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Cramér’s theorem in Banach spaces revisited

By Pierre Petit

Institut de Mathématiques de Toulouse, UMR 5219
Université de Toulouse - CNRS

Abstract

The text summarizes the general results of large deviations for empirical means of
independent and identically distributed variables in a separable Banach space, without
the hypothesis of exponential tightness. The large deviation upper bound for convex
sets is proved in a nonasymptotic form; as a result, the closure of the domain of the
entropy coincides with the closed convex hull of the support of the common law of the
variables. Also a short original proof of the convex duality between negentropy and
pressure is provided: it simply relies on the subadditive lemma and Fatou’s lemma,
and does not resort to the law of large numbers or any other limit theorem. Eventually
a Varadhan-like version of the convex upper bound is established and embraces both
results.

1 Introduction

Cramér’s original theorem (see [11]) about the large deviations of empirical means of in-
dependent and identically distributed real-valued random variables has led to an extensive
literature. Several proofs of it were given by Chernoff, Bahadur, Ranga Rao, Petrov, Ham-
mersley, and Kingman (see [10], [3], [27], [2], [19], and [22]). The result was extended
to higher dimensions by Sethuraman, Borovkov, Rogosin, Hoeffding, Sievers, Bartfai, and
many others (see [31], [32], [7], [21], [33], [5]). At the same time, Sanov’s theorem (see
[30]) and its generalizations (see, e.g., [20]), and the study of large deviations of random
processes (see, e.g., [34]) gave rise to Donsker and Varadhan’s setting of large deviation
principles in separable Banach spaces (see [16]). In this unifying setting, if we assume the
exponential tightness of the sequence of empirical means, or equivalently the boundednes
of the pressure in a neighborhood of the origin, then a full large deviation principle can be
proved.
Independently, the physicist Lanford imported the subadditive argument, developed by
him and Ruelle in statistical physics, into Cramér’s theory (see [29] and [23]). Bahadur
and Zabell (see [4]) took advantage of this new method to generalize Cramér’s theory to
locally convex spaces, to simplify some proofs, and to provide a good synthesis of the
previous texts. By the way, they revealed that, if you replace the exponential tightness
by the less restricting convex tightness, you still have the exponential decay for large
deviation events associated with a convex set and the convex duality between negentropy
and pressure. Among many others, the standard texts of Azencott, de Acosta, Deuschel,
Stroock, Dembo, Zeitouni, and Cerf summarize the successive developments of the theory
(see [1], [12], [14], [13], [8]).
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Here, we prove the general results of Cramér’s theory in separable Banach spaces without
assuming extra hypotheses. Our arguments rely on geometrical and topological properties
of Banach spaces, in the spirit of [4] and [8], and enable to complete some known partial
conclusions. The main one is the large deviation upper bound for all convex sets, which
is even valid in a nonasymptotic form. We deduce that the closure of the domain of the
entropy coincides with the closed convex hull of the law of the variables. Another goal of
the present text is to shed a new light on the theory, providing efficient and simple proofs.
For instance, to prove the convex duality between the negentropy −s and the pressure p,
we prove the equality p = (−s)∗ using the convex tightness of the probability measures on
a Banach space and Fatou’s lemma (see [15] for a similar proof when the full large deviation
principle is assumed), whereas usual proofs show the dual equality s = −p∗ by means of
convex regularity and Cramér’s theorem in R, which in turn relies on an approximation
by simpler variables (discrete in [10], bounded in [13]) and a limit theorem (Stirling’s
formula in [10], the law of large numbers in [13]). By the way, we intensively exploit the
nice properties of convex sets to simplify proofs and establish the equivalence between
convex regularity and convex tightness (which clarifies the appendix of [4]). It appears
that our methods can be generalized to locally convex spaces, but technical points may
have hidden the heart of our new proofs. We also show how Varadhan-like lemmas provide
unifying results and, eventually, we prove a Varadhan-like lemma for concave functions
which embraces both the nonasymptotic upper bound for convex sets and the equality
p = (−s)∗.
After setting the stage and stating the results (Sect. 2), we first give a short proof of the
weak large deviation principle (Sect. 3). Then we prove the large deviation upper bound for
convex sets and deduce the clear identification of the closure of the domain of the entropy
(Sect. 4). Section 5 is devoted to the proof of the convex duality between negentropy and
pressure. Finally we prove the general convex upper bound à la Varadhan (Sect. 6). Except
for the classic Fenchel-Moreau theorem (see [25]), proofs of convex analysis are provided;
complementary notions can be found in general texts like [25] and [28].

2 Setting and results

Let X be a separable Banach space, B the Borel σ-algebra over X , and µ a probability
measure on (X ,B). Let (Xn)n>1 be a sequence of independent and identically distributed
random variables with law µ. For all n > 1, let Xn be the empirical mean (X1 + X2 +
· · ·+Xn)/n.

Definition 1. The entropy of the sequence (Xn)n>1 is the function s : X → [−∞, 0]
defined by

∀x ∈ X s(x) := inf
ε>0

lim inf
n→∞

1

n
logP

(
Xn ∈ B(x, ε)

)
where B(x, ε) denotes the open ball of radius ε centered at x in X .

By construction, the entropy s is the greatest function that satisfies the lower bound:

(LB) for all open subsets G, lim inf
n→∞

1

n
logP

(
Xn ∈ G

)
> sup

x∈G
s(x).

One says that the sequence (Xn)n>1 satisfies a large deviation principle if, in addition, it
satisfies the upper bound:

(UB) for all closed subsets F , lim sup
n→∞

1

n
logP

(
Xn ∈ F

)
6 sup

x∈F
s(x).
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Conditions so that (UB) be satisfied, such as exponential tightness of the sequence (Xn)n>1,
are given in standard texts (see [16], [4], [1], [12], [14], [13] and [8]). Here, as in [4] and [8],
we are interested in weaker upper bounds that do not require additional hypotheses. For
instance, the following result is well-known (see, e.g., [16] or [4]).

Theorem 1. The sequence (Xn)n>1 satisfies a weak large deviation principle, i.e. it sat-
isfies the compact upper bound:

(UBk) for all compact subsets K, lim sup
n→∞

1

n
logP

(
Xn ∈ K

)
6 sup

x∈K
s(x).

The upper bound is known also for open convex sets (see [4]), but the proof for closed
convex sets is omitted. Here we prove the better nonasymptotic versions of them.

Theorem 2. The sequence (Xn)n>1 satisfies the nonasymptotic closed convex upper bound:

(UBcc) for all closed convex subsets C and n > 1, P
(
Xn ∈ C

)
6 exp

(
n sup
x∈C

s(x)
)
;

and the nonasymptotic open convex upper bound:

(UBoc) for all open convex subsets C and n > 1, P
(
Xn ∈ C

)
6 exp

(
n sup
x∈C

s(x)
)
.

In particular, if C is an open convex subset, we get

lim
n→∞

1

n
logP

(
Xn ∈ C

)
= sup

n>1

1

n
logP

(
Xn ∈ C

)
= sup

x∈C
s(x) .

The proof we give here does not rely on hypothesis (Ĉ) of [14, Sect. 3.1], or assumption
6.1.2 of [13], but simply on the convex tightness of µ introduced in [4] and it generalizes
more easily1. Theorem 2 appears to be very convenient in the study of large deviations of
means of independent and identically distributed random variables. For instance, consider
the domain of the entropy dom(s) = {s > −∞}. Denote by co supp(µ) the convex hull of
the support of the measure µ.

Theorem 3. The closure of the domain of the entropy s is the closed convex hull of the
support of the measure µ, i.e.

dom(s) = co supp(µ) .

The result is only partially proved in [4] and [8]. We give a complete proof. Another
consequence of theorem 2 is the link between entropy and pressure. Let X ∗ denote the
topological dual of X and let p : X ∗ → (−∞,+∞] be the pressure2 of the sequence (Xn)n>1

defined by

∀λ ∈ X ∗ p(λ) := lim sup
n→∞

1

n
logE

(
enλ(Xn)

)
= logE

(
eλ(X1)

)
which reduces to the log-Laplace transform of µ.

Theorem 4. The pressure p and the negentropy −s are convex-conjugate functions, i.e.

∀λ ∈ X ∗ p(λ) = sup
x∈X

(λ(x) + s(x)) =: (−s)∗(λ) (1)

and
∀x ∈ X − s(x) = sup

λ∈X ∗
(λ(x)− p(λ)) =: p∗(x) . (2)

1Hypothesis (Ĉ) of [14] and assumption 6.1.2 (b) of [13] were introduced so as to complete the proofs of
the appendix of [4], but they are not required to prove the first proposition of the appendix.

2Physically speaking, the function p should be interpreted as the opposite of a free energy, which is
proportional to the pressure in the case of simple fluids.
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Equation (2) is well-known (see, e.g., [4], [13] and [8]) and standard proofs rely on three
ingredients: Chebyshev’s inequality, the open half-space upper bound3, which is a particu-
lar case of (UBoc), and Cramér’s theorem in R. Equation (1) follows from equation (2) by
proving that p is convex and lower semi-continuous (see [8], chapter 12). Here we give a
simple original proof of equation (1) from which we deduce equation (2). Even in X = R,
it provides a new proof of Cramér’s theorem (see [9]). Notice that equation (1) is similar
to Varadhan’s lemma (remember the first definition of the pressure p). The present proof
relies on Varadhan-like versions of the lower bound and compact upper bound:

Lemma 1. The sequence (Xn)n>1 satisfies the lower bound à la Varadhan:

(VLB) for all lower semi-continuous functions f : X → [−∞,+∞),

lim inf
n→∞

1

n
logE

(
enf(Xn)

)
> sup

x∈X
(f(x) + s(x)) .

Lemma 2. The sequence (Xn)n>1 satisfies the compact upper bound à la Varadhan:

(VUBk) for all upper semi-continuous functions f : X → [−∞,+∞) such that
{f > −∞} is relatively compact,

lim sup
n→∞

1

n
logE

(
enf(Xn)

)
6 sup

x∈X
(f(x) + s(x)) .

Interestingly enough, lemma 2 provides a Varadhan-like version of the convex upper bounds,
which in turn implies theorems 2 and 4:

Theorem 5. The sequence (Xn)n>1 satisfies the nonasymptotic convex upper bounds à la
Varadhan:

(VUBcc) for all upper semi-continuous concave functions f : X → [−∞,+∞),

lim sup
n→∞

1

n
logE

(
enf(Xn)

)
= sup

n>1

1

n
logE

(
enf(Xn)

)
6 sup

x∈X
(f(x) + s(x)) ;

and:

(VUBoc) for all concave functions f : X → [−∞,+∞) such that C = {f > −∞} is open
and f |C is upper semi-continuous,

lim
n→∞

1

n
logE

(
enf(Xn)

)
= sup

n>1

1

n
logE

(
enf(Xn)

)
6 sup

x∈X
(f(x) + s(x)) .

3 Proof of theorem 1

The proof of the weak large deviation principle relies on two key arguments: subadditivity
and what may be called “the principle of the largest term” (see [24]). The former is the
purpose of proposition 2 and the latter that of proposition 3. Beforehand, we need two
very handy properties of open convex sets.

Proposition 1. Let C be an open convex subset of X containing 0. Then⋃
t>0

tC = X , (3)

i.e. C is an absorbing subset of X , and⋃
δ∈(0,1)

(1− δ)C = C . (4)

3The proof is even simpler using the closed half-space upper bound, which is a particular case of (UBcc).
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Proof. To show (3), let x ∈ X . Since the mapping a ∈ R 7→ ax ∈ X is continuous and
C is a neighborhood of 0, there is α > 0 such that αx ∈ C. Setting t = 1/α, we get
x ∈ tC. As for (4), let x ∈ C. Since the mapping a ∈ R 7→ ax ∈ X is continuous and
C is a neighborhood of x, there is α > 0 such that (1 + α)x ∈ C. Defining δ ∈ (0, 1) by
1− δ = 1/(1 + α), we get x ∈ (1− δ)C, whence

C ⊂
⋃

δ∈(0,1)

(1− δ)C

and the converse inclusion is trivial.

Proposition 2 below is fundamental in Cramér’s theory. Here is a short proof relying on
the proposition above.

Proposition 2. Let C be an open convex subset of X . Then

lim
n→∞

1

n
logP

(
Xn ∈ C

)
= sup

n>1

1

n
logP

(
Xn ∈ C

)
.

Proof. The result is trivial if C = ∅. Now suppose 0 ∈ C, otherwise consider (Xn − x)n>1

for some x ∈ C. Let n,m > 1 and write n = qm+ r the Euclidean division of n by m with
r ∈ {1, 2, . . . ,m}. Let δ ∈ (0, 1). Using the convexity of C, the independence of X1, X2,
. . . , Xn, and the fact that

Xn =
m

n

q−1∑
k=0

 1

m

(k+1)m∑
i=km+1

Xi

+
1

n

n∑
i=mq+1

Xi ,

we get
P
(
Xn ∈ C

)
> P

(
Xm ∈

n

qm
(1− δ)C

)q
P
(
X1 ∈

n

r
δC
)r
.

Since r 6 m and C is an absorbing subset of X (see proposition 1 (3)),

P
(
X1 ∈

nδ

r
C
)r

> P
(
X1 ∈

nδ

m
C
)m
−−−→
n→∞

1 .

Hence, remembering that qm 6 n,

lim inf
n→∞

1

n
logP

(
Xn ∈ C

)
> lim inf

n→∞

q

n
logP

(
Xm ∈

n(1− δ)
qm

C
)

>
1

m
logP

(
Xm ∈ (1− δ)C

)
and the proof is completed by taking the limit when δ → 0 (see proposition 1), and then
the supremum over m > 1.

Notice that proposition 2 is more generally valid for algebraically open convex sets that are
measurable, i.e. measurable convex sets that satisfy properties (3) and (4) of proposition
1 and their translates, i.e. measurable convex sets that are equal to their algebraic interior
(see [35]).
The next simple but useful result is well-known and may be called the “principle of the
largest term” (see, e.g., [13, Lemma 1.2.15], [24], and [8]). We give its proof for the sake
of completeness.
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Proposition 3. Let u1, u2, . . . , ur be [0,+∞]-valued sequences. Then

lim sup
n→∞

1

n
log

r∑
i=1

ui(n) = max
16i6r

lim sup
n→∞

1

n
log ui(n).

Proof. From the double inequality

max
16i6r

ui(n) 6
r∑
i=1

ui(n) 6 r max
16i6r

ui(n),

we get

lim sup
n→∞

1

n
log

r∑
i=1

ui(n) = lim sup
n→∞

1

n
log max

16i6r
ui(n).

Moreover

lim sup
n→∞

1

n
log max

16i6r
ui(n) = lim

n→∞
max
16i6r

(
sup
k>n

1

k
log ui(k)

)
= max

16i6r
lim
n→∞

(
sup
k>n

1

k
log ui(k)

)
,

since the function max : [−∞,+∞]r → [−∞,+∞] is continuous.

Proof of theorem 1. Let K be a compact subset of X and α > 0. For all x ∈ K, apply
proposition 2 and choose ε > 0 such that

lim
n→∞

1

n
logP

(
Xn ∈ B(x, ε)

)
6 max(s(x) + α,−1/α) .

Since K is compact, there is a finite subcover K ⊂ B1 ∪ B2 ∪ · · · ∪ Br with
Bi = B(xi, εi). Now apply propositions 3 and 2 to get

lim sup
n→∞

1

n
logP

(
Xn ∈ K

)
6 lim sup

n→∞

1

n
log

r∑
i=1

P
(
Xn ∈ Bi

)
= max

16i6r
lim
n→∞

1

n
logP

(
Xn ∈ Bi

)
6 max

16i6r
max(s(xi) + α,−1/α)

6 max

(
sup
x∈K

s(x) + α,−1/α
)

and finally let α→ 0.

4 Proofs of theorems 2 and 3

To prove the convex upper bounds, we will simply extend the compact (convex) upper
bound to convex sets using the convex tightness of the measures on (X ,B). The idea can
be traced back to [4] and the proof given here is shorter and complete.

Proposition 4. Any probability measure ν on (X ,B) is convex tight, i.e. for all α > 0,
there exists a compact convex subset K of X such that ν(K) > 1− α.
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Proof. Let ν be a probability measure on (X ,B) and let α > 0. Since X is metric, separable,
and complete, ν is tight, i.e. there is a compact subset K1 of X such that ν(K1) > 1 − α
(see [6], theorem 1.3). Then K = co(K1) the closed convex hull of K1 is compact (see [17],
theorem V.2.6) and satisfies ν(K) > 1− α.

To prove (UBcc), we also need a fact similar to proposition 2.

Proposition 5. Let C be a measurable convex subset of X . Then

lim sup
n→∞

1

n
logP

(
Xn ∈ C

)
= sup

n>1

1

n
logP

(
Xn ∈ C

)
.

Proof. Let m, q > 1. Since C is convex and X1, X2, . . . , Xqm are independent,

P
(
Xqm ∈ C

)
> P

(
Xm ∈ C

)q
.

Hence

lim sup
n→∞

1

n
logP

(
Xn ∈ C

)
> lim sup

q→∞

1

qm
logP

(
Xqm ∈ C

)
>

1

m
logP

(
Xm ∈ C

)
.

Take the supremum over m > 1 to conclude.

Proof of (UBcc). Let C be a closed convex subset of X and N > 1. By proposition 4, the
distribution of XN is convex tight, whence, for all α > 0, there exists a compact convex
subset K of X such that

1

N
logP

(
XN ∈ C

)
6

1

N
logP

(
XN ∈ C ∩K

)
+ α . (5)

Applying proposition 5 to the convex C ∩K leads to

1

N
logP

(
XN ∈ C ∩K

)
6 lim sup

n→∞

1

n
logP

(
Xn ∈ C ∩K

)
.

Finally, the application of theorem 1 to the compact C ∩K yields

lim sup
n→∞

1

n
logP

(
Xn ∈ C ∩K

)
6 sup

x∈C∩K
s(x) 6 sup

x∈C
s(x) .

From (5), we get
1

N
logP

(
XN ∈ C

)
6 sup

x∈C
s(x) + α .

Conclude by letting α→ 0.

A detailed observation of this last proof shows that it only requires the convex tightness
of µ. Indeed, the convex tightness of µ implies the convex tightness of the distribution of
XN , since, if K is convex, then

P(XN ∈ K) > P(X1 ∈ K)N .

This simple remark is fruitful: it permits to establish (UBcc) in a more general context and
to avoid technical hypotheses. The proof of (UBoc) is in the same vein. We only need a
nice property of open convex sets.
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Proposition 6. Let C be an open convex subset of X containing 0. Then,⋃
δ∈(0,1)

(1− δ)C = C .

Proof. Given proposition 1, it remains to show that, for all δ ∈ (0, 1), (1− δ)C ⊂ C. Let
δ ∈ (0, 1) and let x ∈ (1−δ)C. Defining α > 0 by 1+α = 1/(1−δ), we have (1+α)x ∈ C.
Since −C is a neighborhood of 0, ((1 + α)x− αC) ∩ C 6= ∅, whence x ∈ C.

Proposition 6 implies:

Proposition 7. Any probability measure ν on (X ,B) is convex inner regular, i.e. for all
open convex subsets C of X and for all α > 0, there exists a compact convex subset K of
C such that ν(K) > ν(C)− α.

Proof. Let ν be a probability measure on X , let C be an open convex subset of X , and let
α > 0. Using proposition 4, there is a compact subset K1 of X such that ν(K1) > 1−α/2.
Using proposition 6, we can choose δ ∈ (0, 1) such that ν((1− δ)C) > ν(C)−α/2. Finally,
K = K1 ∩ (1− δ)C is a compact convex subset of C such that ν(K) > ν(C)− α.

To sum up the previous proof, the convex inner regularity of a measure is equivalent to its
convex tightness (in a general topological vector space). In a more general context, this
argument completes the proof of [4, appendix, proposition 1] and gives a simpler condition
than hypothesis (Ĉ) of [14, Sect. 3.1] or assumption 6.1.2 of [13].

Proof of (UBoc). In inequality (5) of the proof of (UBcc), replace C ∩ K by a compact
convex subset K of C given by proposition 7 to obtain

1

N
logP

(
XN ∈ C

)
6 sup

x∈C
s(x) .

The last remark of theorem 2 then follows from (LB).

To prove theorem 3, we show two intermediate and useful results. Remember that the
support of the measure µ is the subset of X defined by

supp(µ) = {x ∈ X ; ∀ε > 0, µ(B(x, ε)) > 0} .

Proposition 8. For any open ball B in X ,

B ∩ supp(µ) 6= ∅ ⇐⇒ µ(B) > 0 .

Proof. The direct implication is a mere consequence of the definition of supp(µ). And the
converse one stems from the fact that X is second countable, so that we have µ(supp(µ)) =
1 (see [26], theorem 2.1). We provide another proof that relies on the convex inner regularity
of µ. Consider an open ball B such that
B ∩ supp(µ) = ∅. Let α > 0. Use the convex inner regularity of µ to find a compact
subset K of B such that µ(K) > µ(B) − α. For all x ∈ K, there exists ε > 0 such that
µ(B(x, ε)) = 0. Extract a finite subcover K ⊂ B1 ∪ B2 ∪ · · · ∪ Br with Bi = B(xi, εi).
Finally,

µ(B) 6 µ(K) + α 6
r∑
i=1

µ(Bi) + α = α

and let α→ 0.
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Proposition 9. The entropy s is upper semi-continuous and concave.

Proof. To show that s is upper semi-continuous, take t ∈ R and x ∈ X such that s(x) < t.
By the very definition of s, there is ε > 0 such that

lim
n→∞

1

n
logP

(
Xn ∈ B(x, ε)

)
< t .

For all y ∈ B(x, ε), take δ such that B(y, δ) ⊂ B(x, ε) and write

s(y) 6 lim
n→∞

1

n
logP

(
Xn ∈ B(y, δ)

)
6 lim

n→∞

1

n
logP

(
Xn ∈ B(x, ε)

)
< t .

So s is upper semi-continuous. Now we prove that s is concave. Let x, y ∈ X and set
z = (x+ y)/2. Let ε > 0 and set Bz = B(z, ε), Bx = B(x, ε/2), and By = B(y, ε/2). For
all n > 1,

P
(
X2n ∈ Bz

)
> P

(
Xn ∈ Bx

)
P
(
Xn ∈ By

)
whence

lim
n→∞

1

2n
logP

(
X2n ∈ Bz

)
> lim

n→∞

1

2n
log
(
P
(
Xn ∈ Bx

)
P
(
Xn ∈ By

))
>

s(x) + s(y)

2
.

Taking the infimum in ε, we get s((x + y)/2) > (s(x) + s(y))/2 and the concavity of s
follows, since s is upper semi-continuous.

Proof of theorem 3. Since s is concave (see proposition 9), dom(s) is a convex subset of X ,
so we only need to prove

supp(µ) ⊂ dom(s) (6)

and
dom(s) ⊂ co supp(µ) . (7)

Let x /∈ dom(s) and ε > 0 such that B(x, ε) ∩ dom(s) = ∅. The bound (UBoc) implies
logµ(B(x, ε)) = −∞. With proposition 8, we get B(x, ε)∩ supp(µ) = ∅, so inclusion (6) is
proved. Now, let x ∈ dom(s) and ε > 0. Showing that B(x, ε) ∩ co supp(µ) 6= ∅ is enough
to prove inclusion (7). There is n > 1 such that P(Xn ∈ B(x, ε/2)) > 0, i.e. µ⊗n(C) > 0
where

C =
{
(u1, u2, . . . , un) ∈ X n ;

u1 + u2 + · · ·+ un
n

∈ B(x, ε/2)
}
.

Let Q be a countable dense subset of X . Since C is an open subset of X n, Qn ∩ C is a
dense subset of C, whence

C ⊂
⋃

(u1,...,un)∈Qn∩C

n∏
i=1

B(ui, ε/2) .

Since the union is countable and µ⊗n(C) > 0, there is (u1, u2, . . . , un) ∈ C such that,
for all integers i ∈ {1, 2, . . . , n}, µ(B(ui, ε/2)) > 0. So, by proposition 8, for all integers
i ∈ {1, 2, . . . , n}, there is yi ∈ B(ui, ε/2) ∩ supp(µ). Hence,

y :=
y1 + y2 + · · ·+ yn

n
∈ B

(u1 + u2 + · · ·+ un
n

, ε/2
)
⊂ B(x, ε)

and y ∈ co supp(µ).

Note that theorem 3 implies theorem 2.4 (a) and (b) of [4] and results 9.7 and 9.8 of [8].
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5 Proof of theorem 4

The Fenchel-Legendre transform of a function g : X → [−∞,+∞] is the function on the
dual space g∗ : X ∗ → [−∞,+∞] defined by

∀λ ∈ X ∗ g∗(λ) = sup
x∈X

(
λ(x)− g(x)

)
.

Similarly, the Fenchel-Legendre transform of a function h : X ∗ → [−∞,+∞] is the function
h∗ : X → [−∞,+∞]

∀x ∈ X h∗(x) = sup
λ∈X ∗

(
λ(x)− h(λ)

)
.

We say that the functions g : X → [−∞,+∞] and h : X ∗ → [−∞,+∞] are convex
conjugate functions if g∗ = h and h∗ = g.

Proposition 10 (Fenchel-Moreau theorem). A function g : X → (−∞,+∞] satisfies
g∗∗ = g if and only if g is lower semi-continuous and convex.

Proof. See, e.g., [25] 5.d.

Proof of theorem 4. Knowing that s is upper semi-continuous and concave (see proposition
9), and applying proposition 10, we only need to prove p = (−s)∗. The classic proof of the
inequality p > (−s)∗, or its equivalent s 6 −p∗, relies on Chebyshev’s inequality (see, e.g.,
[4] theorem 3.1). Another proof consists in applying lemma 1 (the proof of which is given
below) to the continuous functions f = λ ∈ X ∗. The other inequality p 6 (−s)∗, or its
equivalent s > −p∗, is usually proved via the open half-space upper bound and Cramér’s
theorem in R (see, e.g., [4] part 3). Let us see how we can get it via lemma 2 (the proof of
which is given below). Let λ ∈ X ∗ and let α > 0. Since µ is convex tight (see proposition
4) and using Fatou’s lemma, there exists a compact convex subset K of X such that

min
(
logE

(
eλ(X1)

)
− α, 1/α

)
6 logE

(
eλ(X1)1K(X1)

)
.

Since K is convex, for all n > 1, the conjunction of X1 ∈ K, X2 ∈ K, . . . , and Xn ∈ K
implies Xn ∈ K. Hence, using the independence of the Xi’s, we get

logE
(
eλ(X1)1K(X1)

)
6 inf

n>1

1

n
logE

(
enλ(Xn)1K(Xn)

)
6 lim sup

n→∞

1

n
logE

(
en(λ+χK)(Xn)

)
where

χK = log 1K

is the characteristic function of the convex set K. Finally, we apply lemma 2 to the upper
semi-continuous function f = λ+ χK for which {f > −∞} = K is compact and we get

lim sup
n→∞

1

n
logE

(
en(λ+χK)(Xn)

)
6 sup

x∈X
(λ(x) + χK(x) + s(x)) 6 (−s)∗(λ) .

Conclude the proof by letting α→ 0.

Proof of lemma 1. Let f : X → [−∞,+∞] be a lower semi-continuous function. Let x ∈ X
and let α > 0. There is ε > 0 such that, for all y ∈ B(x, ε),

f(y) > min(f(x)− α, 1/α) .

10



Hence,

lim inf
n→∞

1

n
logE

(
enf(Xn)

)
> lim inf

n→∞

1

n
logE

(
enf(Xn)1B(x,ε)(Xn)

)
> min(f(x)− α, 1/α) + lim inf

n→∞

1

n
logP

(
Xn ∈ B(x, ε)

)
> min(f(x)− α, 1/α) + s(x) .

Taking the limit when α→ 0 and the supremum over x ∈ X , we get

lim inf
n→∞

1

n
logE

(
enf(Xn)

)
> sup

x∈X
(f(x)+. s(x))

where +. is the natural extension of the addition verifying (−∞)+. (+∞) = −∞. The
result reduces to (VLB) when {f = +∞} = ∅.

Proof of lemma 2. Let f : X → [−∞,+∞] be an upper semi-continuous function such
that K := {f > −∞} is relatively compact. Let α > 0. For all x ∈ X , there is ε > 0 such
that, for all y ∈ B(x, ε),

f(y) 6 max(f(x) + α,−1/α).

By the definition of s(x) and proposition 2, should we reduce ε, we may suppose that

lim sup
n→∞

1

n
logP

(
Xn ∈ B(x, ε)

)
6 max(s(x) + α,−1/α) .

Extract a finite subcover K ⊂ B1 ∪B2 ∪ · · · ∪Br with Bi = B(xi, εi). For all n > 1,

1

n
logE

(
enf(Xn)

)
6

1

n
log

r∑
i=1

E
(
enf(Xn)1Bi(Xn)

)
6

1

n
log

r∑
i=1

enmax
(
f(xi)+α,−1/α

)
P
(
Xn ∈ Bi

)
.

Taking the limit superior when n → ∞ and applying the principle of the largest term
(proposition 3), we get

lim sup
n→∞

1
n logE

(
enf(Xn)

)
6 max

16i6r

(
max(f(xi) + α,−1/α) + max(s(xi) + α,−1/α)

)
6 sup

x∈X

(
max(f(x) + α,−1/α) + max(s(x) + α,−1/α)

)
.

Letting α→ 0, we get

lim sup
n→∞

1

n
logE

(
enf(Xn)

)
6 sup

x∈X
(f(x)u s(x))

where u is the natural extension of the addition such that (−∞) u (+∞) = +∞. The
result reduces to (VUBk) when {f = +∞} = ∅.
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6 Proof of theorem 5

The proof of theorem 5 is a slight variant of that of theorem 2. We need here a complete
version of the subadditive lemma due to Fekete (see [18]). It is very well known when u is
finite valued with a proof similar to that of propositions 2 and 5.

Proposition 11. Let u be a [−∞,+∞]-valued sequence. Suppose that u is subadditive,
i.e. for all m,n > 1, u(m + n) 6 u(m) u u(n), where u is the natural extension of the
addition such that (−∞)u (+∞) = +∞. Then

lim inf
n→∞

u(n)

n
= inf

n>1

u(n)

n
. (8)

If u is also controlled, i.e. there is N > 1 such that, for all n > N , u(n) < +∞, then

lim
n→∞

u(n)

n
= inf

n>1

u(n)

n
. (9)

Proof. Let u be a subadditive [−∞,+∞]-valued sequence. For m > 1, we have

lim inf
n→∞

u(n)

n
6 lim inf

q→∞

u(qm)

qm
6
u(m)

m

and equation (8) follows by taking the infimum over m > 1. Now suppose that u is also
controlled. Let m > N . For all n > m, write n = qm + r the Euclidean division of n by
m with r ∈ {m,m+ 1, . . . , 2m− 1} and

u(n) 6 qu(m)u u(r) 6
n

m
u(m)u max

m6i<2m
u(i) .

Since, for all i > m, u(i) < +∞, we get

lim sup
n→∞

u(n)

n
6
u(m)

m

and equation (9) follows by taking the infimum over m > 1.

We immediately deduce the useful property:

Proposition 12. Let f : X → [−∞,+∞] be a +. -concave function, i.e. for all
x, y ∈ X and t ∈ (0, 1),

f
(
(1− t)x+ ty

)
> (1− t)f(x)+. tf(y) ,

where +. is the natural extension of the addition verifying (−∞)+. (+∞) = −∞. Then

lim sup
n→∞

1

n
logE

(
enf(Xn)

)
= sup

n>1

1

n
logE

(
enf(Xn)

)
. (10)

If, moreover, C = {f > −∞} is open, then

lim
n→∞

1

n
logE

(
enf(Xn)

)
= sup

n>1

1

n
logE

(
enf(Xn)

)
. (11)
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Proof. Let f : X → [−∞,+∞] be a +. -concave function. For all integers m,n > 1, since
(m+ n)f(Xm+n) > mf(Xm)+. nf((Xm+1 + · · ·+Xm+n)/n), we get

E
(
e(m+n)f(Xm+n)

)
> E

(
emf(Xm)

)
E
(
enf(Xn)

)
,

so u(n) := − logE
(
enf(Xn)

)
is a subadditive sequence and equation (10) stems from

proposition 11. Suppose that C = {f > −∞} is open. Then, either, for all n > 1,
u(n) = +∞ and equation (11) is trivial; or there exists m > 1 such that u(m) < +∞.
Then P(Xm ∈ C) > 0. Using proposition 2, we find that there exists N > 1 such that,
for all n > N , P(Xn ∈ C) > 0, whence u(n) < +∞. So u is controlled and equation (11)
stems from proposition 11.

Proof of (VUBcc). Let f : X → [−∞,+∞] be an upper semi-continuous +. -concave func-
tion (if {f = +∞} = ∅, f is simply upper semi-continuous and concave). The first equality
stems from proposition 12. Let us prove the inequality. Let α > 0. Choose N > 1 such
that

min
(
sup
n>1

1

n
logE

(
enf(Xn)

)
− α, 1/α

)
6

1

N
logE

(
eNf(XN )

)
.

Let β > 0. By proposition 4, the distribution of XN is convex tight. Using Fatou’s lemma,
there exists a compact convex subset K of X such that

min
( 1

N
logE

(
eNf(XN )

)
− β, 1/β

)
6

1

N
logE

(
eNf(XN )1K(XN )

)
. (12)

Applying proposition 12 to the +. -concave function f +. χK , we get

1

N
logE

(
eNf(XN )1K(XN )

)
6 lim sup

n→∞

1

n
logE

(
en(f +. χK)(Xn)

)
.

Finally, we apply lemma 2 (more precisely the slight generalization appearing in its proof)
to the upper semi-continuous function f +. χK and get

lim sup
n→∞

1

n
logE

(
en(f +. χK)(Xn)

)
6 sup

x∈X
(f(x)u s(x)) .

Conclude by letting α, β → 0.

Proof of (VUBoc). Let f : X → [−∞,+∞] be a +. -concave function such that C = {f >
−∞} is open and f |C is upper semi-continuous. The first equality stems from proposition
12. To prove the inequality, suppose that, in inequality (12), K is a compact convex subset
of C (see proposition 7) and notice that f +. χK is upper semi-continuous.

References

[1] Azencott, R.: Grandes déviations et applications. École d’Été de Probabilités de
Saint-Flour VIII-1978, Lecture Notes in Mathematics 774. Springer-Verlag (1980)

[2] Bahadur, R.R.: Some Limit Theorems in Statistics. SIAM (1971)

[3] Bahadur, R.R., Ranga Rao, R.: On deviations of the sample mean. Ann. Math.
Statist. 31(4), 1015–1027 (1960)

[4] Bahadur, R.R., Zabell, S.L.: Large deviations of the sample mean in general vector
spaces. Ann. Prob. 7(4), 587–621 (1979)

13



[5] Bártfai, P.: Large deviations of the sample mean in Euclidean spaces. Mimeograph
Series No. 78–13, Statist. Depart., Purdue Univ. (1978)

[6] Billingsley, P.: Convergence of probability measures, second edn. Wiley Series in
Probability and Statistics: Probability and Statistics. John Wiley & Sons Inc., New
York (1999). A Wiley-Interscience Publication

[7] Borovkov, A.A., Rogozin, B.A.: O central~no� predel~no� teoreme v mnogomernom

sluqae. Teor. Verojatnost. i Primenen. 10, 61–69 (1965). English translation: On the
multi-dimensional central limit theorem. Theory Probab. Appl., 10(1), 55-62.

[8] Cerf, R.: On Cramér’s theory in infinite dimensions. Panoramas et Synthèses 23.
Société Mathématique de France, Paris (2007)

[9] Cerf, R., Petit, P.: A Short Proof of Cramér’s Theorem in R. The American Mathe-
matical Monthly 118(10), pp. 925–931 (2011)

[10] Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. Ann. Math. Statist. 23, 493–507 (1952)

[11] Cramér, H.: Sur un nouveau théorème-limite de la théorie des probabilités. Actual.
Sci. Indust. 736, 5–23 (1938)

[12] De Acosta, A.: On large deviations of sums of independent random vectors. Proba-
bility in Banach spaces V, Lecture Notes in Math. 1153, 1–14 (1985)

[13] Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Jones and
Bartlett (1993). Second edition by Springer-Verlag in 1998

[14] Deuschel, J.D., Stroock, D.W.: Large Deviations. Academic Press (1989)

[15] Dinwoodie, I.H.: Identifying a large deviation rate function. Ann. Probab. 21(1),
216–231 (1993)

[16] Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Markov process
expectations for large time III. Comm. Pure Applied Math. 29, 389–461 (1976)

[17] Dunford, N., Schwartz, J.T.: Linear operators. Part I: General theory. John Wiley &
Sons (1958)

[18] Fekete, M.: Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen
mit. ganzzahligen Koeffizienten. Mathematische Zeitschrift 17, 228–249 (1923)

[19] Hammersley, J.M.: Postulates for subadditive processes. Ann. Prob. 2(4), 652–680
(1974)

[20] Hoadley, A.B.: On the probability of large deviations of functions of several empirical
cdf’s. Ann. Math. Statist. 38, 360–381 (1967)

[21] Hoeffding, W.: On probabilities of large deviations. In: Proc. Fifth Berkeley Sympos.
Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. I: Statistics, pp. 203–
219. Univ. California Press, Berkeley, Calif. (1967)

[22] Kingman, J.F.C.: Subadditive Processes. École d’Été de Probabilités de Saint-Flour
V-1975, Lecture Notes in Mathematics 539. Springer, Berlin/Heidelberg (1976)

14



[23] Lanford, O.E.: Entropy and Equilibrium States in Classical Statistical Mechanics.
Lecture Notes in Physics 20. Springer (1973)

[24] Lewis, J.T., Pfister, C.E., Sullivan, W.G.: Entropy, concentration of probability and
conditional limit theorems. Markov Processes Relat. Fields 1(3), 319–386 (1995)

[25] Moreau, J.J.: Fonctionnelles convexes. Séminaire sur les Équations aux Dérivées
Partielles, Collège de France (1966–67)

[26] Parthasarathy, K.R.: Probability measures on metric spaces. AMS Chelsea Publish-
ing, Providence, RI (2005). Reprint of the 1967 original

[27] Petrov, V.V.: O vero�tnost�h bol~xih ukloneni� summ nezavisimyh sluqa�nyh

veliqin. Teor. Verojatnost. i Primenen 10, 310–322 (1965). English translation: On
the probabilities of large deviations for sums of independent random variables. Theory
of Probab. Appl., 10(2), 287-298.

[28] Rudin, W.: Functional Analysis. McGraw–Hill (1973)

[29] Ruelle, D.: Correlation functionals. J. Math. Phys. 6(2), 201–220 (1965)

[30] Sanov, I.N.: O vero�tnosti bol~xih otkloneni� sluqa�nyh veliqin. Mat. Sb.
42(1), 11–44 (1957). English translation: On the probability of large deviations of
random variables, Sel. Transl. Math. Statist. Prob. I : 213–244, 1961

[31] Sethuraman, J.: On the probability of large deviations of families of sample means.
Ann. Math. Statist. 35, 1304–1316 (1964)

[32] Sethuraman, J.: On the probability of large deviations of the mean for random vari-
ables in D[0, 1]. Ann. Math. Statist. 36, 280–285 (1965)

[33] Sievers, G.L.: Multivariate probabilities of large deviations. Ann. Statist. 3(4), 897–
905 (1975)

[34] Varadhan, S.R.S.: Asymptotic probabilities and differential equations. Comm. Pure
Applied Math. 19, 261–286 (1966)

[35] Zălinescu, C.: Convex analysis in general vector spaces. World Scientific Publishing
Co. Inc., River Edge, NJ (2002)

15


	Introduction
	Setting and results
	Proof of theorem 1
	Proofs of theorems 2 and 3
	Proof of theorem 4
	Proof of theorem 5

