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A THREE-PHASE FLOW MODEL WITH TWO MISCIBLE

PHASES

J.-M. HÉRARD AND H. MATHIS

Abstract. The paper concerns the modelling of a compressible mixture of

a liquid, its vapor and a gas. The gas and the vapor are miscible while the
liquid is immiscible with the gaseous phases. This assumption leads to non

symmetric constraints on the void fractions. We derive a three-phase three-

pressure model endowed with an entropic structure. We show that interfacial
pressures are uniquely defined and propose entropy-consistent closure laws

for the source terms. Naturally one exhibits that the mechanical relaxation

complies with Dalton’s law on the phasic pressures. Then the hyperbolicity
and the eigenstructure of the homogeneous model are investigated and we

prove that it admits a symmetric form leading to a local existence result. We

also derive a barotropic variant which possesses similar properties.

Key-words. Multi-component compressible flows, entropy, relaxation, phase tran-
sition, miscibility constraint, closure conditions, hyperbolicity.
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1. Introduction

The present paper concerns the modelling of multiphase compressible flows which
arise in many industrial applications. For instance, in the framework of safety
demonstration for pressurized water reactors, some scenarii involve compressible
three-phase flows. This is the case for the Loss Of Coolant Accident (LOCA) when
a brutal rupture in the coolant circuit creates phase transition waves in the system
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and leads to the appearance of vapor inside the liquid, the both phases interact-
ing with the ambiant air. It also happens in Reactivity Initiated Accident (RIA)
which involves liquid water and its vapor combined with hot fission gases, see IRSN
website. It is then crucial to propose a model accounting for the dynamical and
the thermodynamical disequilibrium (with respect to pressure, temperature, chem-
ical potential). Over the last twenty years, a vast literature about the modeling
of multiphase flows, but above all of two-phase flows, has been developed. Most
of these works rely on the two-fluid approach [1, 9, 8, 10, 25, 4]: the dynamic of
each phase is described by an Euler-type model and the two systems are coupled
through interfacial (nonconservative) terms and source terms which relax towards
the thermodynamical equilibrium. Different extensions have been proposed in the
two-phase framework, see for instance [5, 28, 27] for recent contributions. The anal-
ysis of such models has been investigated in [6] (entropy structure, symmetrization,
local existence result) and [11] (hierarchy of relaxation models and subcharacteristic
condition). The generalization to multicomponent mixtures has been the subject
of recent contributions: see [30, 18] for the modelling and the analysis of proper
closure laws, [21] for the barotropic restriction, and [23, 3, 17] for the modelling of
chemical exchanges between the components. Another approach consists in con-
sidering the mixture as one fluid (thus with a unique velocity for all the phases)
with appropriate thermodynamical properties. This type of model is referred as
an homogeneous model, see [2] for a two-phase case and [22] for a three-phase
extension.

Note that in the previous references, the phases are assumed to be immiscible in
the sense that all components occupy different volumes at a mesoscopic scale. In
[7] a multicomponent Euler type model is proposed for a fully miscible mixture of
k phases, as the k phases are perfectly intricate and occupy the whole volume.

The present work focuses on the modeling of a three-phase mixture of a liquid
(with index l), its vapor (with index v) and a gas (with index g). The gas and the
vapor are supposed to be miscible in the sense that they are perfectly intimate like
ideal gases. This leads to the equality of the phasic void fractions of vapor and gas,
for any (t, x) ∈ R+ × R

(1) αv(t, x) = αg(t, x) ∈ [0, 1].

Conversely the liquid is immiscible with the gaseous phases in the sense that

(2) αl(t, x) + αg(t, x) = 1,

with αl(t, x) ∈ [0, 1] and

(3) ∂xαl(t, x) = −∂xαg(t, x), and ∂xαv(t, x) = ∂xαg(t, x).

Mass transfer may occur between the vapor and the liquid but no phase transition
is allowed between the gas and the two remaining phases, leading to a constant
mass of gas in the system. The derivation of an homogeneous model for such a
three-phase mixture has been investigated in [29]. In the present work we address
the derivation of a three-fluid model, in the spirit of [19], but accounting for the
volume constraint (1)-(2).

We do not tackle the numerical approximation of such systems and refer to
[24] and references therein in the two-fluid framework, in [32, 31] for immiscible
three-phase mixture case and to [16] for the multicomponent case.

https://www.irsn.fr/FR/connaissances/Installations_nucleaires/Les-centrales-nucleaires/criteres_surete_ria_aprp/Pages/1-accident-reactivite-RIA.aspx#.XAkgQq17SE8
https://www.irsn.fr/FR/connaissances/Installations_nucleaires/Les-centrales-nucleaires/criteres_surete_ria_aprp/Pages/1-accident-reactivite-RIA.aspx#.XAkgQq17SE8
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2. A three-velocity three-pressure relaxation model

The compressible flow is composed of a liquid phase, with index l, its vapor,
with index v and a gaseous phase, with index g. For sake of readability we define
the set of indices K := {l, g, v}. Defining the state vector Y as

(4) Y = (αg, ρl, ρg, ρv, ul, ug, uv, εl, εg, εv) ∈ R10,

we consider the following governing set of equations:

∂tαg + vi(Y)∂xαg = Φg(Y),(5)

∂tmk + ∂x(mkuk) = Γk(Y), k ∈ K,(6)

∂t(mkuk) + ∂x(mku
2
k + αkpk) + πk(Y)∂xαg = Dk(Y), k ∈ K,(7)

∂t(mkEk) + ∂x(uk(mkEk + αkpk))− πk(Y)∂tαg = Bk(Y) k ∈ K.(8)

where αk is the void fraction of the phase k = l, g, v and mk = αkρk is the partial
mass of the phase k ∈ K with ρk the mean phasic density. The pressure within the
phase k ∈ K is denoted pk. Each phase evolves with its own velocity uk, k ∈ K, and
the phasic total energies Ek read

(9) Ek = u2
k/2 + εk,

where εk = εk(pk, ρk) is the phasic internal energy. The phasic specific entropy sk
is a function of the phasic pressure pk and density ρk. The phasic speed of sound
ck complies with

(10) c2k
∂sk
∂pk

∣∣ρk +
∂sk
∂ρk

∣∣pk = 0,

and

(11) ρkc
2
k =

(
∂εk
∂pk

)−1(
pk
ρk
− ρk

∂εk
∂ρk

)
.

We also define the phasic temperature

(12) ak =
∂sk
∂pk

(
∂εk
∂pk

)−1

≥ 0,

the phasic enthalpies hk and chemical potentials µk

(13)
hk = ε(pk, ρk) + pk/ρk, Hk = Ek + pk/ρr,

µk = hk − a−1
k sk(pk, ρk).

We denote U ∈ R10 the vector of “conservative” variables defined by

(14) U = (αg,ul,ug,uv) ∈ R10,with uk = (mk,mkuk,mkEk) ∈ R3, k ∈ K.

Equations (5), (7) and (8) involve nonconservative terms with the interfacial
velocity vi(Y) and the interfacial pressures πk(Y), k ∈ K. The definition of the
velocity vi(Y) will be addressed in the following section. The interface quantities
πk(Y) should cancel each other out in the sense that

(15)
∑

k=l,g,v

πk(Y) = 0.

Similarly the source terms cancel when considering the mean flow, that is

(16)
∑
k∈K

Γk(Y) = 0,
∑
k∈K

Dk(Y) = 0,
∑
k∈K

Bk(Y) = 0.
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Note that the equation (5) involves only the source term Φg(Y) associated to the
void fraction αg. Nonetheless one should consider the mechanical transfer terms on
the two remaining phases k = l, v so that

(17) Φg(Y) = Φv(Y) = −Φl(Y).

2.1. Definition of the interfacial pressures. Using Galilean invariance, we pos-
tulate that the interfacial velocity takes the form:

(18) vi(Y) = βl(Y)ul + βg(Y)ug + βv(Y)uv,

with

(19)

{
βl(Y) + βg(Y) + βv(Y) = 1,

βk(Y) ≥ 0, k ∈ K.

Note that other definitions of the interfacial velocity exist in the literature, see
[15] for a review and a comparison of the most common definitions. Less standard
definitions may be given, see for instance [5] where the quantities βk(Y) follow a
nonlinear transport equation.

Thus the relative velocity of the phase k ∈ K with respect to the interface reads

(20) vi(Y)− uk = βk′(Y)(uk′ − uk) + βk′′(Y)(uk′′ − uk),

with k, k′, k′′ ∈ K, k′ 6= k, k′′ 6= k, k′′ 6= k′. The relative velocities also satisfy the
following useful identity

(21) ul − ug = (ul − uv)− (ug − uv).

The modelling of the interfacial quantities requires the definition of an entropy
function for the system (5)-(8).

The mixture entropy is

(22) η(Y) =
∑
k∈K

mksk,

and one can prove that smooth solutions of (5)-(8) satisfy the following entropy
identity

(23) ∂tη(Y) + ∂xfη(Y) +Aη(Y, ∂xY) = RHSη(Y),

where the entropy flux reads

(24) fη(Y) =
∑
k∈K

mkskuk,

and

(25)

Aη(Y, ∂xY) =
∑
k∈K

ak(vi(Y)− uk)(πk(Y)∂xαg + pk∂xαk)

= [av(vi(Y)− uv)(πv(Y) + pv) + ag(vi(Y)− ug)(πg(Y) + pg)

+al(vi(Y)− ul)(πl(Y)− pl))]∂xαg,
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and

(26)

RHSη = RHSΦ
η

+
∑
k∈K

ak(Bk(Y)− ukDk(Y))

+
∑
k∈K

akΓk(Y)

(
u2
k

2
− εk − ρk∂ρkεk

)
+
∑
k∈K

Γk(Y) (sk + ρk∂ρksk) ,

with

(27)
RHSΦ

η =
∑
k∈K

ak(πk(Y)φg(Y) + pkΦk(Y))

= (al(πl(Y)− pl) + ag(πg(Y) + pg) + av(πv(Y) + pv)) Φg(Y).

One obtains the entropy equation (23) by deriving the evolution equations on the
phasic quantities, see details in Appendix A. The model with minimal entropy
dissipation refers to the model (5)-(8) where Aη(Y, ∂xY) = 0.

Proposition 1 (Definition of the interfacial pressures). Smooth solutions of the sys-
tem (5)-(8) comply with the minimal entropy dissipation constraint Aη(Y, ∂xY) = 0
for the unique 3-tuple (πv(Y), πg(Y), πl(Y)), solution of

(28) C(πl(Y)− pl, πg(Y) + pg, πv(Y) + pv)
> = (0, 0, pv + pg − pl)>,

with

(29) C =

−al(βg(Y) + βv(Y)) agβl(Y) avβl(Y)
alβg(Y) −ag(βl(Y) + βv(Y)) avβg(Y)

1 1 1

 .

Proof. Using the relations (20) and (21) on the relative velocities, the entropy
dissipation A(Y, ∂xY) reads also

(30) A(Y, ∂xY) = (ul − uv)Θlv(Y) + (ug − uv)Θgv(Y),

with

(31)

Θlv(Y) = −al(βg(Y) + βv(Y))(πl(Y)− pl)
+ agβl(Y)(πg(Y) + pg) + avβl(Y)(πv(Y) + pv)

Θgv(Y) = alβg(Y)(πl(Y)− pl)
− ag(βl(Y) + βv(Y))(πg(Y) + pg) + avβg(Y)(πv(Y) + pv).

Since the relative velocities are independant, canceling the entropy dissipation
A(Y, ∂xY) reduces to impose

(32) Θlv(Y) = 0, Θgv(Y) = 0.

Now remind that the interfacial pressures πk(Y) cancel each other according to
(15). Thus one can write the following identity

(33) πl(Y)− pl + πg(Y) + pg + πv(Y) + pv = pv + pg − pl,
and one can rewrite the equations (32) and (33) under the linear system (28). The
matrix C determinant is

(34) det(C) = alagβv(Y) + alavβg(Y) + agavβl(Y).
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Hence the system is invertible as soon as the quantities ak and βk(Y) are strictly
positive. �

It follows that the vector (πl(Y)−pl, πg(Y)+pg, πv(Y)+pv)
> is uniquely defined

by

(35)

(πl(Y)− pl, πg(Y) + pg, πv(Y) + pv)
>

=
pv + pg − pl

det(C)
(agavβl(Y), avalβg(Y), alagβv(Y))>.

As a consequence, using (35) and the constraint (19) on the quantities βk(Y), the
term RHSΦ

η given by (27) rewrites

(36)

RHSΦ
η =

(
al, ag, av

)πl(Y)− pl
πg(Y) + pg
πv(Y) + pv

Φg(Y)

=
pv + pg − pl

det(C)
alagavΦg(Y).

For instance, if one imposes vi(Y) = ul with βl(Y) = 1 and βg(Y) = βv(Y) = 0
in (35) and (34), one ends up with

(37) πl(Y) = pg + pv, πg(Y) = −pg, πv(Y) = −pv.

Here we consider that the interfacial pressures depend only on the state vector
Y but one may consider another formulation, see [20] for instance for a dissipative
formulation where the interfacial pressures are functions of Y and ∂xY.

2.2. Nature of the convective system. It is now mandatory to determine an
admissible closure law for the interfacial velocity vi(Y). When the three phasic
pressures are equal and uniform (in space), the void fraction of gas αg must be
perfectly advected without smearing. Hence the field associated to the interfacial
velocity vi(Y) must be linearly degenerated. To guarantee this property within the
framework of two-phase flow models, it is rather classical to fix vi(Y) = uk, k ∈ K,
see [14, 12] for instance; we also refer to [15] for a comparison of other possible
choices of interfacial velocities and their consequences.

In the sequel we consider arbitrarily vi(Y) = ul, thus the interfacial pressures
πk(Y), k ∈ K, are defined by (37).

The purpose of this section is to investigate the eigenstructure of the convective
system and its hyperbolicity. We consider the state vector

(38) W = (αg, pg, ug, pv, uv, pl, ul, sg, sv, sl) ∈ R10.

In the sequel we consider αlαg 6= 0.
Focusing on smooth solutions, the system (5)-(8) may rewrite under the quasi-

linear form

(39) ∂tW + B(W)∂xW = 0,
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with

(40) B(W) =



ul 0 0 0 0 0 0 0 0 0
Ag ug ρgc

2
g 0 0 0 0 0 0 0

0 τg ug 0 0 0 0 0 0 0
Av 0 0 uv ρvc

2
v 0 0 0 0 0

0 0 0 τv uv 0 0 0 0 0
0 0 0 0 0 ul ρlc

2
l 0 0 0

Al 0 0 0 0 τl ul 0 0 0
0 0 0 0 0 0 0 ug 0 0
0 0 0 0 0 0 0 0 uv 0
0 0 0 0 0 0 0 0 0 ul


,

where

(41) Al =
pg + pv − pl

ml
, Ag =

ρgc
2
g

αg
(ug − ul), Av =

ρvc
2
v

αg
(uv − ul).

Proposition 2 (Eigenstructure). The homogeneous system (39)-(41) is hyperbolic
with real eigenvalues λ1 = ug, λ2 = uv, λ3 = λ4 = ul, λ5,6 = ug±cg, λ7,8 = uv±cv,
λ9,10 = ul± cl. Associated right eigenvectors span the whole space R10 except when
some eigenvalues coincide, more precisely

(42) (ug − ul)2 − c2g = 0, or (uv − ul)2 − c2v = 0.

Note that the hyperbolicity is non-strict.

Proof. The matrix B(W) admits the following right eigenvectors

(43)

r>1 = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0),

r>2 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0),

r>3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1),

r>4 = (1, A,B,C,D,−ρlAl, 0, 0, 0, 0),

r>5 = (0,−ρgcg, 1, 0, 0, 0, 0, 0, 0, 0),

r>6 = (0, ρgcg, 1, 0, 0, 0, 0, 0, 0, 0),

r>7 = (0, 0, 0,−ρvcv, 1, 0, 0, 0, 0, 0),

r>8 = (0, 0, 0, ρvcv, 1, 0, 0, 0, 0, 0),

r>9 = (0, 0, 0, 0, 0,−ρlcl, 1, 0, 0, 0),

r>10 = (0, 0, 0, 0, 0, ρlcl, 1, 0, 0, 0),

where (
A
B

)
=

1

(ug − ul)2 − c2g

(
ug − ul −ρgc2g
−τg ug − ul

)(
−Ag

0

)
,

and (
C
D

)
=

1

(uv − ul)2 − c2v

(
uv − ul −ρvc2v
−τv uv − ul

)(
−Av

0

)
.

If the following condition holds

(ug − ul)2 − c2g 6= 0, and (uv − ul)2 − c2v 6= 0,

then the right eigenvectors are linearly independant and they span R10. �
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We now investigate the nature of the waves, Riemann invariants and jump con-
ditions.

Proposition 3 (Nature of the coupling wave). Fields associated with eigenvalues
λ3 = λ4 = ul are linearly degenerated and admit the following Riemann invariants

(44)

I1
3,4(W) = ul, I2

3,4(W) = sg, I3
3,4(W) = sv,

I4
3,4(W) = mv(ul − uv), I5

3,4(W) = mg(ul − ug),

I6
3,4(W) = εv +

pv
ρv

+
1

2
(uv − ul)2,

I7
3,4(W) = εg +

pg
ρg

+
1

2
(ug − ul)2,

I8
3,4(W) =

∑
k∈K

αkpk +
∑
k=g,v

mk(uk − ul)2.

The proof is straightforward but tedious. To check the Riemann invariants Ij3,4,
j = 1, . . . , 8, one has to verify that

∇WIj3,4(W) · r3(W) = ∇WIj3,4(W) · r4(W) = 0.

Similarly one has the following characterization of the remaining fields.

Proposition 4 (Riemann invariants). The field associated with the eigenvalue λ1 =
ug is linearly degenerated with the Riemann invariants

(45)
I1
1 (W) = ug, I2

1 (W) = pg, I3
1 (W) = αg,

I4,5
1 (W) = ρk, I6,7

1 (W) = uk, I8,9
1 (W) = pk,

with k = l, v. Similar results hold for λ2 = uv with

(46)
I1
2 (W) = uv, I2

2 (W) = pv, I3
2 (W) = αg,

I4,5
2 (W) = ρk, I6,7

2 (W) = uk, I8,9
2 (W) = pk,

with k = l, g.
Fields associated with eigenvalues uk ± ck, k ∈ K (that is λ5,6, λ7,8, λ9,10) are

genuinely non linear with Riemann invariants

(47)

I1
5,6,7,8,9,10(W) = sk, I2

5,6,7,8,9,10(W) = uk ∓
∫ ρ

0

ck(r, sk)

r
dr,

I3
5,6,7,8,9,10(W) = αg,

I4
5,6,7,8,9,10(W) = ρk′ , I5

5,6,7,8,9,10(W) = uk′ , I6
5,6,7,8,9,10(W) = pk′ ,

I7
5,6,7,8,9,10(W) = ρk′′ , I8

5,6,7,8,9,10(W) = uk′′ , I9
5,6,7,8,9,10(W) = pk′′ ,

with k′ 6= k′′ 6= k.

As the genuinely non-linear fields are concerned, i.e. the p−fields with p =
5, . . . , 10, we assume the following jump relations across an isolated discontinuity
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travelling at speed σ

(48)

[αk] = 0,

[mk(uk − σ)] = 0,

[mkuk(uk − σ) + αkpk] = 0,

[mkEk(uk − σ) + αkpkuk] = 0,

[ρk′ ] = 0, [ρk′′ ] = 0,

[uk′ ] = 0, [uk′′ ] = 0,

[pk′ ] = 0, [pk′′ ] = 0,

with k, k′, k′′ ∈ K, k′ 6= k, k′′ 6= k, where the notation [.] refers to the jump between
the states R and L separated by the discontinuity, namely [g] = gR − gL. We
emphasize that the p−Riemann invariants and the jump relations for the linearly
degenerated p−fields, p = 1, 2, 3, 4, coincide. Thus appart from the coupling wave
associated with λ3 = λ4 = ul, the jump relations are those of a single-phase Euler
system.

Remark 1. The eigenstructure of the system (39)-(40) and its jump relations are
a key point to build solutions to the Riemann problem of the system. To do so,
starting from a left state YL, we need to fix a real value through each genuinely
nonlinear field and for each linearly degenerated field associated with λi, i = 1, 2
with velocities ug, uv respectively. For the coupling wave associated to λ3 = λ4 = ul,
we need to fix the right void fraction of the gas αg,R and the right density of the
liquid ρl,R. Eventually one deduces the corresponding right state YR.

2.3. Admissible structure of the source terms. The purpose of this section
is to properly define admissible source terms toward the thermodynamical equilib-
rium. More specifically one has to exhibit the constraints on the mechanical transfer
term Φg(Y), the mass transfer terms Γk(Y), the momentum source terms D(Y)
and the total energy source terms B(Y) such that the entropy growth criterion
holds for smooth solutions.

We introduce the following notations while skipping the dependency in Y for
sake of readability.

(a) The mass transfer terms Γk is decomposed as

(49) Γk =
∑

k′ 6=k∈K

Γ̃kk′ ,

where the dyadic contributions cancel by conservation of the total mass:

(50) Γ̃kk′ + Γ̃k′k = 0.

Keep in mind that if the gas phase is inert, then Γg = 0 and relations (49) and
(50) hold true for k, k′ ∈ {l, v}.

(b) The source terms in the momentum equations are decomposed into a mass
transfer contribution and velocity contribution, namely

(51) Dk =
∑

k′ 6=k∈K

d̃kk′ +
∑

k′ 6=k∈K

ṽkk′ Γ̃kk′ ,
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with the symmetry and antisymmetry assumptions

(52)
ṽkk′ = ṽk′k,

d̃kk′ + d̃k′k = 0.

(c) The energy transfer terms are decomposed into a thermal contribution, a ve-
locity contribution and a mass transfer contribution, as follow

(53) Bk =
∑

k′ 6=k∈K

Ψ̃kk′ +
∑

k′ 6=k∈K

ṽkk′ d̃kk′ +
∑

k′ 6=k∈K

H̃kk′ Γ̃kk′ ,

with the symmetry assumption

(54) H̃kk′ = H̃k′k.

and the antisymmetry assumption

(55) Ψ̃kk′ + Ψ̃k′k = 0.

Using the decompositions (49)-(55), the right hand side RHSη of the entropy
identity (23)-(26) now reads

(56) RHSη = RHSΦ
η +RHSuη +RHSTη +RHSµη ,

where RHSΦ
η is given in (36) and the remain the drag effect term and the thermal

term are

(57)

RHSuη =
∑
k∈K

ak

 ∑
k′ 6=k∈K

ṽkk′ d̃kk′ −

 ∑
k′ 6=k∈K

d̃kk′

uk

 ,

RHSTη =
∑
k∈K

ak

 ∑
k′ 6=k∈K

Ψ̃kk′

 .

One may rewrite the source terms RHSTη in term of dyadic bonds, using the anti-

symmetry assumption (55) of the quantities Ψ̃kk′ , k 6= k′ ∈ K. It yields

(58) RHSTη =
1

2

∑
k′ 6=k∈K

(ak − ak′)Ψ̃kk′ ,

where the prefactor 1/2 ensures to count the dyadic bounds only once. If one
assumes that

(59) ṽkk′ = δkk′uk + (1− δkk′)uk′ , with δkk′ + δk′k = 1,

then, using the antisymmetry property (52) of the quantities dkk′ , k 6= k′, the
source term RHSuη reads

(60)

RHSuη =
∑
k∈K

ak

 ∑
k′ 6=k∈K

(ṽkk′ − uk)d̃kk′


=

1

2

∑
k′ 6=k∈K

[ak(1− δkk′) + ak′δkk′ ] (uk′ − uk)d̃kk′

=
1

2

∑
k′ 6=k∈K

[akδk′k + ak′δkk′ ] (uk′ − uk)d̃kk′ .

From the source term expressions (36), (58), (60) one deduces easily the con-
straints imposed on the source terms in order to ensure the entropy growth criterion.
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Proposition 5 (Admissible source terms). The source terms comply with the en-
tropy inequality

(61) ∂tη(Y) + ∂xfη(Y) ≥ 0,

for smooth solutions of (5)-(8) with minimal entropy dissipation A(Y, ∂xY) = 0,
if, for any dyadic bond k′ 6= k ∈ K, it holds

(62)

Φg(Y)(pv + pg − pl) ≥ 0

(ak − ak′)Ψ̃kk′ ≥ 0,

(akδk′k + ak′δkk′)(uk′ − uk)d̃kk′ ≥ 0.

Moreover if ṽkk′ =
1

2
(uk + uk′) and H̃kk′ =

ukuk′

2
, it holds also

(63) Γ̃kk′(ak′µk′ − akµk) ≥ 0.

Proof. Relations (62) are deduced by construction. We focus now on the mass
transfer terms. To do so we explicit the term RHSµ using (56), (26), (58) and (60)

(64)

RHSµη = −1

2

∑
k′ 6=k∈K

Γ̃kk′(akµk − a′kµ′k)

+
∑
k∈K

ak

 ∑
k′ 6=k∈K

(
H̃kk′ − ukṽkk′ +

u2
k

2

)
Γ̃kk′

 .

If ṽkk′ =
1

2
(uk + uk′) and H̃kk′ =

ukuk′

2
, then the second term of (64) cancels and

RHSµη ≥ 0 that is (63) holds true. �

One observes that the mechanical relaxation source term has to comply with the
Dalton’s law on the gaseous pressures.

Remark 2. The relaxation source terms are implicitly weighted by relaxation posi-
tive time scales. In practice the quantities d̃kk′ , Ψ̃kk′ and Γkk′ , corresponding to the
drag terms, the interfacial energy transfer and the mass transfer, are taken from
the two-phase flow literature. The modelling of physically relevant relaxation time
scales is a topic in itself and is not addressed in the present paper. We refer for
instance to [13] for the modelling of pressure relaxation time scales.

Remark 3. In Proposition 5, the condition (63) guarantees that the relaxation
with respect to mass transfer is in agreement with the second principle of thermo-
dynamics. It assumes that the relaxation acts between any couple of phases k, k′.
Nonetheless, considering a three-phase mixture of an inert gas, a liquid and its
vapor, the mass transfer only occurs between the liquid and its vapor. Hence, the
condition (63) of Proposition 5 should be reduced to k = l and k′ = v (and vice

versa). Hence Γ̃kk′ = 0 for k, k′ = g.

2.4. Symmetrization. The symmetrization of the two-velocity two-pressure Baer-
Nunziato-like models has been investigated in [6], the case of barotropic two-phase
flow being addressed in [24]. Here we adapt the proofs to exhibit that the system
convective system associated to (5)-(8) admits a symmetric form.

The system is symmetrizable if there exists a C1-diffeomorphism from R10 to
R10 g : U → W (where the “conservative” variables U and the state vector W
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are defined respectively in (14) and (38)), a symmetric positive definite matrix
D(W) ∈ R10×10 and a symmetric matrix Q(W) ∈ R10×10 such that the smooth
solutions of the system satisfy

(65) D(W)∂tW + Q(W)∂xW = 0.

Recall that W = (αg, pg, ug, pv, uv, pl, ul, sg, sv, sl) is defined in (38). We intro-
duce the following symmetric matrix

(66) D(W ) =


A0 e>g e>v e>l 01×3

eg Dg 02×2 02×2 02×3

ev 02×2 Dv 02×2 02×3

el 02×2 02×2 Dl 02×3

03×1 03×2 03×2 03×2 13×3

 ,

where 0n×m denotes the null matrix of size n×m, 1n×m is the identity matrix of
size n×m and Dk is given by

(67) Dk =

(
1 0
0 ρ2

kc
2
k

)
, k ∈ K,

and ek, k ∈ K, is the solution of the linear system

(68)

(
uk − ul τk
ρkc

2
k uk − ul

)
ek = Dkfk,

with fk = (Ak, 0)> for k = g, v and fl = (0, Al)
>. One needs to determine a suitable

value of the nonnegative scalar A0.

Theorem 1. The system (39) is symmetrizable with

• the symmetric positive definite matrix D(W) ∈ R10×10 defined by (66), (67)
and (68)

• the symmetric matrix Q(W) = D(W)B(W) ∈ R10×10, B(W) being defined
in (40)-(41),

if and only if the nonnegative scalar A0 complies with

(69)
(ρlρgρvclcgcv)

2
(
A0 − e2

g,1 − e2
v,1 − e2

l,1

−e2
g,2/(ρgcg)

2 − e2
v,2/(ρvcv)

2 − e2
l,2/(ρlcl)

2
)
> 0,

where ek,i refers to the coefficient i = 1, 2 of the vector ek.

Proof. Exploiting the block structures of the matrices D(W) and B(W), one can
check that the matrix Q(W) is symmetric. First observe that the convection matrix
B(W) may be written into the following block shape

B(Y) =


ul 01×2 01×2 01×2 01×3

fg Cg 02×2 02×2 02×3

fv 02×2 Cv 02×2 02×3

fl 02×2 02×2 Cl 02×3

03×2 03×2 03×2 03×2 Cu

 ,

with the matrices Ck and Cu such that

Ck =

(
uk ρkc

2
k

τk uk

)
, k ∈ K, Cu = diag(ug, uv, ul) ∈ R3×3.
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The matrix Q(W) = D(W)B(W) is symmetric if and only if (68) holds. Note that
the system (68) is invertible unless the resonance condition (42) occurs. The matrix
D(W) is a symmetric positive definite matrix as soon as its upper 7× 7-block

A0 e>g e>v e>l
eg Dg 02×2 02×2

ev 02×2 Dv 02×2

el 02×2 02×2 Dl

 ,

is symmetric positive definite. Thus one has to prove that the minor determinants
are nonnegative. The 7 minor determinants are the following:

δ1 = A0,

δ2 = A0 − e2
g,1,

δ3 = ρ2
gc

2
g(A0 − e2

g,1)− e2
g,2,

δ4 = δ3 − ρ2
gc

2
ge

2
v,1,

δ5 = ρ2
vc

2
vδ4 − ρ2

gc
2
ge

2
v,2

δ6 = δ5 − (ρgρvcgcv)
2e2
l,1,

δ7 = ρ2
l c

3
l δ6 − (ρgρvcgcv)

2e2
l,2.

One observes that δ7 > 0 implies that δ6 > 0 and so on until δ1 > 0. Hence
a sufficient and necessary condition to ensure that D(W) is (symmetric) positive
definite is δ7 > 0 which coincides with (69). �

As a consequence of the Kato’s theorem [26], starting from an admissible solution
satisfying (69), there exits a local in time smooth solution to the Cauchy problem.
Assuming that the resonance condition (42) does not occur, the time of existence
corresponds to the time of blow up of the L∞ norm of the spatial derivative of the
solutions.

3. Conclusion

We address in this paper the derivation of a Bear-Nunziato-like model for a
compressible three-phase flow. The particularity of the three-phase mixture relies
on the miscibility constraints between each phase: the liquid phase is immiscible
with the two gaseous phases which are miscible. It leads to the equality of the
gaseous void fractions. This feature allows to recover that the gaseous phases
satisfy the Dalton’s law. Besides we also prove that the interfacial pressures are
uniquely defined by enforcing a physically relevant entropy inequality for smooth
solutions of the whole system. The derivation of the model and the relaxation
source terms agree with the second law of thermodynamics. The homogeneous
model is hyperbolic and symmetrizable, leading to a local existence result. Note
that the source terms are defined up to the determination of reliable relaxation
time scales. We also provide in Appendix B a restriction to the barotropic case.

In future works it would be interesting to address the numerical approximation
of the three-phase model. To do so it seems mandatory to use an accurate nu-
merical scheme such as the one developed in [32]. Eventually the model should be
used to simulate a realistic three-phase test case for instance the Reactivity Initi-
ated Accident. Actually the latter phenomenon involves droplets of molten solid,
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water under its liquid and vapor phases and fission gases. Hence it would be neces-
sary to extend our derivation to the four-phase case accounting for proper volumic
constraints.
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Appendix A. Phasic equations

Restricting to regular solutions, manipulations of the system (5)- (8) allow to
write the nonconservative phasic equations on the densities ρk, the velocities uk
and the momentum u2

k/2, the internal energies mkεk and the pressures pk, with
k ∈ K. They read

(70) ∂tρk + uk∂xρk + ρk∂xuk +
ρk
αk

(−vi(Y) + uk)∂xαk =
Γk(Y)− ρkΦk(Y)

αk
,

(71) ∂tuk + uk∂xuk +
1

mk
(∂x(αkpk) + πk(Y)∂xαg) =

Dk(Y)− ukΓk(Y)

mk
,

(72)
∂t

(
mk

u2
k

2

)
+ ∂x

(
mk

u2
k

2
uk + αkukpk

)
− αkpk∂xuk + ukπk(Y)∂xαg

= Dk(Y)uk − Γk(Y)u2
k/2,

(73)

∂t(mkεk) + ∂x(mkεkuk) + αkpk∂xuk + πk(Y)(vi(Y)− uk)∂xαg

= Bk(Y)−Dk(Y)uk + Γk(Y)
u2
k

2
+ πk(Y)Φg(Y),

(74)

∂tpk + uk∂xpk + ρkc
2
k∂xuk

+

(
∂εk
∂pk

)−1
1

mk
(πk(Y)∂xαg + pk∂xαk) (vi(Y)− uk)

+
ρkc

2
k

αk
(uk − vi(Y))∂xαk

=

(
∂εk
∂pk

)−1
1

mk
(Bk(Y)−Dk(Y)uk

+Γk(Y)

(
u2
k

2
− εk − ρk

∂εk
∂ρk

)
+ πk(Y)Φg(Y) + ρ2

k

∂εk
∂ρk

Φk(Y)

)
,
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Then one derives the equation on the phasic entropies sk, which are functions of
ρk and pk.

(75)

∂tsk + uk∂xsk +
∂sk
∂pk

(
∂εk
∂pk

)−1

(πk(Y)∂xαg + pk∂xαk) (vi(Y)− uk)/mk

=
∂sk
∂ρk

(
Γk(Y)− ρkΦk(Y)

αk

)
+
ak
mk

(
Bk(Y)−Dk(Y)uk + Γk(Y)

(
u2
k

2
− εk − ρk

∂εk
∂ρk

)
+πk(Y)Φg(Y) + ρ2

k

∂εk
∂ρk

Φk(Y)

)
.

This way one gets the evolution equation (23) for the mixture entropy η.

Appendix B. Derivation of a barotropic model

Consider the homogeneous model associated to three-phase non equilibrium
model (5)-(8). We focus on the equations (75) satisfied by the phasic entropies
sk, k ∈ K, see Appendix A. If the interfacial velocity is vi(Y) = vl, then one can
check that the phasic entropies are transported with velocities uk

(76) ∂tsk + uk∂xsk = RHSη(Y).

Assuming that entropy production terms are small enough, one may consider the
approximation:

(77) ∂tsk + uk∂xsk = RHSη(Y),

which admits the particular solution

sk(pk, ρk) = sk,0.

We now fix

(78) pk = pk(ρk, sk,0), k ∈ K,

and plug these pressures into the non equilibrium model (5)-(8) (with relaxation
terms). It reduces to the following barotropic model

∂tαg + vi(Y
b)∂xαg = Φg(Y

b),(79)

∂tmk + ∂x(mkuk) = 0, k ∈ K,(80)

∂t(mlul) + ∂x(mlu
2
l + αlpl) + Π(Yb)∂xαg = Dl(Y

b),(81)

∂t(Mug) + ∂x(Mu2
g + P)−Π(Yb)∂xαg = Dg(Y b),(82)

where

(83)
M = αg(ρg + ρv),

P = αg(pg + pv).

The state vector is now

(84) Yb = {αg, ρl, ρg, ρv, ul, ug}.

Observe here that for this particular model we will assume that the gaseous
phases k = g, v evolve with the same velocity ug. The source terms Φg(Y ) and
Dg(Y ), k = l, g, describe the relaxation toward the mechanical equilibrium and
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the drag force. The relaxation terms and the interfacial terms should cancel when
considering the mean flow, hence one has

(85) Dl(Yb) = −Dg(Yb).

Once more we need to define the interfacial velocity vi(Y
b) in (79) and the inter-

facial pressure Π(Yb) in (81) and (82). To do so, we derive the equation satisfied
by the mixture entropy. Since we focus on the barotropic case, the internal phasic
energies are now ek = ek(ρk), k ∈ K, such that

(86) e′k(ρk) =
pk(ρk)

ρ2
k

,

where pk = pk(ρk) is the phasic barotropic pressure law (we skip in the sequel the
dependency on s0,k for sake of readability).

The mixture entropy reads

(87) η(Yb) =
∑
k∈K

αkρkEk,

where Ek = u2
k/2 + ek(ρk) denote the phasic energies.

The mixture entropy is governed by the following identity

(88)
∂tη(Yb) + ∂xfη(Yb) +A(Yb)∂xαg

= Φg(Y
b)(pl − (pg + pv)) +Dl(Yb)ul +Dg(Yb)ug,

where the entropy flux is

(89) fη(Yb) =
∑
k∈K

mkEkuk +
∑
k∈K

αkukpk,

and

(90) A(Yb) = −Π(Yb)(ug − ul) + (pg + pv)(ug − vi(Yb))− pl(ul − vi(Yb)).

We assume again that the velocity vi(Y
b) is a convex combination of the velocities

ul and ug

(91) vi(Y ) = β(Yb)ug + (1− β(Yb))ul,

with β(Yb) ∈ [0, 1].

Proposition 6 (Closure law for Π(Yb)). Smooth solutions of system (79)-(82)
comply with the constraint A(Yb) = 0 if and only if

(92) Π(Yb) = β(Yb)pl + (1− β(Yb))(pg + pv).

Proposition 7 (Entropy inequality). We assume that the source terms comply
with

(93)

{
Φg(Y

b)(pl − (pg + pv)) ≤ 0,

Dl(Yb)(ul − ug) ≤ 0.

Then smooth solutions of system (79)-(82) satisfy the following inequality

(94) ∂tη(Yb) + ∂xfη(Yb) ≤ 0,

assuming A(Yb) = 0.
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Proposition 8 (Hyperbolicity). The convective system associated with the homo-
geneous part of system (79)-(82) is hyperbolic. It admits six eigenvalues

(95)
λ1 = vi(Y

b), λ2 = ug,

λ3,4 = ul ± cl, λ5,6 = ug ± c̃,
where

(96) c̃2 =
mvc

2
v +mgc

2
g

M
,

setting c2k = p′(ρk) for k = g, v.

Proposition 9 (Interface velocity). Consider the interface velocity vi(Y
b) given

by the convex combination (91) with β(Yb) ∈ [0, 1]. If β(Yb) = 0, or β(Yb) = 1
or β(Yb) = M/(M +ml) then the field associated with λ1(Yb) = vi(Y

b) is linearly
degenerated.
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