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A CHARACTERIZATION OF KRULL MONOIDS FOR WHICH SETS OF LENGTHS

ARE (ALMOST) ARITHMETICAL PROGRESSIONS

ALFRED GEROLDINGER AND WOLFGANG A. SCHMID

Abstract. Let H be a Krull monoid with finite class group G and suppose that every class contains a
prime divisor. Then sets of lengths in H have a well-defined structure which just depends on the class
group G. With methods from additive combinatorics we establish a characterization of those class groups
G guaranteeing that all sets of lengths are (almost) arithmetical progressions.

1. Introduction

Let H be a Krull monoid with class group G and suppose that every class contains a prime divisor.
Then every element has a factorization into irreducibles. If a = u1 ·. . .·uk with irreducibles u1, . . . , uk ∈ H ,
then k is called the factorization length. The set L(a) ⊂ N0 of all possible factorization lengths is finite and
called the set of lengths of a. The system L(H) = {L(a) | a ∈ H} is a well-studied means for describing
the arithmetic of H . It is classic that |L| = 1 for all L ∈ L(H) if and only if |G| ≤ 2 and if |G| ≥ 3, then
there are arbitrarily large L ∈ L(H).

Sets of lengths in H can be studied in the associated monoid of zero-sum sequences B(G). The latter
is a Krull monoid again and it is well-known that L(H) = L

(

B(G)
)

(as usual we write L(G) for L
(

B(G)
)

.
A transfer Krull monoid over G is a monoid having a transfer homomorphism to B(G) which implies
that their systems of sets of lengths coincide. Transfer Krull monoids include various classes of non-
commutative Dedekind domains (see Section 2).

If the group G is infinite, then, by a theorem of Kainrath, every finite set L ⊂ N≥2 lies in L(H) ([23],
[14, Theorem 7.4.1]; for further rings and monoids with this property see [8] or [22, Corollary 4.7]). Now
suppose that the group G is finite. In this case sets of lengths have a well-defined structure. Indeed,
by the Structure Theorem for Sets of Lengths (Proposition 2.2.1), the sets in L(G) are AAMPs (almost
arithmetical multiprogressions) with difference in ∆∗(G) and some universal bound. By a realization
result of the second author, this description is best possible (Proposition 2.2.2). By definition, the concept
of an AAMP comprises arithmetical progressions, AAPs (almost arithmetical progressions), and AMPs
(arithmetical multiprogressions); definitions are gathered in Definition 2.1. The goal of this paper is to
characterize those groups where all sets of lengths are not only AAMPs, but have one of these more special
forms. We formulate the main result of this paper.

Theorem 1.1. Let G be a finite abelian group.

1. The following statements are equivalent :
(a) All sets of lengths in L(G) are arithmetical progressions with difference in ∆∗(G).

(b) All sets of lengths in L(G) are arithmetical progressions.

(c) The system of sets of lengths L(G) is additively closed, that is, L1 + L2 ∈ L(G) for all

L1, L2 ∈ L(G).

(d) G is cyclic of order |G| ≤ 4 or isomorphic to a subgroup of C3
2 or isomorphic to a subgroup of

C2
3 .
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2. The following statements are equivalent :
(a) There is a constant M ∈ N such that all sets of lengths in L(G) are AAPs with bound M .

(b) G is isomorphic to a subgroup of C3
3 or isomorphic to a subgroup of C3

4 .

3. The following statements are equivalent :
(a) All sets of lengths in L(G) are AMPs with difference in ∆∗(G).

(b) G is cyclic with |G| ≤ 5 or isomorphic to a subgroup of C3
2 or isomorphic to a subgroup of C2

3 .

A central topic in the study of sets of lengths is the Characterization Problem (for recent progress see
[4, 15, 20, 31, 30]) which reads as follows:

Let G be a finite abelian group with D(G) ≥ 4, and let G′ be an abelian group with L(G) = L(G′).
Does it follow that G ∼= G′?

A finite abelian group G has Davenport constant D(G) ≤ 3 if and only if either |G| ≤ 3 or G ∼= C2⊕C2.
Since L(C1) = L(C2) and L(C3) = L(C2 ⊕ C2) (Proposition 3.1), small groups require special attention
in the study of the Characterization Problem. As a consequence of Theorem 1.1 we obtain an affirmative
answer to the Characterization Problem for all involved small groups.

Corollary 1.2. Let G be a finite abelian group with Davenport constant D(G) ≥ 4 and suppose that

L(G) satisfies one of the properties characterized in Theorem 1.1. If G′ is any abelian group such that

L(G) = L(G′), then G ∼= G′.

In Section 2 we gather the required tools for studying sets of lengths (Propositions 2.2, 2.3, and 2.4).
The proof of Theorem 1.1 requires methods from additive combinatorics and is given in Section 3. Several
properties occurring in Theorem 1.1 can be characterized by further arithmetical invariants. We briefly
outline this in Remark 3.8 where we also discuss the property of being additively closed occurring in
Theorem 1.1.1.(c).

2. Background on sets of lengths

Let N denote the set of positive integers, P ⊂ N the set of prime numbers and put N0 = N ∪ {0}. For
real numbers a, b ∈ R, we set [a, b] = {x ∈ Z | a ≤ x ≤ b}. Let A,B ⊂ Z be subsets of the integers. We
denote by A+ B = {a+ b | a ∈ A, b ∈ B} their sumset, and by ∆(A) the set of (successive) distances of
A (that is, d ∈ ∆(A) if and only if d = b− a with a, b ∈ A distinct and [a, b] ∩A = {a, b}). For k ∈ N, we
denote by k · A = {ka | a ∈ A} the dilation of A by k. If A ⊂ N, then

ρ(A) = sup
{m

n
| m,n ∈ A

}

=
supA

minA
∈ Q≥1 ∪ {∞}

is the elasticity of A, and we set ρ({0}) = 1.

Monoids. By a monoid, we always mean a cancellative semigroup with identity. Let H be a monoid. If
an element a ∈ H is a product of k irreducible elements, say a = u1 · . . . · uk, then k is a factorization
length and the set L(a) ⊂ N of all possible factorization lengths is the set of lengths of a. If a is invertible
in H , then we set L(a) = {0}. We denote by

L(H) = {L(a) | a ∈ H} the system of sets of lengths of H , and by

∆(H) =
⋃

L∈L(H)

∆(L) ⊂ N the set of distances of H .

For k ∈ N, we set ρk(H) = k if H is a group, and

ρk(H) = sup{supL | L ∈ L(H), k ∈ L} ∈ N ∪ {∞}, otherwise .

Then

ρ(H) = sup{ρ(L) | L ∈ L(H)} = lim
k→∞

ρk(H)

k
∈ R≥1 ∪ {∞}

is the elasticity of H .
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Zero-Sum Theory. Let G be an additive abelian group, G0 ⊂ G a subset, and let F(G0) be the
free abelian monoid with basis G0. In Combinatorial Number Theory, the elements of F(G0) are called
sequences over G0. For a sequence

S = g1 · . . . · gl =
∏

g∈G0

gvg(S) ∈ F(G0) ,

we set −S = (−g1) · . . . · (−gl), and we call |S| = l =
∑

g∈G vg(S) ∈ N0 the length of S ,

supp(S) = {g ∈ G | vg(S) > 0} ⊂ G the support of S , vg(S) the multiplicity of g in S ,

σ(S) =

l
∑

i=1

gi the sum of S , and Σ(S) =
{

∑

i∈I

gi | ∅ 6= I ⊂ [1, l]
}

the set of subsequence sums of S .

The sequence S is said to be

• zero-sum free if 0 /∈ Σ(S),
• a zero-sum sequence if σ(S) = 0,
• a minimal zero-sum sequence if it is a nontrivial zero-sum sequence and every proper subsequence
is zero-sum free.

The monoid

B(G0) = {S ∈ F(G0) | σ(S) = 0} ⊂ F(G0)

is called the monoid of zero-sum sequences over G0. As usual we set, for all k ∈ N,

ρk(G0) = ρk
(

B(G0)
)

, ρ(G0) = ρ
(

B(G0)
)

, L(G0) = L(B(G0)), and ∆(G0) = ∆
(

B(G0)
)

.

The atoms (irreducible elements) of the monoid B(G0) are precisely the minimal zero-sum sequences over
G0, and they will be denoted by A(G0). If G0 is finite, then A(G0) is finite. The Davenport constant

D(G0) of G0 is the maximal length of an atom whence

D(G0) = sup
{

|U |
∣

∣ U ∈ A(G0)
}

∈ N0 ∪ {∞} .

The set of minimal distances ∆∗(G) ⊂ ∆(G) is defined as

∆∗(G) = {min∆(G0) | G0 ⊂ G with ∆(G0) 6= ∅} ⊂ ∆(G) .

A tuple (ei)i∈I is called a basis of G if all elements are nonzero and G = ⊕i∈I〈ei〉. For p ∈ P, let rp(G)
denote the p-rank of G, r(G) = sup{rp(G) | p ∈ P} denote the rank of G, and let r∗(G) =

∑

p∈P
rp(G) be

the total rank of G.

Transfer Krull monoids. A commutative monoid is a Krull monoid if it is completely integrally closed
and satisfies the ascending chain condition on divisorial ideals. An integral domain R is a Krull domain if
and only if its multiplicative monoid R \ {0} is a Krull monoid whence every integrally closed noetherian
domain is Krull. Rings of integers, holomorphy rings in algebraic function fields, and regular congruence
monoids in these domains are Krull monoids with finite class group such that every class contains a prime
divisor ([14, Section 2.11]). Monoid domains, power series, and monoids of modules that are Krull are
discussed in [21, 24, 25, 3, 1, 7]. Let H be a Krull monoid with class group G such that every class
contains a prime divisor. Then there is a transfer homomorphism θ : H → B(G) which implies that
L(H) = L(G) ([14, Theorem 3.4.10]). A transfer Krull monoid H over G is a monoid allowing such
a transfer homomorphism to B(G) whence L(H) = L(G). Thus Theorem 1.1 applies to transfer Krull
monoids over finite abelian groups. Recent deep work, mainly by Baeth and Smertnig, revealed that wide
classes of non-commutative Dedekind domains are transfer Krull ([29, 2, 28]). We refer to the survey [11]
for a detailed discussion of these and further examples.

Sets of Lengths. Let A ∈ B(G0) and d = min{|U | | U ∈ A(G0)}. If A = BC with B,C ∈ B(G0), then

L(B) + L(C) ⊂ L(A) .
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If A = U1 · . . . · Uk = V1 · . . . · Vl with U1, . . . , Uk, V1, . . . , Vl ∈ A(G0) and k < l, then

ld ≤
l

∑

ν=1

|Vν | = |A| =
k

∑

ν=1

|Uν | ≤ kD(G0) whence
|A|

D(G0)
≤ min L(A) ≤ maxL(A) ≤

|A|

d
.

For sequences over cyclic groups the g-norm plays a similar role as the length does for sequences over
arbitrary groups. Let g ∈ G with ord(g) = n ≥ 2. For a sequence S = (n1g) · . . . · (nlg) ∈ F(〈g〉), where
l ∈ N0 and n1, . . . , nl ∈ [1, n], we define

‖S‖g =
n1 + . . .+ nl

n
.

Note that σ(S) = 0 implies that n1 + . . .+ nl ≡ 0 mod n whence ‖S‖g ∈ N0. Thus, ‖ · ‖g : B(〈g〉) → N0

is a homomorphism, and ‖S‖g = 0 if and only if S = 1. If S ∈ A(G0), then ‖S‖g ∈ [1, n − 1], and if
‖S‖g = 1, then S ∈ A(G0). Arguing as above we obtain that

‖A‖g
n− 1

≤ min L(A) ≤ max L(A) ≤ ‖A‖g .

Now we recall the concept of almost arithmetical multiprogressions (AAMPs) as given in [14, Chapter
4]. Then we gather results on sets of lengths and on invariants controlling their structure such as the set
of distances and the elasticities (Propositions 2.2, 2.3, and 2.4). These results form the basis for the proof
of Theorem 1.1 given in the next section.

Definition 2.1. Let d ∈ N, l, M ∈ N0 and {0, d} ⊂ D ⊂ [0, d]. A subset L ⊂ Z is called an

• arithmetical multiprogression (AMP for short) with difference d, period D and length l, if
L is an interval of minL+D + dZ (this means that L is finite nonempty and L = (minL+D +
dZ) ∩ [minL,maxL]), and l is maximal such that minL+ ld ∈ L.

• almost arithmetical multiprogression (AAMP for short) with difference d, period D, length l
and bound M , if

L = y + (L′ ∪ L∗ ∪ L′′) ⊂ y +D + dZ

where L∗ is an AMP with difference d (whence L∗ 6= ∅), period D and length l such that
minL∗ = 0, L′ ⊂ [−M,−1], L′′ ⊂ maxL∗ + [1,M ] and y ∈ Z.

• almost arithmetical progression (AAP for short) with difference d, bound M and length l, if
it is an AAMP with difference d, period {0, d}, bound M and length l.

Proposition 2.2 (Structural results on L(G)).
Let G be a finite abelian group with |G| ≥ 3.

1. There exists some M ∈ N0 such that every set of lengths L ∈ L(G) is an AAMP with some

difference d ∈ ∆∗(G) and bound M .

2. For every M ∈ N0 and every finite nonempty set ∆∗ ⊂ N, there is a finite abelian group G∗ such

that the following holds : for every AAMP L with difference d ∈ ∆∗ and bound M there is some

yL ∈ N such that

y + L ∈ L(G∗) for all y ≥ yL .

3. Let G0 ⊂ G be a subset. Then there exist a bound M ∈ N0 and some A∗ ∈ B(G0) such that for all

A ∈ A∗B(G0) the set of lengths L(A) is an AAP with difference min∆(G0) and bound M .

4. If A ∈ B(G) such that supp(A) ∪ {0} is a subgroup of G, then L(A) is an arithmetical progression

with difference 1.

Proof. The first statement gives the Structure Theorem for Sets of Lengths ([14, Theorem 4.4.11]), which
is sharp by the second statement proved in [27]. The third and the fourth statements show that sets of
lengths are extremely smooth provided that the associated zero-sum sequence contains all elements of its
support sufficiently often ([14, Theorems 4.3.6 and 7.6.8]). �
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Proposition 2.3 (Structural results on ∆(G) and on ∆∗(G)).
Let G = Cn1

⊕ . . .⊕ Cnr
where r, n1, . . . , nr ∈ N with r = r(G), 1 < n1 | . . . |nr, and |G| ≥ 3.

1. ∆(G) is an interval with

[

1, max{exp(G) − 2, k − 1}
]

⊂ ∆(G) ⊂
[

1,D(G)− 2
]

where k =

r(G)
∑

i=1

⌊ni

2

⌋

.

2. 1 ∈ ∆∗(G) ⊂ ∆(G), [1, r(G)− 1] ⊂ ∆∗(G), and max∆∗(G) = max{exp(G)− 2, r(G) − 1}.

3. If G is cyclic of order |G| = n ≥ 4, then max
(

∆∗(G) \ {n− 2}
)

= ⌊n
2 ⌋ − 1.

Proof. The statement on max∆∗(G) follows from [19]. For all remaining statements see [14, Section 6.8].
A more detailed analysis of ∆∗(G) in case of cyclic groups can be found in [26]. �

Proposition 2.4 (Results on ρk(G) and on ρ(G)).
Let G be a finite abelian group with |G| ≥ 3, and let k ∈ N.

1. ρ(G) = D(G)/2 and ρ2k(G) = kD(G).

2. 1 + kD(G) ≤ ρ2k+1(G) ≤ kD(G) + D(G)/2. If G is cyclic, then equality holds on the left side.

Proof. See [14, Chapter 6.3], [10, Theorem 5.3.1], and [13]. �

3. A characterization of extremal cases

The goal of this section is to prove Theorem 1.1 and to do so we proceed in a series of auxiliary results.
We first recall some cases where the systems of sets of lengths are completely determined. Then, we
proceed to treat the various remaining cases.

Proposition 3.1.

1. L(C1) = L(C2) =
{

{m} | m ∈ N0

}

.

2. L(C3) = L(C2 ⊕ C2) =
{

y + 2k + [0, k]
∣

∣ y, k ∈ N0

}

.

3. L(C4) =
{

y + k + 1 + [0, k]
∣

∣ y, k ∈ N0

}

∪
{

y + 2k + 2 · [0, k]
∣

∣ y, k ∈ N0

}

.

4. L(C3
2 ) =

{

y + (k + 1) + [0, k]
∣

∣ y ∈ N0, k ∈ [0, 2]
}

∪
{

y + k + [0, k]
∣

∣ y ∈ N0, k ≥ 3
}

∪
{

y + 2k + 2 · [0, k]
∣

∣ y, k ∈ N0

}

.

5. L(C2
3 ) = {[2k, l] | k ∈ N0, l ∈ [2k, 5k]}

∪ {[2k + 1, l] | k ∈ N, l ∈ [2k + 1, 5k + 2]} ∪ {{1}}.

Proof. 1. This is straightforward and well-known. A proof of 2.,3., and 4. can be found in [14, Theorem
7.3.2]. For 5. we refer to [16, Proposition 3.12]. �

Lemma 3.2. Let G be a cyclic group of order |G| = n ≥ 7, g ∈ G with ord(g) = n, k ∈ N, and

Ak =

{

gnk(−g)nk(2g)n if n is even,

gnk(−g)nk
(

(2g)(n−1)/2g
)2

if n is odd.

Then there is a bound M ∈ N such that, for all k ≥ n− 1, the sets L(Ak) are AAPs with difference 1 and

bound M , but they are not arithmetical progressions with difference 1.

Proof. We set G0 = {g,−g, 2g}, U1 = (−g)g, U2 = (−g)2(2g) and, if n is odd, then V1 = (2g)(n+1)/2(−g).
Furthermore, for j ∈ [0, n/2], we define Wj = (2g)jgn−2j . Then, together with −W0 = (−g)n, these are
all minimal zero-sum sequences which divide Ak for k ∈ N. Note that

‖ −W0‖g = n− 1, ‖U2‖g = ‖V1‖g = 2, and ‖U1‖g = ‖Wj‖g = 1 for all j ∈ [0, n/2] .

It is sufficient to prove the following two assertions.
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A1. There is a bound M ∈ N0 such that L(Ak) is an AAP with difference 1 and bound M for all
k ≥ n− 1.

A2. For each k ∈ N, L(Ak) is not an arithmetical progression with difference 1.

Proof of A1. By Proposition 2.2.1 there is a bound M ′ ∈ N0 such that, for each k ∈ N, L(Ak) is an
AAMP with difference dk ∈ ∆∗(G) ⊂ [1, n− 2] and bound M ′. Suppose that k ≥ n− 1. Then (W0U2)

n−1

divides Ak. Since W0U2 = W1U
2
1 , it follows that

(W0U2)
n−1 = (W0U2)

n−1−ν(W1U
2
1 )

ν for all ν ∈ [0, n− 1]

and hence L
(

(W0U2)
n−1

)

⊃ [2n−2, 3n−3]. Thus L(Ak) contains an arithmetical progression of difference
1 and length n− 1. Therefore there is a bound M ∈ N0 such that L(Ak) is an AAP with difference 1 and
bound M for all k ≥ n− 1.

Proof of A2. Let k ∈ N. Observe that

Ak =

{

W k
0 (−W0)

kW 2
n/2 if n is even,

W k
0 (−W0)

k
(

W(n−1)/2)
2 if n is odd,

and it can be seen that min L(Ak) = 2k + 2. We assert that 2k + 3 /∈ L(Ak). If n is even, then

W0Wn/2 = WjWn/2−j for each j ∈ [0, n/2] ,

and similarly, for odd n we have

W0W(n−1)/2 = WjW(n−1)/2−j for each j ∈ [0, (n− 1)/2] .

In both cases, all factorizations of Ak of length 2k+2 contain only atoms with g-norm 1 and with g-norm
n − 1. Let z′ be any factorization of Ak containing only atoms with g-norm 1 and with g-norm n − 1.
Then |z′| − |z| is a multiple of n− 2 whence if |z′| > |z|, then |z′| − |z| ≥ n− 2 > 1.

Next we consider a factorization z′ of Ak containing at least one atom with g-norm 2, say z′ has r
atoms with g-norm n− 1, s ≥ 1 atoms with g-norm 2, and t atoms with g-norm 1. Then k > r,

‖Ak‖g = k(n− 1) + (k + 2) = r(n − 1) + 2s+ t ,

and we study
|z′| − |z| = r + s+ t− (2k + 2)

= r + s+ k(n− 1) + (k + 2)− r(n− 1)− 2s− (2k + 2)

= (k − r)(n − 2)− s .

Note that s ≤ v2g(Ak) ≤ n. Thus, if k − r ≥ 2, then

(k − r)(n− 2)− s ≥ 2n− 4− s ≥ n− 4 > 1 .

Suppose that k − r = 1. Then we cancel (−W0)
k−1, and consider a relation where −W0 occurs precisely

once. Suppose that all s atoms of g-norm 2 are equal to U2. Since v−g(U2) = 2, it follows that s ≤
v−g(−W0)/2 = n/2 whence

(k − r)(n − 2)− s ≥ n− 2− n/2 = n/2− 2 > 1 .

Suppose that V1 occurs among the s atoms with g-norm 2. Then n is odd, V1 occurs precisely once, and

s− 1 ≤ v2g(Ak)−
n+ 1

2
= (n− 1)−

n+ 1

2
=

n− 3

2
,

whence

(k − r)(n − 2)− s ≥ (n− 2)−
n− 1

2
=

n+ 1

2
− 2 > 1 . �

Lemma 3.3. Let G be a cyclic group of order |G| = 6, g ∈ G with ord(g) = 6 and, for each k ∈ N,
Ak = g6k(−g)6k(4g)(−g)4(3g)g3. Then there is a bound M ∈ N such that, for all k ∈ N, the sets L(Ak)
are AAPs with difference 1 and bound M , but they are not arithmetical progressions with difference 1.
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Proof. We set U = g6, W1 = (4g)(−g)4, and W2 = (3g)g3. Then, for each k ∈ N, we have Ak =
Uk(−U)kW1W2. By Proposition 2.3, we obtain that ∆∗(G) = {1, 2, 4}. By Proposition 2.2.1, there is a
bound M ′ ∈ N such that, for every k ∈ N, L(Ak) is an AAMP with difference dk ∈ ∆∗(G) and bound M ′.
We show that 2k+4, 2k+5, 2k+6, 2k+7 ∈ L(Ak) which implies that there is a bound M ∈ N such that,
for every k ∈ N, L(Ak) is an AAP with difference 1 and bound M .

Let k ∈ N. We set V = (−g)g, W3 = (4g)(3g)(−g), W4 = (4g)g2, and obtain that

Ak = Uk(−U)kW1W2 = Uk(−U)kW3V
3

= Uk−1(−U)kW4W2V
4 = Uk−1(−U)k−1W1W2V

6 = Uk−1(−U)k−1W4(−W2)V
7 ,

and hence {2k + 2, 2k + 4, 2k + 5, 2k + 6, 2k + 7} ⊂ L(Ak). Furthermore, min L(Ak) = 2k + 2, and
z = Uk(−U)kW1W2 is the only factorization of Ak of length 2k + 2. From this we see that there is no
factorization of length 2k + 3, and hence L(Ak) is not an arithmetical progression with difference 1. �

Lemma 3.4. Let G be a cyclic group of order |G| = 5. Then every L ∈ L(G) has one of the following

forms :

• L is an arithmetical progression with difference 1.
• L is an arithmetical progression with difference 3.
• L is an AMP with period {0, 2, 3} or with period {0, 1, 3}.

Proof. By Proposition 2.3 we obtain that ∆∗(G) = {1, 3}. Let A′ ∈ B(G). If A′ = 0mA with m ∈ N0

and A ∈ B(G \ {0}), then L(A′) = m + L(A). Thus it is sufficient to prove the assertion for L(A).
If | supp(A)| = 1, then |L(A)| = 1. If | supp(A)| = 4, then L(A) is an arithmetical progression with
difference 1 by Proposition 2.2.4. Suppose that | supp(A)| = 2. Then there is a nonzero g ∈ G such that
supp(A) = {g, 2g} or supp(A) = {g, 4g}. If supp(A) = {g, 2g}, then L(A) is an arithmetical progression
with difference 1 (this can be checked directly by arguing with the g-norm). If supp(A) = {g, 4g}, then
L(A) is an arithmetical progression with difference 3.

Thus it remains to consider the case | supp(A)| = 3. We set G0 = supp(A). Then there is an element
g ∈ G0 such that −g ∈ G0. Thus either G0 = {g, 2g,−g} or G0 = {g, 3g,−g}. Since {g, 3g,−g} =
{−g, 2(−g),−(−g)}, we may suppose without restriction that G0 = {g, 2g,−g}.

If ∆(L(A)) ⊂ {1}, then L(A) is an arithmetical progression with difference 1. If 3 ∈ ∆(L(A)), then
∆(L(A)) = {3} by [5, Theorem 3.2], which means that L(A) is an arithmetical progression with difference 3.
Thus it remains to consider the case where 2 ∈ ∆(L(A)) ⊂ [1, 2]. We show that L(A) is an AMP with period
{0, 2, 3} or with period {0, 1, 3}. Since 2 ∈ ∆(L(A)), there exist k ∈ N, A1, . . . , Ak, B1, . . . , Bk+2 ∈ A(G0)
such that

A = A1 · . . . ·Ak = B1 · . . . ·Bk+2, and k + 1 /∈ L(A) .

For convenience we list the elements of A(G0), and we order them by their lengths:

• g5, (−g)5, (2g)5,
• g3(2g), (2g)3(−g),
• g(2g)2, (2g)(−g)2,
• g(−g).

Clearly, {‖S‖g | S ∈ A(G0)} = {1, 2, 4}, and (−g)5 is the only atom having g-norm 4. We distinguish two
cases.

CASE 1: (−g)5 /∈ {A1, . . . , Ak}.
Then {A1, . . . , Ak}must contain atoms with g-norm 2. These are the atoms (2g)5, (2g)(−g)2, (2g)3(−g).

If g5 or g3(2g) occurs in {A1, . . . , Ak}, then k + 1 ∈ L(A), a contradiction. Thus none of the elements
(−g)5, g5, and g3(2g) lies in {A1, . . . , Ak}, and hence

{A1, . . . , Ak} ⊂ {(2g)5, (2g)3(−g), g(2g)2, (2g)(−g)2, g(−g)} .
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Now we set h = 2g and obtain that

{A1, . . . , Ak} ⊂ {(2g)5, (2g)3(−g), g(2g)2, (2g)(−g)2, g(−g)} = {h5, h3(2h), h2(3h), h(2h)2, (2h)(3h)} .

Since the h-norm of all these elements equals 1, it follows that max L(A) = k, a contradiction.

CASE 2: (−g)5 ∈ {A1, . . . , Ak}.
If (2g)5, or g(2g)2, or (2g)3(−g) occurs in {A1, . . . , Ak}, then k + 1 ∈ L(A), a contradiction. Since

∆({−g, g}) = {3}, it follows that

Ω = {A1, . . . , Ak} ∩ {g3(2g), (2g)(−g)2} 6= ∅ .

Since
(

g3(2g)
)(

(2g)(−g)2
)

=
(

(−g)g
)2(

g(2g)2
)

and k+1 /∈ L(A), it follows that |Ω| = 1. We distinguish

two cases.

CASE 2.1: {A1, . . . , Ak} ⊂ {g5, (−g)5, g(−g), (2g)(−g)2}.
We set h = −g, and observe that

{A1, . . . , Ak} ⊂ {g5, (−g)5, g(−g), (2g)(−g)2} = {h5, (−h)5, h(−h), h2(3h)} .

Since (−h)5 is the only element with h-norm greater than 1, it follows that (−h)5 ∈ {A1, . . . , Ak}. Since

∆({h,−h}) = {3}, it follows that h2(3h) ∈ {A1, . . . , Ak}. Since
(

(−h)5
)(

h2(3h)
)

=
(

h(−h)
)2(

(3h)(−h)3
)

,

we obtain that k + 1 ∈ L(A), a contradiction.

CASE 2.2: {A1, . . . , Ak} ⊂ {g5, (−g)5, g(−g), g3(2g)}.

Since
(

g3(2g)
)2(

(−g)5
)

=
(

g5
)(

g(−g)
)(

(2g)(−g)2
)2

and k + 1 /∈ L(A), it follows that

|{i ∈ [1, k] | Ai = g3(2g)}| = 1 ,

and hence v2g(A) = 1. Thus every factorization z of A has the form

z =
(

(2g)g3
)

z1 or z =
(

(2g)(−g)2
)

z2 ,

where z1, z2 are factorizations of elements B1, B2 ∈ B({−g, g}). Since L(B1) and L(B2) are arithmetical
progressions of difference 3, L(A) is a union of two shifted arithmetical progression of difference 3. We set

A =
(

g5
)m1

(

(−g)5
)(

(−g)g
)m3

(

(2g)g3
)

,

where m1 ∈ N0, m2 ∈ N, and m3 ∈ [0, 4]. Suppose that m1 ≥ 1. Note that

A′ =
(

g5
)(

(−g)5
)(

(2g)g3
)

=
(

(−g)g
)3(

(2g)(−g)2
)(

g5
)

=
(

(−g)g
)5(

(2g)g3
)

,

and hence L(A′) = {3, 5, 6}. We set A = A′A′′ with A′′ ∈ B({g,−g}). The above argument on the
structure of the factorizations of A implies that L(A) is the sumset of L(A′) and L(A′′) whence

L(A) = L(A′) + L(A′′) = 3 + {0, 2, 3}+ L(A′′) .

Since L(A′′) is an arithmetical progression with difference 3, L(A) is an AMP with period {0, 2, 3}. Suppose
that m1 = 0. If m3 ∈ [2, 4], then L(A) = {m2 +m3,m2 +m3 + 1,m2 +m3 + 3} is an AMP with period
{0, 1, 3}. If m3 = 1, then L(A) = {m2 + 2,m2 + 4}. If m3 = 0, then L(A) = {m2 + 1,m2 + 3}. �

Lemma 3.5. Let G = Cn1
⊕ Cn2

where n1, n2 ∈ N with 4 ≤ n1 |n2, (e1, e2) be a basis of G with

ord(ei) = ni for i ∈ [1, 2], and set W = en1−1
1 en2−1

2 (e1 + e2). Then there is a bound M ∈ N such that, for

all sufficiently large k, the sets L
(

W k(−W )k
)

are AAPs with difference 1 and bound M , but they are not

arithmetical progressions with difference 1.
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Proof. We set e0 = e1 + e2, G0 = {eν ,−eν | ν ∈ [0, 2]}, Uν = e
ord(eν)
ν and Vν = (−eν)eν for ν ∈ [0, 2].

For k ∈ N we set Ak = W k(−W )k and Lk = L(Ak). Since gcd∆(G0) | gcd({n1 − 2, n2 − 2, |W | − 2 =
n1 + n2 − 3}) = 1, it follows that min∆(G0) = 1. Thus, by Proposition 2.2.3, there are M,k0 ∈ N such
that for all k ≥ k0, the set Lk is an AAP with difference 1 and bound M .

Let k ∈ N. We assert that 1 + minLk /∈ Lk. This implies that Lk is not an arithmetical progression
with difference 1. Since |W | = | −W | = D(G), it follows that minLk = 2k, and clearly W k(−W )k is the
only factorization of Ak having length 2k. If S = (−e1)e

n2−1
2 (e1 + e2), then W (−W ) = S(−S)V n1−2

1 ,
2k + n1 − 2 ∈ Lk, and this is the second shortest factorization length of Ak. �

Lemma 3.6. Let G = C4
2 , (e1, e2, e3, e4) be a basis of G, e0 = e1 + . . . + e4, U4 = e0 · . . . · e4, U3 =

e1e2e3(e1 + e2 + e3), and U2 = e1e2(e1 + e2).

1. There is a bound M ∈ N such that, for all sufficiently large k, the sets L
(

(U3U4)
2k
)

are AAPs with
difference 1 and bound M , but they are not arithmetical progressions with difference 1.

2. For each k ∈ N, we have

L(U2k
4 U2) = (2k + 1) + {0, 1, 3}+ 3 · [0, k − 1] .

Proof. 1. We setG0 = supp(U3U4), Ak = U2k
3 U2k

4 and Lk = L(Ak) for each k ∈ N. Since gcd∆(G0) | gcd{|U3|−
2 = 2, |U4| − 2 = 3}, it follows that min∆(G0) = 1. Thus, by Proposition 2.2.3, there are M,k0 ∈ N such
that for all k ≥ k0, the set Lk is an AAP with difference 1 and bound M .

Let k ∈ N. Then minLk = 4k, and we assert that 1 + 4k /∈ Lk. For ν ∈ [0, 4], we set Vν = e2ν
and V5 = (e1 + e2 + e3)

2. Since Z(U2
3 ) = {U2

3 , V1V2V3V5}, Z(U2
4 ) = {U2

4 , V1V2V3V4V0}, and Z(U3U4) =
{U3U4, V1V2V3W} where W = (e1 + e2 + e3)e0e4, it follows that min(Lk \ {4k}) = 4k + 2.

2. Setting W = (e1 + e2)e3e4e0 we infer that U2
4U2 = U4(e

2
1)(e

2
2)W = U2(e

2
0) · . . . · (e

2
4) and hence

L(U2
4U2) = {3, 4, 6}. Thus for each k ∈ N we obtain that

L(U2k
4 U2) =

(

{1}+ L(U2k
4 )

)

∪
(

L(U2k−2
4 ) + L(U2

4U2)
)

=
(

2k + 1 + 3 · [0, k]
)

∪
(

2k − 2 + 3 · [0, k − 1] + {3, 4, 6}
)

=
(

2k + 1 + 3 · [0, k]
)

∪
(

2k + 2 + 3 · [0, k − 1]
)

∪
(

2k + 4 + 3 · [0, k − 1]
)

= (2k + 1) + {0, 1, 3}+ 3 · [0, k − 1] . �

Lemma 3.7. Let G = Cr
3 with r ∈ [3, 4], (e1, . . . , er) a basis of G, e0 = e1+. . .+er, and U = (e1·. . .·er)2e0.

1. If r = 3, then there is a bound M ∈ N such that, for all k ∈ N, the sets L
(

U6k+1(−U)
)

are AAPs
with difference 1 and bound M , but they are not arithmetical progressions with difference 1.

2. If r = 4 and V1 = e21e
2
2(e1 + e2), then for each k ∈ N we have

L(U3kV1) = (3k + 1) + {0, 1, 3}+ 3 · [0, 2k − 1] .

Proof. 1. Let r = 3 and k ∈ N. We set Ak = U6k+1(−U) and Lk = L(Ak). For ν ∈ [0, 3], we set Uν = e3ν ,
Vν = (−eν)eν , and we define X = e20e1e2e3.

First, consider L(U6k). We observe that Z(U2) = {U2, U1U2U3X} and Z(U3) = {U3, UU1U2U3X,
U0U

2
1U

2
2U

2
3 }. Furthermore, min L(U6k) = 6k, maxL(U6k) = 14k, ∆({e0, . . . , e3}) = {2}, and hence

L(U6k) = 6k + 2 · [0, 4k] .

Next, consider L
(

(−U)U
)

. For subsets I, J ⊂ [1, 3] with [1, 3] = I ⊎ J , we set

WI = e0
∏

i∈I

e2i
∏

j∈J

(−ej) .
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Since

Z
(

U(−U)
)

=
{

V0V
2
1 V

2
2 V

2
3

}

⊎
{

WI(−WI)
∏

j∈J

Vj | I, J ⊂ [1, 3] with [1, 3] = I ⊎ J
}

,

it follows that

L
(

(−U)U
)

=
{

7
}

⊎
{

2 + |J | | I, J ⊂ [1, 3] with [1, 3] = I ⊎ J
}

= {2, 3, 4, 5, 7} .

This implies that

[6k + 2, 14k + 5] ∪ {14k+ 7} = L
(

(−U)U
)

+ L(U6k) ⊂ L(Ak) ⊂ [6k + 2, 14k+ 7] ,

and we claim that [6k + 2, 14k + 5] ∪ {14k + 7} = L(Ak). Then the assertion of the lemma follows.
To prove this, we consider the unique factorization z ∈ Z(Ak) of length |z| = 14k + 7 which has the

form
z =

(

U0U
2
1U

2
2U

2
3 )

2k
(

V0V
2
1 V

2
2 V

2
3

)

.

Assume to the contrary that there is a factorization z′ ∈ Z(Ak) of length |z′| = 14k + 6. If V0 | z′, then
V0V

2
1 V

2
2 V

2
3 | z′ and z′ = V0V

2
1 V

2
2 V

2
3 x with x ∈ Z(U6k), whence |x| ∈ L(U6k) and |z′| ∈ 7 + L(U6k),

a contradiction. Suppose that V0 ∤ z′. Then there are I, J ⊂ [1, 3] with [1, 3] = I ⊎ J such that
WI(−WI)

∏

j∈J Vj | z′ and hence z′ = WI(−WI)
(
∏

j∈J Vj

)

x with x ∈ Z(U6k). Thus |z′| ∈ [2, 5]+ L(U6k),
a contradiction.

2. Let r = 4 and k ∈ N. We have L(U2) = {2, 5} and L(U3k) = 3k + 3 · [0, 2k]. We define

V2 = (e1 + e2)e1e2e
2
3e

2
4e0 , V3 = (e1 + e2)e3e4e

2
0, and W = e1 · . . . · e4e

2
0 ,

and observe that
U3V1 = U2V2(e

3
1)(e

3
2) = UV3(e

3
1)

2(e32)
2(e33)(e

3
4)

whence L(U3V1) = {4, 5, 7, 8}. Clearly, each factorization of U3kV1 contains exactly one of the atoms
V1, V2, V3, and it contains it exactly once. Therefore we obtain that

L(U3kV1) =
(

{1}+ L(U3k)
)

∪
(

L(U3V1) + L(U3k−3)
)

=
(

(3k + 1) + 3 · [0, 2k]
)

∪
(

{4, 5, 7, 8}+ (3k − 3) + 3 · [0, 2k − 2]
)

=
(

(3k + 1) + 3 · [0, 2k]
)

∪
(

(3k + 1) + {0, 1, 3, 4}+ 3 · [0, 2k − 2]
)

= (3k + 1) + {0, 1, 3}+ 3 · [0, 2k − 1] . �

Proof of Theorem 1.1. 1. (d) ⇒ (a) Proposition 3.1 shows that, for all groups mentioned, all sets of
lengths are arithmetical progressions. Proposition 2.3 shows that all differences lie in ∆∗(G).

(c) ⇔ (d) This is the special case of finite groups of [16, Theorem 1.1] (see Remark 3.8.1).
(a) ⇒ (b) Obvious.
(b) ⇒ (d) Suppose that exp(G) = n, and that G is not isomorphic to any of the groups listed in (d).

We have to show that there is an L ∈ L(G) which is not an arithmetical progression. We distinguish four
cases.

CASE 1: n ≥ 5.
Then [15, Proposition 3.6.1] provides examples of sets of lengths which are not arithmetical progressions.

CASE 2: n = 4.
Since G is not cyclic, it has a subgroup isomorphic to C2 ⊕ C4. Then [14, Theorem 6.6.5] shows that

{2, 4, 5} ∈ L(C2 ⊕ C4} ⊂ L(G).

CASE 3: n = 3.
Then G is isomorphic to Cr

3 with r ≥ 3, and Lemma 3.7.1 provides examples of sets of lengths which
are not arithmetical progressions.

CASE 4: n = 2.
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Then G is isomorphic to Cr
2 with r ≥ 4, and Lemma 3.6.1 provides examples of sets of lengths which

are not arithmetical progressions.

2. (b) ⇒ (a) Suppose that G is a subgroup of C3
4 or a subgroup of C3

3 . Then Proposition 2.3.2 implies
that ∆∗(G) ⊂ {1, 2}, and hence Proposition 2.2.1 implies the assertion.

(a) ⇒ (b) Suppose that (b) does not hold. Then G has a subgroup isomorphic to a cyclic group of
order n ≥ 5, or isomorphic to C4

2 , or isomorphic to C4
3 . We show that in none of these cases (a) holds.

If G has a subgroup isomorphic to Cn for some n ≥ 5, then [15, Proposition 3.6.1] shows that (a) does
not hold. If G has a subgroup isomorphic to C4

2 , then Lemma 3.6.2 shows that (a) does not hold. If G
has a subgroup isomorphic to C4

3 , then Lemma 3.7.2 shows that (a) does not hold.

3. Suppose that G is cyclic. If |G| ≤ 4, then all sets of lengths are arithmetical progressions with
difference in ∆∗(G) by 1. and hence they are AMPs with difference in ∆∗(G). If |G| ≥ 5, then the
assertion follows from the Lemmas 3.2, 3.3, and 3.4.

Suppose that G has rank r ≥ 2 and exp(G) ∈ [2, 5], say G = Cn1
⊕ . . . ⊕ Cnr

with 1 < n1 | . . . |nr.
If n1 ≥ 4, then Lemma 3.5 shows that there are sets of lengths which are not AMPs with difference
in ∆∗(G). Thus it suffices to consider the cases where G is isomorphic to one of the following groups:
Cr

2 , C
r−1
2 ⊕ C4, C

r
3 .

If G = Cr−1
2 ⊕ C4, then L(G) contains (arbitrarily long) AAPs with difference 2 which are not arith-

metical progressions and hence no AMPs ([10, Example 3.2.1]).
Suppose that G = Cr

2 . If r ≤ 3, then the assertion follows from 1. If r ≥ 4, then the assertion follows
from Lemma 3.6.1.

Suppose that G = Cr
3 . If r ≤ 2, then the assertion follows from 1. If r ≥ 3, then the assertion follows

from Lemma 3.7.1. �

Proof of Corollary 1.2. Let G′ be an abelian group such that L(G) = L(G′). Then G′ is finite by Propo-
sition 2.2 and by [14, Theorem 7.4.1]. By Proposition 2.4, we have D(G) = ρ2(G) = ρ2(G

′) = D(G′), and
L(G) satisfies one of the properties given in Theorem 1.1 if and only if the same is true for L(G′). We
distinguish three cases.

CASE 1: L(G) satisfies the property in Theorem 1.1.1.
By 1., G is cyclic of order |G| ≤ 4 or isomorphic to a subgroup of C3

2 or isomorphic to a subgroup of
C2

3 , and the same is true for G′. Since D(G) ≥ 4, the assertion follows from Proposition 3.1.

CASE 2: L(G) satisfies the property in Theorem 1.1.2.
By CASE 1, we may suppose that L(G) and L(G′) do not satisfy the property in 1. Then by 2., G and

G′, are isomorphic to one of the following groups: C3
3 , C2 ⊕ C4, C

2
2 ⊕ C4, C2 ⊕ C2

4 , C
2
4 , or C

3
4 . Since C3

3

and C2
4 are the only non-isomorphic groups having the same Davenport constant, it remains to show that

L(C3
3 ) 6= L(C2

4 ). Since max∆(C2
4 ) = 3 (by [18, Lemma 3.3]) and max∆(C3

3 ) = 2 (by [12, Proposition
5.5]), the assertion follows.

CASE 3: L(G) satisfies the property in Theorem 1.1.3.
By CASE 1, we may suppose that G and G′ do not satisfy the property in 1. But then 3. implies that

G and G′ are both cyclic of order five. �

Remark 3.8.
1. Let H be an atomic monoid. The system of sets of lengths L(H) is said to be additively closed if

the sumset L1+L2 ∈ L(H) for all L1, L2 ∈ L(H). Thus L(H) is additively closed if and only if (L(H),+)
is a commutative reduced semigroup with respect to set addition. If this holds, then L(H) is an acyclic
semigroup in the sense of Cilleruelo, Hamidoune, and Serra ([6]). L(H) is additively closed in certain
Krull monoids stemming from module theory ([1, Section 6.C]). Examples in a non-cancellative setting
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can be found in [17, Theorem 4.5] and a more detailed discussion of the property of being additively closed
is given in [16].

2. Several properties occurring in Theorem 1.1 can be characterized by further arithmetical invariants
such as the catenary degree c(G) and the tame degree t(G) (for background see [14, Sections 6.4 and
6.5]). For example, the properties (a) - (d) given in Theorem 1.1.1. are equivalent to each of the following
properties (e) and (f):

(e) c(G) ≤ 3 or c(G) = 4 and {2, 4} ∈ L(G).
(f) c(G) ≤ 3 or t(G) = 4.

(use [18, Theorem A], [9, Theorem 4.12], and [14, Theorem 6.6.3]).
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