n ∈ C .
Proof. Let m, q 1. Since C is convex and X 1 , X 2 , . . . , X qm are independent,

P X qm ∈ C P X m ∈ C q . Hence lim sup n→∞ 1 n log P X n ∈ C lim sup q→∞ 1 qm log P X qm ∈ C 1 m log P X m ∈ C .
Take the supremum over m 1 to conclude.

Proof of (UB cc ). Let C be a closed convex subset of X and N 1. By proposition 4, the distribution of X N is convex tight, whence, for all α > 0, there exists a compact convex subset K of X such that

1 N log P X N ∈ C 1 N log P X N ∈ C ∩ K + α . (5) 
Applying proposition 5 to the convex C ∩ K leads to

1 N log P X N ∈ C ∩ K lim sup n→∞ 1 n log P X n ∈ C ∩ K .
Finally, the application of theorem 1 to the compact C ∩ K yields

lim sup n→∞ 1 n log P X n ∈ C ∩ K sup x∈C∩K s(x) sup x∈C s(x) .
From (5), we get

1 N log P X N ∈ C sup x∈C s(x) + α .
Conclude by letting α → 0.

A detailed observation of this last proof shows that it only requires the convex tightness of µ. Indeed, the convex tightness of µ implies the convex tightness of the distribution of X N , since, if K is convex, then

P(X N ∈ K) P(X 1 ∈ K) N .
This simple remark is fruitful: it permits to establish (UB cc ) in a more general context and to avoid technical hypotheses. The proof of (UB oc ) is in the same vein. We only need a nice property of open convex sets. Proof. Let ν be a probability measure on X , let C be an open convex subset of X , and let α > 0. Using proposition 4, there is a compact subset

K 1 of X such that ν(K 1 ) > 1 -α/2.
Using proposition 6, we can choose δ ∈ (0, 1)

such that ν((1 -δ)C) > ν(C) -α/2. Finally, K = K 1 ∩ (1 -δ)C is a compact convex subset of C such that ν(K) > ν(C) -α.
To sum up the previous proof, the convex inner regularity of a measure is equivalent to its convex tightness (in a general topological vector space). In a more general context, this argument completes the proof of [4, appendix, proposition 1] and gives a simpler condition than hypothesis ( Ĉ) of [START_REF] Deuschel | Large Deviations[END_REF]Sect. 3.1] or assumption 6.1.2 of [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF].

Proof of (UB oc ). In inequality ( 5) of the proof of (UB cc ), replace C ∩ K by a compact convex subset K of C given by proposition 7 to obtain

1 N log P X N ∈ C sup x∈C s(x) .
The last remark of theorem 2 then follows from (LB).

To prove theorem 3, we show two intermediate and useful results. Remember that the support of the measure µ is the subset of X defined by

supp(µ) = {x ∈ X ; ∀ε > 0, µ(B(x, ε)) > 0} . Proposition 8. For any open ball B in X , B ∩ supp(µ) = ∅ ⇐⇒ µ(B) > 0 .
Proof. The direct implication is a mere consequence of the definition of supp(µ). And the converse one stems from the fact that X is second countable, so that we have µ(supp(µ)) = 1 (see [START_REF] Parthasarathy | Probability measures on metric spaces[END_REF], theorem 2.1). We provide another proof that relies on the convex inner regularity of µ. Consider an open ball B such that B ∩ supp(µ) = ∅. Let α > 0. Use the convex inner regularity of µ to find a compact subset K of B such that µ(K) > µ(B) -α. For all x ∈ K, there exists ε > 0 such that µ(B(x, ε)) = 0. Extract a finite subcover

K ⊂ B 1 ∪ B 2 ∪ • • • ∪ B r with B i = B(x i , ε i ). Finally, µ(B) µ(K) + α r i=1 µ(B i ) + α = α
and let α → 0. Proposition 9. The entropy s is upper semi-continuous and concave.

Proof. To show that s is upper semi-continuous, take t ∈ R and x ∈ X such that s(x) < t. By the very definition of s, there is ε > 0 such that

lim n→∞ 1 n log P X n ∈ B(x, ε) < t .
For all y ∈ B(x, ε), take δ such that B(y, δ) ⊂ B(x, ε) and write

s(y) lim n→∞ 1 n log P X n ∈ B(y, δ) lim n→∞ 1 n log P X n ∈ B(x, ε) < t .
So s is upper semi-continuous. Now we prove that s is concave. Let x, y ∈ X and set z = (x + y)/2. Let ε > 0 and set B z = B(z, ε), B x = B(x, ε/2), and

B y = B(y, ε/2). For all n 1, P X 2n ∈ B z P X n ∈ B x P X n ∈ B y whence lim n→∞ 1 2n log P X 2n ∈ B z lim n→∞ 1 2n log P X n ∈ B x P X n ∈ B y s(x) + s(y) 2 .
Taking the infimum in ε, we get s((x + y)/2) (s(x) + s(y))/2 and the concavity of s follows, since s is upper semi-continuous.

Proof of theorem 3. Since s is concave (see proposition 9), dom(s) is a convex subset of X , so we only need to prove supp(µ) ⊂ dom(s)

and dom(s) ⊂ co supp(µ) .

Let x / ∈ dom(s) and ε > 0 such that B(x, ε) ∩ dom(s) = ∅. The bound (UB oc ) implies log µ(B(x, ε)) = -∞. With proposition 8, we get B(x, ε) ∩ supp(µ) = ∅, so inclusion (6) is proved. Now, let x ∈ dom(s) and ε > 0. Showing that B(x, ε) ∩ co supp(µ) = ∅ is enough to prove inclusion [START_REF] Borovkov | O central~no predel~no teoreme v mnogomernom sluqae[END_REF]. There is n 1 such that P(X n ∈ B(x, ε/2)) > 0, i.e. µ ⊗n (C) > 0 where

C = (u 1 , u 2 , . . . , u n ) ∈ X n ; u 1 + u 2 + • • • + u n n ∈ B(x, ε/2) . Let Q be a countable dense subset of X . Since C is an open subset of X n , Q n ∩ C is a dense subset of C, whence C ⊂ (u 1 ,...,un)∈Q n ∩C n i=1 B(u i , ε/2) .
Since the union is countable and µ ⊗n (C) > 0, there is (u 1 , u 2 , . . . , u n ) ∈ C such that, for all integers i ∈ {1, 2, . . . , n}, µ(B(u i , ε/2)) > 0. So, by proposition 8, for all integers i ∈ {1, 2, . . . , n}, there is y i ∈ B(u i , ε/2) ∩ supp(µ). Hence,

y := y 1 + y 2 + • • • + y n n ∈ B u 1 + u 2 + • • • + u n n , ε/2 ⊂ B(x, ε)
and y ∈ co supp(µ).

Note that theorem 3 implies theorem 2.4 (a) and (b) of [START_REF] Bahadur | Large deviations of the sample mean in general vector spaces[END_REF] and results 9.7 and 9.8 of [START_REF] Cerf | On Cramér's theory in infinite dimensions[END_REF].

Proof of theorem 4

The Fenchel-Legendre transform of a function g : X → [-∞, +∞] is the function on the dual space g * :

X * → [-∞, +∞] defined by ∀λ ∈ X * g * (λ) = sup x∈X λ(x) -g(x) .
Similarly, the Fenchel-Legendre transform of a function h :

X * → [-∞, +∞] is the function h * : X → [-∞, +∞] ∀x ∈ X h * (x) = sup λ∈X * λ(x) -h(λ) .
We say that the functions g : X → [-∞, +∞] and h :

X * → [-∞, +∞] are convex conjugate functions if g * = h and h * = g.
Proposition 10 (Fenchel-Moreau theorem). A function g : X → (-∞, +∞] satisfies g * * = g if and only if g is lower semi-continuous and convex.

Proof. See, e.g., [START_REF] Moreau | Fonctionnelles convexes. Séminaire sur les Équations aux Dérivées Partielles[END_REF] 5.d.

Proof of theorem 4. Knowing that s is upper semi-continuous and concave (see proposition 9), and applying proposition 10, we only need to prove p = (-s) * . The classic proof of the inequality p (-s) * , or its equivalent s -p * , relies on Chebyshev's inequality (see, e.g., [START_REF] Bahadur | Large deviations of the sample mean in general vector spaces[END_REF] theorem 3.1). Another proof consists in applying lemma 1 (the proof of which is given below) to the continuous functions f = λ ∈ X * . The other inequality p (-s) * , or its equivalent s -p * , is usually proved via the open half-space upper bound and Cramér's theorem in R (see, e.g., [START_REF] Bahadur | Large deviations of the sample mean in general vector spaces[END_REF] part 3). Let us see how we can get it via lemma 2 (the proof of which is given below). Let λ ∈ X * and let α > 0. Since µ is convex tight (see proposition 4) and using Fatou's lemma, there exists a compact convex subset K of X such that min log E e λ(X 1 ) -α, 1/α log E e λ(X 1 ) 1 K (X 1 ) .

Since K is convex, for all n 1, the conjunction of X 1 ∈ K, X 2 ∈ K, . . . , and X n ∈ K implies X n ∈ K. Hence, using the independence of the X i 's, we get log E e λ(X 1 ) 1 K (X 1 ) inf

n 1 1 n log E e nλ(Xn) 1 K (X n ) lim sup n→∞ 1 n log E e n(λ+χ K )(Xn)
where

χ K = log 1 K
is the characteristic function of the convex set K. Finally, we apply lemma 2 to the upper semi-continuous function f = λ + χ K for which {f > -∞} = K is compact and we get

lim sup n→∞ 1 n log E e n(λ+χ K )(Xn) sup x∈X (λ(x) + χ K (x) + s(x)) (-s) * (λ) .
Conclude the proof by letting α → 0.

Proof of lemma 1. Let f : X → [-∞, +∞] be a lower semi-continuous function. Let x ∈ X and let α > 0. There is ε > 0 such that, for all y ∈ B(x, ε), f (y) min(f (x) -α, 1/α) .

Hence,

lim inf n→∞ 1 n log E e nf (Xn) lim inf n→∞ 1 n log E e nf (Xn) 1 B(x,ε) (X n ) min(f (x) -α, 1/α) + lim inf n→∞ 1 n log P X n ∈ B(x, ε) min(f (x) -α, 1/α) + s(x) .
Taking the limit when α → 0 and the supremum over x ∈ X , we get

lim inf n→∞ 1 n log E e nf (Xn) sup x∈X (f (x) + . s(x))
where + . is the natural extension of the addition verifying (-∞) + . (+∞) = -∞. The result reduces to (VLB) when {f = +∞} = ∅.

Proof of lemma 2. Let f : X → [-∞, +∞] be an upper semi-continuous function such that K := {f > -∞} is relatively compact. Let α > 0. For all x ∈ X , there is ε > 0 such that, for all y ∈ B(x, ε), f (y) max(f (x) + α, -1/α).

By the definition of s(x) and proposition 2, should we reduce ε, we may suppose that

lim sup n→∞ 1 n log P X n ∈ B(x, ε) max(s(x) + α, -1/α) . Extract a finite subcover K ⊂ B 1 ∪ B 2 ∪ • • • ∪ B r with B i = B(x i , ε i ). For all n 1, 1 n log E e nf (Xn) 1 n log r i=1 E e nf (Xn) 1 B i (X n ) 1 n log r i=1
e n max f (x i )+α,-1/α P X n ∈ B i .

Taking the limit superior when n → ∞ and applying the principle of the largest term (proposition 3), we get

lim sup n→∞ 1 n log E e nf (Xn) max 1 i r max(f (x i ) + α, -1/α) + max(s(x i ) + α, -1/α) sup x∈X max(f (x) + α, -1/α) + max(s(x) + α, -1/α) .
Letting α → 0, we get

lim sup n→∞ 1 n log E e nf (Xn) sup x∈X (f (x) s(x))
where is the natural extension of the addition such that (-∞) (+∞) = +∞. The result reduces to (VUB k ) when {f = +∞} = ∅.

Proof of theorem 5

The proof of theorem 5 is a slight variant of that of theorem 2. We need here a complete version of the subadditive lemma due to Fekete (see [START_REF] Fekete | Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit. ganzzahligen Koeffizienten[END_REF]). It is very well known when u is finite valued with a proof similar to that of propositions 2 and 5.

Proposition 11. Let u be a [-∞, +∞]-valued sequence. Suppose that u is subadditive, i.e. for all m, n 1, u(m + n) u(m) u(n), where is the natural extension of the addition such that (-∞) (+∞) = +∞. Then

lim inf n→∞ u(n) n = inf n 1 u(n) n . ( 8 
)
If u is also controlled, i.e. there is N 1 such that, for all n N , u(n) < +∞, then

lim n→∞ u(n) n = inf n 1 u(n) n . (9) 
Proof. Let u be a subadditive [-∞, +∞]-valued sequence. For m 1, we have u(i) .

Since, for all i m, u(i) < +∞, we get 

Proof. Let f : X → [-∞, +∞] be a + . -concave function. For all integers m, n 1, since (m + n)f (X m+n ) mf (X m ) + . nf ((X m+1 + • • • + X m+n )/n), we get E e (m+n)f (X m+n ) E e mf (Xm) E e nf (Xn) , so u(n) := -log E e nf (Xn) is a subadditive sequence and equation [START_REF] Chernoff | A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations[END_REF] stems from proposition 11. Suppose that C = {f > -∞} is open. Then, either, for all n 1, u(n) = +∞ and equation ( 11) is trivial; or there exists m 1 such that u(m) < +∞. Then P(X m ∈ C) > 0. Using proposition 2, we find that there exists N 1 such that, for all n N , P(X n ∈ C) > 0, whence u(n) < +∞. So u is controlled and equation [START_REF] Cramér | Sur un nouveau théorème-limite de la théorie des probabilités[END_REF] stems from proposition 11.

Proof of (VUB cc ). Let f : X → [-∞, +∞] be an upper semi-continuous + . -concave function (if {f = +∞} = ∅, f is simply upper semi-continuous and concave). The first equality stems from proposition 12. Let us prove the inequality. Let α > 0. Choose N 1 such that min sup n 1

1 n log E e nf (Xn) -α, 1/α 1 N log E e N f (X N ) .

Let β > 0. By proposition 4, the distribution of X N is convex tight. Using Fatou's lemma, there exists a compact convex subset K of X such that

min 1 N log E e N f (X N ) -β, 1/β 1 N log E e N f (X N ) 1 K (X N ) . (12) 
Applying proposition 12 to the + . -concave function f + . χ K , we get

1 N log E e N f (X N ) 1 K (X N ) lim sup n→∞ 1 n log E e n(f + . χ K )(Xn) .
Finally, we apply lemma 2 (more precisely the slight generalization appearing in its proof) to the upper semi-continuous function f + . χ K and get lim sup To prove the inequality, suppose that, in inequality [START_REF] De Acosta | On large deviations of sums of independent random vectors. Probability in Banach spaces V[END_REF], K is a compact convex subset of C (see proposition 7) and notice that f + . χ K is upper semi-continuous.

Proposition 6 .Proposition 7 .

 67 Let C be an open convex subset of X containing 0. Then, δ∈(0,1)(1 -δ)C = C .Proof. Given proposition 1, it remains to show that, for all δ ∈ (0, 1), (1-δ)C ⊂ C. Let δ ∈ (0, 1) and let x ∈ (1 -δ)C. Defining α > 0 by 1 + α = 1/(1 -δ), we have (1 + α)x ∈ C. Since -C is a neighborhood of 0, ((1 + α)x -αC) ∩ C = ∅, whence x ∈ C.Proposition 6 implies: Any probability measure ν on (X , B) is convex inner regular, i.e. for all open convex subsets C of X and for all α > 0, there exists a compact convex subset K of C such that ν(K) > ν(C) -α.

  follows by taking the infimum over m 1. Now suppose that u is also controlled. Let m N . For all n m, write n = qm + r the Euclidean division of n by m with r ∈ {m, m + 1, . . . , 2m -1} and u(n) qu(m) u(r

1 1 n

 11 equation[START_REF] Cerf | A Short Proof of Cramér's Theorem in R[END_REF] follows by taking the infimum over m 1.We immediately deduce the useful property: Proposition 12. Let f : X → [-∞, +∞] be a + . -concave function, i.e. for all x, y ∈ X and t ∈ (0, 1),f (1 -t)x + ty (1 -t)f (x) + . tf(y) , where + . is the natural extension of the addition verifying (-∞) + . (+∞) = -∞. Then lim sup n→∞ 1 n log E e nf (Xn) = sup n log E e nf (Xn) . (10) If, moreover, C = {f > -∞} is open, then lim n→∞ 1 n log E e nf (Xn) = sup n 1 1 n log E e nf (Xn) .

n→∞ 1 n

 1 log E e n(f + . χ K )(Xn) sup x∈X (f (x) s(x)) . Conclude by letting α, β → 0. Proof of (VUB oc ). Let f : X → [-∞, +∞] be a + . -concave function such that C = {f > -∞} is open and f | C is upper semi-continuous. The first equality stems from proposition 12.

  for all closed convex subsets C and n 1, P X n ∈ C exp n sup

			s(x) ;
		x∈C
	and the nonasymptotic open convex upper bound:		
	(UB oc ) for all open convex subsets C and n 1, P X n ∈ C	exp n sup	s(x) .
		x∈C	
	In particular, if C is an open convex subset, we get		

Hypothesis ( Ĉ) of[START_REF] Deuschel | Large Deviations[END_REF] and assumption 6.1.2 (b) of[START_REF] Dembo | Large Deviations Techniques and Applications[END_REF] were introduced so as to complete the proofs of the appendix of[START_REF] Bahadur | Large deviations of the sample mean in general vector spaces[END_REF], but they are not required to prove the first proposition of the appendix.

Physically speaking, the function p should be interpreted as the opposite of a free energy, which is proportional to the pressure in the case of simple fluids.

The proof is even simpler using the closed half-space upper bound, which is a particular case of (UBcc).