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The paper concerns the modelling of a compressible mixture of a liquid, its vapor and a gas. The gas and the vapor are miscible while the liquid is immiscible with the gaseous phases. This assumption leads to non symmetric constraints on the void fractions. We derive a three-phase threepressure model endowed with an entropic structure. We show that interfacial pressures are uniquely defined and propose entropy-consistent closure laws for the source terms. Naturally one exhibits that the mechanical relaxation complies with Dalton's law on the phasic pressures. Then the hyperbolicity and the eigenstructure of the homogeneous model are investigated and we prove that it admits a symmetric form leading to a local existence result. We also derive a barotropic variant which possesses similar properties.

Introduction

The present paper concerns the modelling of multiphase compressible flows which arise in many industrial applications. For instance, in the framework of safety demonstration for pressurized water reactors, some scenarii involve compressible three-phase flows. This is the case for the Loss Of Coolant Accident (LOCA) when a brutal rupture in the coolant circuit creates phase transition waves in the system Date: January 7, 2019. and leads to the appearance of vapor inside the liquid, the both phases interacting with the ambiant air. It also happens in Reactivity Initiated Accident (RIA) which involves liquid water and its vapor combined with hot fission gases, see IRSN website. It is then crucial to propose a model accounting for the dynamical and the thermodynamical disequilibrium (with respect to pressure, temperature, chemical potential). Over the last twenty years, a vast literature about the modeling of multiphase flows, but above all of two-phase flows, has been developed. Most of these works rely on the two-fluid approach [START_REF] Baer | A two phase mixture theory for the deflagration to detonation (ddt) transition in reactive granular materials[END_REF][START_REF] Drew | Mathematical modeling of two-phase flow[END_REF][START_REF] Drew | Theory of multicomponent fluids[END_REF][START_REF] Embid | Mathematical analysis of a two-phase continuum mixture theory[END_REF][START_REF] Kapila | Two-phase modelling of ddt in granular materials: reduced equations[END_REF][START_REF] Chen | A renormalization group scaling analysis for compressible two-phase flow[END_REF]: the dynamic of each phase is described by an Euler-type model and the two systems are coupled through interfacial (nonconservative) terms and source terms which relax towards the thermodynamical equilibrium. Different extensions have been proposed in the two-phase framework, see for instance [START_REF] Coquel | A class of two-fluid two-phase flow models[END_REF][START_REF] Lochon | Computation of fast depressurization of water using a two-fluid model: revisiting Bilicki modelling of mass transfer[END_REF][START_REF] Lochon | Modelling and simulation of steam-water transients using the two-fluid approach[END_REF] for recent contributions. The analysis of such models has been investigated in [START_REF] Coquel | Two properties of two-velocity twopressure models for two-phase flows[END_REF] (entropy structure, symmetrization, local existence result) and [START_REF] Flåtten | Relaxation two-phase flow models and the subcharacteristic condition[END_REF] (hierarchy of relaxation models and subcharacteristic condition). The generalization to multicomponent mixtures has been the subject of recent contributions: see [START_REF] Müller | Closure conditions for non-equilibrium multi-component models[END_REF][START_REF] Hantke | Closure conditions for a one temperature non-equilibrium multicomponent model of baer-nunziato type[END_REF] for the modelling and the analysis of proper closure laws, [START_REF] Hérard | A class of compressible multiphase flow models[END_REF] for the barotropic restriction, and [START_REF] Hutter | Continuum methods of physical modeling[END_REF][START_REF] Bothe | Continuum thermodynamics of chemically reacting fluid mixtures[END_REF][START_REF] Hantke | Analysis and simulation of a new multi-component two-phase flow model with phase transitions and chemical reactions[END_REF] for the modelling of chemical exchanges between the components. Another approach consists in considering the mixture as one fluid (thus with a unique velocity for all the phases) with appropriate thermodynamical properties. This type of model is referred as an homogeneous model, see [START_REF] Barberon | Finite volume simulation of cavitating flows[END_REF] for a two-phase case and [START_REF] Hurisse | A homogeneous model for compressible three-phase flows involving heat and mass transfer[END_REF] for a three-phase extension.

Note that in the previous references, the phases are assumed to be immiscible in the sense that all components occupy different volumes at a mesoscopic scale. In [START_REF] Dellacherie | Relaxation schemes for the multicomponent Euler system[END_REF] a multicomponent Euler type model is proposed for a fully miscible mixture of k phases, as the k phases are perfectly intricate and occupy the whole volume.

The present work focuses on the modeling of a three-phase mixture of a liquid (with index l), its vapor (with index v) and a gas (with index g). The gas and the vapor are supposed to be miscible in the sense that they are perfectly intimate like ideal gases. This leads to the equality of the phasic void fractions of vapor and gas, for any (t,

x) ∈ R + × R (1) α v (t, x) = α g (t, x) ∈ [0, 1].
Conversely the liquid is immiscible with the gaseous phases in the sense that

(2) α l (t, x) + α g (t, x) = 1, with α l (t, x) ∈ [0, 1] and (3) ∂ x α l (t, x) = -∂ x α g (t, x), and ∂ x α v (t, x) = ∂ x α g (t, x).
Mass transfer may occur between the vapor and the liquid but no phase transition is allowed between the gas and the two remaining phases, leading to a constant mass of gas in the system. The derivation of an homogeneous model for such a three-phase mixture has been investigated in [START_REF] Mathis | A thermodynamically consistent model of a liquid-vapor fluid with a gas[END_REF]. In the present work we address the derivation of a three-fluid model, in the spirit of [START_REF] Hérard | A three-phase flow model[END_REF], but accounting for the volume constraint (1)-(2). We do not tackle the numerical approximation of such systems and refer to [START_REF] Iampietro | Contribution to the simulation of low-velocity compressible two-phase flows with high pressure jumps using homogeneous and two-fluid approaches[END_REF] and references therein in the two-fluid framework, in [START_REF] Saleh | A relaxation scheme for a hyperbolic multiphase flow model[END_REF][START_REF] Pelanti | A numerical model for three-phase liquid-vapor-gas flows with relaxation processes[END_REF] for immiscible three-phase mixture case and to [START_REF] Han | Efficient and robust relaxation procedures for multicomponent mixtures including phase transition[END_REF] for the multicomponent case.

A three-velocity three-pressure relaxation model

The compressible flow is composed of a liquid phase, with index l, its vapor, with index v and a gaseous phase, with index g. For sake of readability we define the set of indices K := {l, g, v}. Defining the state vector Y as

(4) Y = (α g , ρ l , ρ g , ρ v , u l , u g , u v , ε l , ε g , ε v ) ∈ R 10 ,
we consider the following governing set of equations:

∂ t α g + v i (Y)∂ x α g = Φ g (Y), (5) 
∂ t m k + ∂ x (m k u k ) = Γ k (Y), k ∈ K, (6) 
∂ t (m k u k ) + ∂ x (m k u 2 k + α k p k ) + π k (Y)∂ x α g = D k (Y), k ∈ K, (7) 
∂ t (m k E k ) + ∂ x (u k (m k E k + α k p k )) -π k (Y)∂ t α g = B k (Y) k ∈ K. ( 8 
)
where α k is the void fraction of the phase k = l, g, v and m k = α k ρ k is the partial mass of the phase k ∈ K with ρ k the mean phasic density. The pressure within the phase k ∈ K is denoted p k . Each phase evolves with its own velocity u k , k ∈ K, and the phasic total energies E k read ( 9) 

E k = u 2 k /2 + ε k , where ε k = ε k (p k , ρ k ) is
ρ k c 2 k = ∂ε k ∂p k -1 p k ρ k -ρ k ∂ε k ∂ρ k . (11) 
We also define the phasic temperature

(12) a k = ∂s k ∂p k ∂ε k ∂p k -1 ≥ 0, the phasic enthalpies h k and chemical potentials µ k (13) h k = ε(p k , ρ k ) + p k /ρ k , H k = E k + p k /ρ r , µ k = h k -a -1 k s k (p k , ρ k ).
We denote U ∈ R 10 the vector of "conservative" variables defined by

(14) U = (α g , u l , u g , u v ) ∈ R 10 , with u k = (m k , m k u k , m k E k ) ∈ R 3 , k ∈ K.
Equations ( 5), ( 7) and ( 8) involve nonconservative terms with the interfacial velocity v i (Y) and the interfacial pressures π k (Y), k ∈ K. The definition of the velocity v i (Y) will be addressed in the following section. The interface quantities π k (Y) should cancel each other out in the sense that [START_REF] Guillemaud | Modelling and numerical simulation of two-phase flows using the two-fluid two-pressure approach[END_REF] k=l,g,v π k (Y) = 0.

Similarly the source terms cancel when considering the mean flow, that is

(16) k∈K Γ k (Y) = 0, k∈K D k (Y) = 0, k∈K B k (Y) = 0.
Note that the equation ( 5) involves only the source term Φ g (Y) associated to the void fraction α g . Nonetheless one should consider the mechanical transfer terms on the two remaining phases k = l, v so that [START_REF] Hantke | Analysis and simulation of a new multi-component two-phase flow model with phase transitions and chemical reactions[END_REF] Φ

g (Y) = Φ v (Y) = -Φ l (Y).
2.1. Definition of the interfacial pressures. Using Galilean invariance, we postulate that the interfacial velocity takes the form:

(18) v i (Y) = β l (Y)u l + β g (Y)u g + β v (Y)u v , with (19) 
β l (Y) + β g (Y) + β v (Y) = 1, β k (Y) ≥ 0, k ∈ K.
Note that other definitions of the interfacial velocity exist in the literature, see [START_REF] Guillemaud | Modelling and numerical simulation of two-phase flows using the two-fluid two-pressure approach[END_REF] for a review and a comparison of the most common definitions. Less standard definitions may be given, see for instance [START_REF] Coquel | A class of two-fluid two-phase flow models[END_REF] where the quantities β k (Y) follow a nonlinear transport equation.

Thus the relative velocity of the phase k ∈ K with respect to the interface reads

(20) v i (Y) -u k = β k (Y)(u k -u k ) + β k (Y)(u k -u k ), with k, k , k ∈ K, k = k, k = k, k = k .
The relative velocities also satisfy the following useful identity

(21) u l -u g = (u l -u v ) -(u g -u v ).
The modelling of the interfacial quantities requires the definition of an entropy function for the system (5)- [START_REF] Drew | Theory of multicomponent fluids[END_REF].

The mixture entropy is

(22) η(Y) = k∈K m k s k ,
and one can prove that smooth solutions of ( 5)-( 8) satisfy the following entropy identity

(23) ∂ t η(Y) + ∂ x f η (Y) + A η (Y, ∂ x Y) = RHS η (Y),
where the entropy flux reads

(24) f η (Y) = k∈K m k s k u k , and (25) 
A η (Y, ∂ x Y) = k∈K a k (v i (Y) -u k )(π k (Y)∂ x α g + p k ∂ x α k ) = [a v (v i (Y) -u v )(π v (Y) + p v ) + a g (v i (Y) -u g )(π g (Y) + p g ) +a l (v i (Y) -u l )(π l (Y) -p l ))]∂ x α g , and (26) 
RHS η = RHS Φ η + k∈K a k (B k (Y) -u k D k (Y)) + k∈K a k Γ k (Y) u 2 k 2 -ε k -ρ k ∂ ρ k ε k + k∈K Γ k (Y) (s k + ρ k ∂ ρ k s k ) , with (27) 
RHS Φ η = k∈K a k (π k (Y)φ g (Y) + p k Φ k (Y)) = (a l (π l (Y) -p l ) + a g (π g (Y) + p g ) + a v (π v (Y) + p v )) Φ g (Y).
One obtains the entropy equation ( 23) by deriving the evolution equations on the phasic quantities, see details in Appendix A. The model with minimal entropy dissipation refers to the model ( 5)- [START_REF] Drew | Theory of multicomponent fluids[END_REF] where

A η (Y, ∂ x Y) = 0.
Proposition 1 (Definition of the interfacial pressures). Smooth solutions of the system (5)-( 8) comply with the minimal entropy dissipation constraint

A η (Y, ∂ x Y) = 0 for the unique 3-tuple (π v (Y), π g (Y), π l (Y)), solution of (28) C(π l (Y) -p l , π g (Y) + p g , π v (Y) + p v ) = (0, 0, p v + p g -p l ) , with (29) 
C =   -a l (β g (Y) + β v (Y)) a g β l (Y) a v β l (Y) a l β g (Y) -a g (β l (Y) + β v (Y)) a v β g (Y) 1 1 1   .
Proof. Using the relations ( 20) and ( 21) on the relative velocities, the entropy dissipation A(Y, ∂ x Y) reads also

(30) A(Y, ∂ x Y) = (u l -u v )Θ lv (Y) + (u g -u v )Θ gv (Y), with (31) 
Θ lv (Y) = -a l (β g (Y) + β v (Y))(π l (Y) -p l ) + a g β l (Y)(π g (Y) + p g ) + a v β l (Y)(π v (Y) + p v ) Θ gv (Y) = a l β g (Y)(π l (Y) -p l ) -a g (β l (Y) + β v (Y))(π g (Y) + p g ) + a v β g (Y)(π v (Y) + p v ).
Since the relative velocities are independant, canceling the entropy dissipation

A(Y, ∂ x Y) reduces to impose (32) Θ lv (Y) = 0, Θ gv (Y) = 0.
Now remind that the interfacial pressures π k (Y) cancel each other according to [START_REF] Guillemaud | Modelling and numerical simulation of two-phase flows using the two-fluid two-pressure approach[END_REF]. Thus one can write the following identity

(33) π l (Y) -p l + π g (Y) + p g + π v (Y) + p v = p v + p g -p l ,
and one can rewrite the equations ( 32) and (33) under the linear system [START_REF] Lochon | Computation of fast depressurization of water using a two-fluid model: revisiting Bilicki modelling of mass transfer[END_REF]. The matrix C determinant is

(34) det(C) = a l a g β v (Y) + a l a v β g (Y) + a g a v β l (Y).
Hence the system is invertible as soon as the quantities a k and β k (Y) are strictly positive.

It follows that the vector

(π l (Y)-p l , π g (Y)+p g , π v (Y)+p v ) is uniquely defined by (35) (π l (Y) -p l , π g (Y) + p g , π v (Y) + p v ) = p v + p g -p l det(C) (a g a v β l (Y), a v a l β g (Y), a l a g β v (Y)) .
As a consequence, using (35) and the constraint [START_REF] Hérard | A three-phase flow model[END_REF] on the quantities β k (Y), the term RHS Φ η given by ( 27) rewrites (36) 35) and (34), one ends up with

RHS Φ η = a l , a g , a v   π l (Y) -p l π g (Y) + p g π v (Y) + p v   Φ g (Y) = p v + p g -p l det(C) a l a g a v Φ g (Y). For instance, if one imposes v i (Y) = u l with β l (Y) = 1 and β g (Y) = β v (Y) = 0 in (
(37) π l (Y) = p g + p v , π g (Y) = -p g , π v (Y) = -p v .
Here we consider that the interfacial pressures depend only on the state vector Y but one may consider another formulation, see [START_REF] Hérard | Un modèle hyperbolique diphasique bi-fluide en milieu poreux[END_REF] for instance for a dissipative formulation where the interfacial pressures are functions of Y and ∂ x Y.

2.2.

Nature of the convective system. It is now mandatory to determine an admissible closure law for the interfacial velocity v i (Y). When the three phasic pressures are equal and uniform (in space), the void fraction of gas α g must be perfectly advected without smearing. Hence the field associated to the interfacial velocity v i (Y) must be linearly degenerated. To guarantee this property within the framework of two-phase flow models, it is rather classical to fix v i (Y) = u k , k ∈ K, see [START_REF] Gavrilyuk | Mathematical and numerical modeling of two-phase compressible flows with micro-inertia[END_REF][START_REF] Gallouët | Numerical modeling of two-phase flows using the two-fluid two-pressure approach[END_REF] for instance; we also refer to [START_REF] Guillemaud | Modelling and numerical simulation of two-phase flows using the two-fluid two-pressure approach[END_REF] for a comparison of other possible choices of interfacial velocities and their consequences.

In the sequel we consider arbitrarily v i (Y) = u l , thus the interfacial pressures π k (Y), k ∈ K, are defined by (37).

The purpose of this section is to investigate the eigenstructure of the convective system and its hyperbolicity. We consider the state vector

(38) W = (α g , p g , u g , p v , u v , p l , u l , s g , s v , s l ) ∈ R 10 .
In the sequel we consider α l α g = 0.

Focusing on smooth solutions, the system ( 5)-( 8) may rewrite under the quasilinear form (39)

∂ t W + B(W)∂ x W = 0, with (40) B(W) =                 u l 0 0 0 0 0 0 0 0 0 A g u g ρ g c 2 g 0 0 0 0 0 0 0 0 τ g u g 0 0 0 0 0 0 0 A v 0 0 u v ρ v c 2 v 0 0 0 0 0 0 0 0 τ v u v 0 0 0 0 0 0 0 0 0 0 u l ρ l c 2 l 0 0 0 A l 0 0 0 0 τ l u l 0 0 0 0 0 0 0 0 0 0 u g 0 0 0 0 0 0 0 0 0 0 u v 0 0 0 0 0 0 0 0 0 0 u l                
, where (41)

A l = p g + p v -p l m l , A g = ρ g c 2 g α g (u g -u l ), A v = ρ v c 2 v α g (u v -u l ).
Proposition 2 (Eigenstructure). The homogeneous system (39)-( 41) is hyperbolic with real eigenvalues

λ 1 = u g , λ 2 = u v , λ 3 = λ 4 = u l , λ 5,6 = u g ±c g , λ 7,8 = u v ±c v , λ 9,10 = u l ± c l .
Associated right eigenvectors span the whole space R 10 except when some eigenvalues coincide, more precisely

(42) (u g -u l ) 2 -c 2 g = 0, or (u v -u l ) 2 -c 2 v = 0.
Note that the hyperbolicity is non-strict.

Proof. The matrix B(W) admits the following right eigenvectors (43) r 1 = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0), r 2 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0), r 3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1), r 4 = (1, A, B, C, D, -ρ l A l , 0, 0, 0, 0), r 5 = (0, -ρ g c g , 1, 0, 0, 0, 0, 0, 0, 0), r 6 = (0, ρ g c g , 1, 0, 0, 0, 0, 0, 0, 0), r 7 = (0, 0, 0, -ρ v c v , 1, 0, 0, 0, 0, 0), r 8 = (0, 0, 0, ρ v c v , 1, 0, 0, 0, 0, 0), r 9 = (0, 0, 0, 0, 0, -ρ l c l , 1, 0, 0, 0), r 10 = (0, 0, 0, 0, 0, ρ l c l , 1, 0, 0, 0),

where A B = 1 (u g -u l ) 2 -c 2 g u g -u l -ρ g c 2 g -τ g u g -u l -A g 0 , and C D = 1 (u v -u l ) 2 -c 2 v u v -u l -ρ v c 2 v -τ v u v -u l -A v 0 .
If the following condition holds (u g -u l ) 2 -c 2 g = 0, and (u v -u l ) 2 -c 2 v = 0, then the right eigenvectors are linearly independant and they span R 10 .

We now investigate the nature of the waves, Riemann invariants and jump conditions.

Proposition 3 (Nature of the coupling wave). Fields associated with eigenvalues λ 3 = λ 4 = u l are linearly degenerated and admit the following Riemann invariants (44)

I 1 3,4 (W) = u l , I 2 3,4 (W) = s g , I 3 3,4 (W) = s v , I 4 3,4 (W) = m v (u l -u v ), I 5 3,4 (W) = m g (u l -u g ), I 6 3,4 (W) = ε v + p v ρ v + 1 2 (u v -u l ) 2 , I 7 3,4 (W) = ε g + p g ρ g + 1 2 (u g -u l ) 2 , I 8 3,4 (W) = k∈K α k p k + k=g,v m k (u k -u l ) 2 .
The proof is straightforward but tedious. To check the Riemann invariants I j 3,4 , j = 1, . . . , 8, one has to verify that

∇ W I j 3,4 (W) • r 3 (W) = ∇ W I j 3,4 (W) • r 4 (W) = 0.
Similarly one has the following characterization of the remaining fields.

Proposition 4 (Riemann invariants). The field associated with the eigenvalue λ 1 = u g is linearly degenerated with the Riemann invariants (45) As the genuinely non-linear fields are concerned, i.e. the p-fields with p = 5, . . . , 10, we assume the following jump relations across an isolated discontinuity travelling at speed σ (48)

I 1 1 (W) = u g , I 2 1 (W) = p g , I 3 1 (W) = α g , I 4,5 1 (W) = ρ k , I 6,7 1 (W) = u k , I 8,9 1 (W) = p k , with k = l, v. Similar results hold for λ 2 = u v with (46) 
I 1 2 (W) = u v , I 2 2 (W) = p v , I 3 2 (W) = α g , I 4,5 2 (W) = ρ k , I 6,7 2 (W) = u k , I 8,9 2 (W) = p k , with k = l, g. Fields associated with eigenvalues u k ± c k , k ∈ K (that is λ 5,6 , λ 7 
[α k ] = 0, [m k (u k -σ)] = 0, [m k u k (u k -σ) + α k p k ] = 0, [m k E k (u k -σ) + α k p k u k ] = 0, [ρ k ] = 0, [ρ k ] = 0, [u k ] = 0, [u k ] = 0, [p k ] = 0, [p k ] = 0, with k, k , k ∈ K, k = k, k = k,
where the notation [.] refers to the jump between the states R and L separated by the discontinuity, namely [g] = g R -g L . We emphasize that the p-Riemann invariants and the jump relations for the linearly degenerated p-fields, p = 1, 2, 3, 4, coincide. Thus appart from the coupling wave associated with λ 3 = λ 4 = u l , the jump relations are those of a single-phase Euler system.

Remark 1. The eigenstructure of the system (39)-( 40) and its jump relations are a key point to build solutions to the Riemann problem of the system. To do so, starting from a left state Y L , we need to fix a real value through each genuinely nonlinear field and for each linearly degenerated field associated with λ i , i = 1, 2 with velocities u g , u v respectively. For the coupling wave associated to λ 3 = λ 4 = u l , we need to fix the right void fraction of the gas α g,R and the right density of the liquid ρ l,R . Eventually one deduces the corresponding right state Y R .

2.3.

Admissible structure of the source terms. The purpose of this section is to properly define admissible source terms toward the thermodynamical equilibrium. More specifically one has to exhibit the constraints on the mechanical transfer term Φ g (Y), the mass transfer terms Γ k (Y), the momentum source terms D(Y) and the total energy source terms B(Y) such that the entropy growth criterion holds for smooth solutions.

We introduce the following notations while skipping the dependency in Y for sake of readability.

(a) The mass transfer terms Γ k is decomposed as

(49) Γ k = k =k∈K Γkk ,
where the dyadic contributions cancel by conservation of the total mass: Using the decompositions (49)-( 55), the right hand side RHS η of the entropy identity ( 23)-( 26) now reads (56)

RHS η = RHS Φ η + RHS u η + RHS T η + RHS µ η ,
where RHS Φ η is given in (36) and the remain the drag effect term and the thermal term are (57)

RHS u η = k∈K a k   k =k∈K ṽkk dkk -   k =k∈K dkk   u k   , RHS T η = k∈K a k   k =k∈K Ψkk   .
One may rewrite the source terms RHS T η in term of dyadic bonds, using the antisymmetry assumption (55) of the quantities Ψkk , k = k ∈ K. It yields

(58) RHS T η = 1 2 k =k∈K (a k -a k ) Ψkk ,
where the prefactor 1/2 ensures to count the dyadic bounds only once. If one assumes that

(59) ṽkk = δ kk u k + (1 -δ kk )u k , with δ kk + δ k k = 1,
then, using the antisymmetry property (52) of the quantities d kk , k = k , the source term RHS u η reads (60)

RHS u η = k∈K a k   k =k∈K (ṽ kk -u k ) dkk   = 1 2 k =k∈K [a k (1 -δ kk ) + a k δ kk ] (u k -u k ) dkk = 1 2 k =k∈K [a k δ k k + a k δ kk ] (u k -u k ) dkk .
From the source term expressions (36), ( 58), (60) one deduces easily the constraints imposed on the source terms in order to ensure the entropy growth criterion.

Proposition 5 (Admissible source terms). The source terms comply with the entropy inequality

(61) ∂ t η(Y) + ∂ x f η (Y) ≥ 0,
for smooth solutions of ( 5)-( 8) with minimal entropy dissipation A(Y, ∂ x Y) = 0, if, for any dyadic bond k = k ∈ K, it holds

(62) Φ g (Y)(p v + p g -p l ) ≥ 0 (a k -a k ) Ψkk ≥ 0, (a k δ k k + a k δ kk )(u k -u k ) dkk ≥ 0. Moreover if ṽkk = 1 2 (u k + u k ) and Hkk = u k u k 2
, it holds also

(63) Γkk (a k µ k -a k µ k ) ≥ 0.
Proof. Relations (62) are deduced by construction. We focus now on the mass transfer terms. To do so we explicit the term RHS µ using ( 56), ( 26), ( 58) and (60) (64)

RHS µ η = - 1 2 k =k∈K Γkk (a k µ k -a k µ k ) + k∈K a k   k =k∈K Hkk -u k ṽkk + u 2 k 2 Γkk   . If ṽkk = 1 2 (u k + u k ) and Hkk = u k u k 2
, then the second term of (64) cancels and RHS µ η ≥ 0 that is (63) holds true. One observes that the mechanical relaxation source term has to comply with the Dalton's law on the gaseous pressures.

Remark 2. The relaxation source terms are implicitly weighted by relaxation positive time scales. In practice the quantities dkk , Ψkk and Γ kk , corresponding to the drag terms, the interfacial energy transfer and the mass transfer, are taken from the two-phase flow literature. The modelling of physically relevant relaxation time scales is a topic in itself and is not addressed in the present paper. We refer for instance to [START_REF] Gavrilyuk | The structure of pressure relaxation terms: the one-velocity case[END_REF] for the modelling of pressure relaxation time scales. Remark 3. In Proposition 5, the condition (63) guarantees that the relaxation with respect to mass transfer is in agreement with the second principle of thermodynamics. It assumes that the relaxation acts between any couple of phases k, k . Nonetheless, considering a three-phase mixture of an inert gas, a liquid and its vapor, the mass transfer only occurs between the liquid and its vapor. Hence, the condition (63) of Proposition 5 should be reduced to k = l and k = v (and vice versa). Hence Γkk = 0 for k, k = g.

2.4.

Symmetrization. The symmetrization of the two-velocity two-pressure Baer-Nunziato-like models has been investigated in [START_REF] Coquel | Two properties of two-velocity twopressure models for two-phase flows[END_REF], the case of barotropic two-phase flow being addressed in [START_REF] Iampietro | Contribution to the simulation of low-velocity compressible two-phase flows with high pressure jumps using homogeneous and two-fluid approaches[END_REF]. Here we adapt the proofs to exhibit that the system convective system associated to ( 5)-( 8) admits a symmetric form.

The system is symmetrizable if there exists a C 1 -diffeomorphism from R 10 to R 10 g : U → W (where the "conservative" variables U and the state vector W are defined respectively in ( 14) and ( 38)), a symmetric positive definite matrix D(W) ∈ R 10×10 and a symmetric matrix Q(W) ∈ R 10×10 such that the smooth solutions of the system satisfy ( 65)

D(W)∂ t W + Q(W)∂ x W = 0.
Recall that W = (α g , p g , u g , p v , u v , p l , u l , s g , s v , s l ) is defined in (38). We introduce the following symmetric matrix (66)

D(W ) =       A 0 e g e v e l 0 1×3 e g D g 0 2×2 0 2×2 0 2×3 e v 0 2×2 D v 0 2×2 0 2×3 e l 0 2×2 0 2×2 D l 0 2×3 0 3×1 0 3×2 0 3×2 0 3×2 1 3×3      
, where 0 n×m denotes the null matrix of size n × m, 1 n×m is the identity matrix of size n × m and D k is given by ( 67)

D k = 1 0 0 ρ 2 k c 2 k , k ∈ K,
and e k , k ∈ K, is the solution of the linear system

(68) u k -u l τ k ρ k c 2 k u k -u l e k = D k f k , with f k = (A k , 0) for k = g, v and f l = (0, A l ) .
One needs to determine a suitable value of the nonnegative scalar A 0 .

Theorem 1. The system (39) is symmetrizable with

• the symmetric positive definite matrix D(W) ∈ R 10×10 defined by (66), ( 67) and (68)

• the symmetric matrix Q(W) = D(W)B(W) ∈ R 10×10 , B(W) being defined in (40)-(41),
if and only if the nonnegative scalar A 0 complies with

(69) (ρ l ρ g ρ v c l c g c v ) 2 A 0 -e 2 g,1 -e 2 v,1 -e 2 l,1 -e 2 g,2 /(ρ g c g ) 2 -e 2 v,2 /(ρ v c v ) 2 -e 2 l,2 /(ρ l c l ) 2 > 0,
where e k,i refers to the coefficient i = 1, 2 of the vector e k .

Proof. Exploiting the block structures of the matrices D(W) and B(W), one can check that the matrix Q(W) is symmetric. First observe that the convection matrix B(W) may be written into the following block shape

B(Y) =       u l 0 1×2 0 1×2 0 1×2 0 1×3 f g C g 0 2×2 0 2×2 0 2×3 f v 0 2×2 C v 0 2×2 0 2×3 f l 0 2×2 0 2×2 C l 0 2×3 0 3×2 0 3×2 0 3×2 0 3×2 C u       , with the matrices C k and C u such that C k = u k ρ k c 2 k τ k u k , k ∈ K, C u = diag(u g , u v , u l ) ∈ R 3×3 .
The matrix Q(W) = D(W)B(W) is symmetric if and only if (68) holds. Note that the system (68) is invertible unless the resonance condition (42) occurs. The matrix D(W) is a symmetric positive definite matrix as soon as its upper 7 × 7-block

    A 0 e g e v e l e g D g 0 2×2 0 2×2 e v 0 2×2 D v 0 2×2 e l 0 2×2 0 2×2 D l     ,
is symmetric positive definite. Thus one has to prove that the minor determinants are nonnegative. The 7 minor determinants are the following: [START_REF] Barberon | Finite volume simulation of cavitating flows[END_REF] . One observes that δ 7 > 0 implies that δ 6 > 0 and so on until δ 1 > 0. Hence a sufficient and necessary condition to ensure that D(W) is (symmetric) positive definite is δ 7 > 0 which coincides with (69).

δ 1 = A 0 , δ 2 = A 0 -e 2 g,1 , δ 3 = ρ 2 g c 2 g (A 0 -e 2 g,1 ) -e 2 g,2 , δ 4 = δ 3 -ρ 2 g c 2 g e 2 v,1 , δ 5 = ρ 2 v c 2 v δ 4 -ρ 2 g c 2 g e 2 v,2 δ 6 = δ 5 -(ρ g ρ v c g c v ) 2 e 2 l,1 , δ 7 = ρ 2 l c 3 l δ 6 -(ρ g ρ v c g c v ) 2 e 2 l,
As a consequence of the Kato's theorem [START_REF] Kato | The Cauchy problem for quasi-linear symmetric hyperbolic systems[END_REF], starting from an admissible solution satisfying (69), there exits a local in time smooth solution to the Cauchy problem. Assuming that the resonance condition (42) does not occur, the time of existence corresponds to the time of blow up of the L ∞ norm of the spatial derivative of the solutions.

Conclusion

We address in this paper the derivation of a Bear-Nunziato-like model for a compressible three-phase flow. The particularity of the three-phase mixture relies on the miscibility constraints between each phase: the liquid phase is immiscible with the two gaseous phases which are miscible. It leads to the equality of the gaseous void fractions. This feature allows to recover that the gaseous phases satisfy the Dalton's law. Besides we also prove that the interfacial pressures are uniquely defined by enforcing a physically relevant entropy inequality for smooth solutions of the whole system. The derivation of the model and the relaxation source terms agree with the second law of thermodynamics. The homogeneous model is hyperbolic and symmetrizable, leading to a local existence result. Note that the source terms are defined up to the determination of reliable relaxation time scales. We also provide in Appendix B a restriction to the barotropic case.

In future works it would be interesting to address the numerical approximation of the three-phase model. To do so it seems mandatory to use an accurate numerical scheme such as the one developed in [START_REF] Saleh | A relaxation scheme for a hyperbolic multiphase flow model[END_REF]. Eventually the model should be used to simulate a realistic three-phase test case for instance the Reactivity Initiated Accident. Actually the latter phenomenon involves droplets of molten solid, water under its liquid and vapor phases and fission gases. Hence it would be necessary to extend our derivation to the four-phase case accounting for proper volumic constraints.

u k + α k u k p k -α k p k ∂ x u k + u k π k (Y)∂ x α g = D k (Y)u k -Γ k (Y)u 2 k /2, (73) 
∂ t (m k ε k ) + ∂ x (m k ε k u k ) + α k p k ∂ x u k + π k (Y)(v i (Y) -u k )∂ x α g = B k (Y) -D k (Y)u k + Γ k (Y) u 2 k 2 + π k (Y)Φ g (Y), (74) 
∂ t p k + u k ∂ x p k + ρ k c 2 k ∂ x u k + ∂ε k ∂p k -1 1 m k (π k (Y)∂ x α g + p k ∂ x α k ) (v i (Y) -u k ) + ρ k c 2 k α k (u k -v i (Y))∂ x α k = ∂ε k ∂p k -1 1 m k (B k (Y) -D k (Y)u k +Γ k (Y) u 2 k 2 -ε k -ρ k ∂ε k ∂ρ k + π k (Y)Φ g (Y) + ρ 2 k ∂ε k ∂ρ k Φ k (Y) ,
Then one derives the equation on the phasic entropies s k , which are functions of ρ k and p k .

(75)

∂ t s k + u k ∂ x s k + ∂s k ∂p k ∂ε k ∂p k -1 (π k (Y)∂ x α g + p k ∂ x α k ) (v i (Y) -u k )/m k = ∂s k ∂ρ k Γ k (Y) -ρ k Φ k (Y) α k + a k m k B k (Y) -D k (Y)u k + Γ k (Y) u 2 k 2 -ε k -ρ k ∂ε k ∂ρ k +π k (Y)Φ g (Y) + ρ 2 k ∂ε k ∂ρ k Φ k (Y) .
This way one gets the evolution equation ( 23) for the mixture entropy η.

Appendix B. Derivation of a barotropic model

Consider the homogeneous model associated to three-phase non equilibrium model ( 5)- [START_REF] Drew | Theory of multicomponent fluids[END_REF]. We focus on the equations (75) satisfied by the phasic entropies s k , k ∈ K, see Appendix A. If the interfacial velocity is v i (Y) = v l , then one can check that the phasic entropies are transported with velocities u k (76)

∂ t s k + u k ∂ x s k = RHS η (Y).
Assuming that entropy production terms are small enough, one may consider the approximation:

(77)

∂ t s k + u k ∂ x s k = RHS η (Y),
which admits the particular solution

s k (p k , ρ k ) = s k,0 .
We now fix (78)

p k = p k (ρ k , s k,0 ), k ∈ K,
and plug these pressures into the non equilibrium model ( 5)-( 8) (with relaxation terms). It reduces to the following barotropic model

∂ t α g + v i (Y b )∂ x α g = Φ g (Y b ), (79) 
∂ t m k + ∂ x (m k u k ) = 0, k ∈ K, ( 80 
) ∂ t (m l u l ) + ∂ x (m l u 2 l + α l p l ) + Π(Y b )∂ x α g = D l (Y b ), (81) ∂ t (M u g ) + ∂ x (M u 2 g + P) -Π(Y b )∂ x α g = D g (Y b ), (82) where 
(83) M = α g (ρ g + ρ v ), P = α g (p g + p v ).
The state vector is now (84) Y b = {α g , ρ l , ρ g , ρ v , u l , u g }.

Observe here that for this particular model we will assume that the gaseous phases k = g, v evolve with the same velocity u g . The source terms Φ g (Y ) and D g (Y ), k = l, g, describe the relaxation toward the mechanical equilibrium and the drag force. The relaxation terms and the interfacial terms should cancel when considering the mean flow, hence one has 

  the phasic internal energy. The phasic specific entropy s k is a function of the phasic pressure p k and density ρ k . The phasic speed of sound c k

, 8 ,

 8 λ 9,10 ) are genuinely non linear with Riemann invariants 10 (W) = ρ k , I 5 5,6,7,8,9,10 (W) = u k , I 6 5,6,7,8,9,10 (W) = p k , I 7 5,6,7,8,9,10 (W) = ρ k , I 8 5,6,7,8,9,10 (W) = u k , I 9 5,6,7,8,9,10 (W) = p k , with k = k = k.

  k = 0.Keep in mind that if the gas phase is inert, then Γ g = 0 and relations (49) and (50) hold true for k, k ∈ {l, v}. (b) The source terms in the momentum equations are decomposed into a mass transfer contribution and velocity contribution, namely (51) D k = k =k∈K dkk + k =k∈K ṽkk Γkk , with the symmetry and antisymmetry assumptions (52) ṽkk = ṽk k , dkk + dk k = 0.(c) The energy transfer terms are decomposed into a thermal contribution, a velocity contribution and a mass transfer contribution, as follow k = 0.

2 k,Proposition 6 (Proposition 7 (m v c 2 v + m g c 2 g M , setting c 2 k

 267222 (85) D l (Y b ) = -D g (Y b ).Once more we need to define the interfacial velocity v i (Y b ) in (79) and the interfacial pressure Π(Y b ) in (81) and (82). To do so, we derive the equation satisfied by the mixture entropy. Since we focus on the barotropic case, the internal phasic energies are nowe k = e k (ρ k ), k ∈ K, such that (86) e k (ρ k ) = p k (ρ k ) ρwhere p k = p k (ρ k ) is the phasic barotropic pressure law (we skip in the sequel the dependency on s 0,k for sake of readability).The mixture entropy reads(87) η(Y b ) = k∈K α k ρ k E k ,whereE k = u 2 k /2 + e k (ρ k )denote the phasic energies. The mixture entropy is governed by the following identity (88)∂ t η(Y b ) + ∂ x f η (Y b ) + A(Y b )∂ x α g = Φ g (Y b )(p l -(p g + p v )) + D l (Y b )u l + D g (Y b )u g ,where the entropy flux is(89) f η (Y b ) = k∈K m k E k u k + k∈K α k u k p k , and(90)A(Y b ) = -Π(Y b )(u g -u l ) + (p g + p v )(u g -v i (Y b )) -p l (u l -v i (Y b )).We assume again that the velocity v i (Y b ) is a convex combination of the velocities u l and u g (91) v i (Y ) = β(Y b )u g + (1 -β(Y b ))u l , with β(Y b ) ∈ [0, 1]. Closure law for Π(Y b )). Smooth solutions of system (79)-(82) comply with the constraint A(Y b ) = 0 if and only if(92) Π(Y b ) = β(Y b )p l + (1 -β(Y b ))(p g + p v). Entropy inequality). We assume that the source terms comply with(93) Φ g (Y b )(p l -(p g + p v )) ≤ 0, D l (Y b )(u l -u g ) ≤ 0.Then smooth solutions of system (79)-(82) satisfy the following inequality(94) ∂ t η(Y b ) + ∂ x f η (Y b ) ≤ 0, assuming A(Y b ) = 0.Proposition 8 (Hyperbolicity). The convective system associated with the homogeneous part of system (79)-(82) is hyperbolic. It admits six eigenvalues(95) λ 1 = v i (Y b ), λ 2 = u g , λ3,4 = u l ± c l , λ 5,6 = u g ± c, = p (ρ k ) for k = g, v. Proposition 9 (Interface velocity). Consider the interface velocity v i (Y b ) given by the convex combination (91) with β(Y b ) ∈ [0, 1]. If β(Y b ) = 0, or β(Y b ) = 1 or β(Y b ) = M/(M + m l ) then the field associated with λ 1 (Y b ) = v i (Y b ) is linearly degenerated.
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Appendix A. Phasic equations

Restricting to regular solutions, manipulations of the system ( 5)-( 8) allow to write the nonconservative phasic equations on the densities ρ k , the velocities u k and the momentum u 2 k /2, the internal energies m k ε k and the pressures p k , with k ∈ K. They read (70