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A HOMOGENEOUS MODEL FOR COMPRESSIBLE THREE-PHASE

FLOWS INVOLVING HEAT AND MASS TRANSFER. ∗, ∗∗

Olivier Hurisse1, 2 and Lucie Quibel1, 3

Abstract. A homogeneous model is proposed in order to deal with the simulation of fast transient
three-phase flows involving heat and mass transfer. The model accounts for the full thermodynam-
ical disequilibrium between the three phases in terms of pressure, temperature and Gibbs enthalpy.
The heat and mass transfer between the phases is modeled in agreement with the second law of ther-
modynamics, which ensures a stable return to the thermodynamical equilibrium. The set of partial
differential equations associated with this model is based on the Euler set of equations supplemented
by a complex pressure law, and by six scalar equations that allow to account for the thermodynamical
disequilibrium. It therefore inherits a simple wave structure and possesses important mathematical
properties such as: hyperbolicity, unique shock definition through Rankine-Hugoniot relations, pos-
itivity of the mixture fractions. Hence the computation of approximated solutions is possible using
classical algorithms, which is illustrated by an example of simulation of a steam-explosion.

1. Introduction

The steam explosion phenomenon may occur in industrial plants when some heated materials (solid or molten
solid) come into contact with cold water [1]. The brutal heat transfer from the heated material to the liquid
leads to a sudden and brutal production of steam. This steam expands quickly and strong shock waves are
produced in the liquid phase, which propagate inside the devices and may damage some of them. When the
steam bubble expands in an open domain, for example in a pool with a free surface, some hot materials (solid,
steam and/or liquid) are expelled at high velocity. Such a phenomenon occurs in the steel industry (foundry),
causing casualties and damages. In the framework of the safety demonstration for the nuclear power plants,
some specific scenarii involving steam explosion are studied. This is for instance the case for the Fuel Coolant
Interactions (FCI) which occur in the Reactivity Initiated Accident (RIA) [2] or when the corium comes into
contact with some water collected in the basemat (in the reactor pit) under the vessel.

The aim of the studies based on these scenarii is to evaluate the mechanical load on the structures of the
devices of the plant. This obviously requires to get an accurate prediction of the pressure waves released by the
sudden vaporization of the water, and it clearly advocates for the modelisation of the compressibility of both
the liquid phase and the vapor phase. In the three-phase flow model proposed in this paper, we assume that
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the solid (or molten solid) phase is also compressible. This allows to keep a uniform and consistent thermody-
namical treatment of the three phases. The stiffness of the thermodynamical behavior of the solid phase, which
has a very low compressibility, may be accounted for by choosing an appropriate Equation Of State. Moreover,
in such fast transient flows corresponding to small characteristic time scales, the assumption of the thermody-
namical equilibrium between the phases might be a limitation. In [3–6], some comparisons between numerical
simulations and experiments of fast depressurization of water highlight the importance of the thermodynamical
disequilibrium. Therefore, it seems important for the proposed model to allow to account for the complete
thermodynamical disequilibrium (i.e. with respect to pressure, temperature and Gibbs enthalpy), while also
permitting to easily relax towards the thermodynamical equilibrium when necessary.

There exist few three-phase flow models that fulfill these requirements. The standard multifluid approach,
derived from the standard two-fluid approach [7], assumes that the pressures of the three phases are always
equal. The resulting system of equations may be associated with ill-posed initial-value problems. This is an
important drawback, in particular when dealing with fast transient situations. This mathematical issue of the
system of equations has its origin in the instantaneous pressure equilibrium [8–10], and to tackle that point a
three-phase flow model involving pressure disequilibrium has been proposed in [11–13]. The latter is a three-
phase flow model that can be seen as an extension of the two-phase model proposed in [14,15]. In these models,
each phase is described by its own velocity field, and by its own pressure and temperature. Hence they account
for the full dynamical and thermodynamical disequilibrium between the three phases. Unfortunately, the con-
vective part of the system of equations as a very complex wave structure. In particular, two successive waves
can be very close. An accurate numerical simulation of such a situation would thus require very small mesh
sizes/time steps in order to permit to distinguish these two neighboring waves on the approximated solutions.
Moreover, for these models, each phasic quantity (velocity, specific volume, total energy) is described by its
own partial derivative equation. As a consequence, the system of partial derivative equations degenerates in
the case of vanishing phases. These situations may therefore be tricky to handle with these multifluid models,
at least with a method which remains consistent with the set of equations. In this paper, we intend to propose
a model with a more simple wave structure, and that would be able to handle easily vanishing-phase cases
which often occur in the simulation of industrial scenarii. Hence we make here the assumption that the three
phases have the same velocity. Therefore, the model described in the sections below belongs to the family of the
so-called homogeneous models. If this assumption of dynamical equilibrium leads to a more simple description
of three-phase flows, the range of applications of the homogeneous model is restricted with respect to multifluid
models. In particular, for some situations a homogeneous model might be less relevant for slow transients: for
instance the simulation of the sedimentation due to gravity.

The model proposed in this paper is a straightforward extension of the two-phase flow model proposed
in [16–20]. In [6, 21] the latter has been tested for fast transient steam-liquid water flows and the results show
a quite satisfactory agreement with experimental measurements, even for flows involving a strong thermody-
namical disequilibrium. We thus propose the extension of this two-phase flow model in order to deal with
fast-transient three-phase flows with high thermodynamical disequilibrium. This model draws its strength from
the assumption of full thermodynamical disequilibrium (each phase possesses its own internal temperature and
its own internal pressure) and from the second law of thermodynamics [22] on which the thermodynamical
behavior of the flow is based. The building of the model relies on two steps: the modeling of the setting of
the three phases at a “microscopic scale” and a “macroscopic” modeling of the behavior of a volume of the
three-phase mixture within the whole flow. On the one hand, the second law of thermodynamics allows to
define: the thermodynamical properties of the mixture (the mean pressure and the mean temperature) and the
time-evolution of the setting of the three phases within a volume of mixture. Thanks to the dissipation property
associated with the second law of thermodynamics, this evolution represents a stable return to the thermody-
namical equilibrium when considering a closed volume of mixture. On the other hand, the time-evolution of a
mixture-volume is classically described through the first law of thermodynamics and Newton’s law. We then end
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up with a system of equations which is based on the Euler set of equations associated with a complex pressure
law and supplemented by six equations that account for the thermodynamical disequilibrium between the phases.

In Section 2 the model is built on the basis of [17, 18]. The closures that are then obtained ensure some
good mathematical and physical properties for the system of equations: hyperbolicity of the convective part of
the system, uniqueness of the definition of the shocks, entropy dissipation, stable return to thermodynamical
equilibrium. These properties are gathered in Section 3. They are a serious advantage when the goal of the
model is to be used to perform numerical simulations including shock patterns. The model proposed in Section
2 remains a quite general three-phase flow model, and in Section 4 we introduce some specific features that are
mandatory for the steam-explosion modeling. We then specify the fact that mass transfer only occurs between
the liquid water and its vapour phase, and we introduce the heating of a solid phase through a source term. At
last, in Section 5, we present the numerical simulation of the heating of a solid phase mixed with liquid which
leads to steam generation and strong pressure waves. In this simulation, the water phases are described using
the IAPWS 97 thermodynamical laws [23].

2. Modeling three-phase flows with a homogeneous model

In this section, we build a homogeneous model which describes a mixture of three-phases. The assumptions
are introduced throughout the section. In order to write the model we proceed in two steps by adopting a
Lagrangian point of view. We first propose to model the thermodynamic behavior of a volume of the mixture
using the second law of thermodynamic. This first step of the modeling process follows the process proposed
in [17,18] for two-phase flows. Then the first law of thermodynamics and Newton’s law are applied to describe
the evolution of this volume within the whole flow.

2.1. Some definitions and assumptions

Let us consider a volume V (in m3) of the three-phase mixture which is associated with a mass M (in kg)
and an internal extensive energy E (in J). Each phase i = {1, 2, 3} occupies a volume Vi, has a mass Mi and
an internal energy Ei. We assume the following properties for the mixture.

(H1a) The geometric repartition of the phases inside the volume V is not taken into account.
(H1b) The surface tension is neglected.
(H2) The three phases are not miscible.
(H3) Vacuum occurrence is not considered here.

With these assumptions, the volume V, the mass M and the internal energy E can be written: V = V1 + V2 + V3,
M =M1 +M2 +M3,
E = E1 + E2 + E3.

(1)

It allows to treat naturally the cases where only one or two of the three phases are present. The hypothesis
(H2) and (H3) are mandatory to write the first equation of (1) on the volumes. In [20, 24], the miscible case
has been investigated and it leads to a different system (1). Assumption (H3) implies that we consider that V,
M and E are non-negative: (V,M, E) ∈ (R∗+)3.

2.2. The second law of thermodynamics

In this section we use the second law of the thermodynamics to define the time evolution of the quantities
(Vi,Mi, Ei) for an isolated mixture, that is for a fixed (V,M, E). We assume that the extensive phasic entropies
ηi (in J/K) are defined such that the following properties hold:
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(H4) (Vi,Mi, Ei) 7→ ηi(Vi,Mi, Ei) is C2 on (R+)3;
(H5) (Vi,Mi, Ei) 7→ ηi(Vi,Mi, Ei) is concave;
(H6) ∀a ∈ R∗+, ∀(Vi,Mi, Ei) ∈ (R+)3, ηi(aVi, aMi, aEi) = aηi(Vi,Mi, Ei);
(H7) ∀(Vi,Mi, Ei), ∂ηi

∂Ei |Vi,Mi
> 0.

Remark 1. When Mi 6= 0 (i.e. when phase i exists), assumption (H6) allows to define a specific entropy (in
J/K/kg) from the extensive entropy ηi by setting a = 1/Mi. The specific entropy si, thus, only depends on
Vi/Mi and Ei/Mi :

si

(
Vi
Mi

,
Ei
Mi

)
= ηi

(
Vi
Mi

, 1,
Ei
Mi

)
=
ηi(Vi,Mi, Ei)

Mi
,

where the second equality assumes an abuse of notation with respect to the dimension of the entropy.
Hence, ηi is a complete Equation Of State (EOS), from which we define the pressure Pi, the temperature Ti
and the Gibbs enthalpy µi (or Gibbs free enthalpy, in J/kg):

1

Ti
=
∂ηi
∂Ei |Vi,Mi

, (2)

Pi
Ti

=
∂ηi
∂Vi |Mi,Ei

, (3)

and
µi
Ti

= − ∂ηi
∂Mi |Vi,Ei

. (4)

It should be noticed that the assumption (H7) is equivalent to ensure that the temperature Ti are non-negative.
Moreover, these definitions imply the classical Gibbs relation used in the Classical Irreversible Thermodynamics
(CIT) theory:

Tidηi = dEi + PidVi − µidMi. (5)

Remark 2. Thanks to the assumption (H6), we have:

∀a ∈ R∗+, ∀(Vi,Mi, Ei), ηi(aVi, aMi, aEi) = aηi(Vi,Mi, Ei).

Hence, by deriving this relation with respect to a and by applying a = 1, we get:

∀(Vi,Mi, Ei), ηi(Vi,Mi, Ei) =
∂ηi
∂Vi |Mi,Ei

Vi +
∂ηi
∂Mi |Vi,Ei

Mi,+
∂ηi
∂Ei |Vi,Mi

Ei,

and therefore using the definitions (2), (3) and (4) we obtain the relation

Miµi = Ei + PiVi − Tiηi. (6)

The thermodynamic behavior of the phase i is defined by the entropy ηi and the Gibbs relations (5) and (6).
We now assume that the extensive entropy of the mixture η is the sum of the extensive entropy of each phase:

(H8) the extensive mixture-entropy is

W 7→ η(W ) =
∑
i

ηi(Vi,Mi, Ei), (7)

where for the sake of simplicity, we set W = (V1,M1, E1,V2,M2, E2,V3,M3, E3). Thanks to the assumptions
(H4)− (H6) on the phasic entropies, the mixture entropy η satisfies the properties:

• W → η(W ) is C2 on (R+)9;
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• W → η(W ) is concave;
• ∀a ∈ R∗+, ∀W ∈ (R+)9, η(aW ) = aη(W ).

The details of the proof of these properties can be found in Appendix 7.1. By deriving the mixture entropy
defined by (7) and by using the phasic Gibbs relations (5) we find:

dη =
∑
i

(
1

Ti
dEi +

Pi
Ti
dVi −

µi
Ti
dMi

)
. (8)

This relation can be rewritten in terms of the mixture quantities (V,M, E) by using the chain-rule dφi =
φ d(φi/φ) + φi/φ dφ. This yields:

dη =
∑
i

(
Ei
E

1
Ti

)
dE +

∑
i

(
Vi
V
Pi
Ti

)
dV −

∑
i

(
Mi

M
µi
Ti

)
dM

+
∑
i

(
E 1
Ti
d
(Ei
E
)

+ V PiTi d
(Vi
V
)
−Mµi

Ti
d
(Mi

M
))
.

(9)

Relation (9) is the Gibbs relation for the mixture, from which the mixture temperature T , the mixture pressure
P and the mixture Gibbs enthalpy µ can be defined. Indeed we have:

1

T
=
∂η

∂E |V,M,
Vi
V ,
Mi
M ,

Ei
E

=
∑
i

(
Ei
E

1

Ti

)
, (10)

P

T
=
∂η

∂V |M,E,ViV ,
Mi
M ,

Ei
E

=
∑
i

(
Vi
V
Pi
Ti

)
, (11)

and
µ

T
= − ∂η

∂M |V,E,ViV ,
Mi
M ,

Ei
E

=
∑
i

(
Mi

M
µi
Ti

)
. (12)

Hence, thanks to assumption (H7), we get that:

∀W ∈ (R+)9,
∂η

∂E V,M,
Vi
V ,
Mi
M ,

Ei
E

> 0, (13)

which also means that the mixture temperature T is non-negative.

Until now, we have considered the extensive mixture entropy η, which is defined on (R+)9. We propose now
to introduce the intensive entropy. For this purpose, let us define H(M), the subset of (R+)9 such that:

H(M) =

{
W ∈ (R+)9;

∑
i

Mi =M

}
,

and η̃, the restriction of η to H(M):

∀W̃ ∈ H(M), η̃(W̃ ) = η(W̃ ).

It can be proved that η̃ is strictly concave on H(M). The detail of the proof is given in Appendix 7.2.

Some thermodynamical properties of the mixture have been examined above. As in [16] we choose to assume
that the time-evolutions of the quantities (Vi,Mi, Ei) for a fixed (V,M, E) (i.e. for an isolated system) are of
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the form:

(H9)


d
(Vi
V
)

= Vi−Vi
λ V dt;

d
(Mi

M
)

= Mi−Mi

λ M dt;

d
(Ei
E
)

= Ei−Ei
λ E dt;

(14)

where the quantities (Vi,Mi, E i) and the time-scale λ > 0 have to be defined.

The second law of thermodynamics applied to our system states that: when it is isolated, the mixture entropy
must increase. In other words, when dV = dM = dE = 0, the models chosen for dVi, dMi and dEi must lead
to an increase of the mixture entropy η̃. The quantities (Vi,Mi, E i) and the time-scale λ are chosen to comply
with the second law of thermodynamics. Since η̃ is strictly concave, the plane which is tangent to η̃ at any
point W̃ of H(M) is above η̃. This can be written:

∀W̃0 ∈ H(M), η̃(W̃0) ≤ η(W̃ ) +∇W̃ (η) (W̃ ).(W̃0 − W̃ ). (15)

By deriving η̃ with dV = dM = dE = 0 we get:

dη̃ = (∇W (η) dW ) = ∇W (η)

(
W −W

λ

)
dt, (16)

where W = (V1,M1, E1,V2,M2, E2,V3,M3, E3). Then, thanks to the inequality (15), we have:

dη̃ ≥ 1

λ
(η̃(W )− η̃(W )) dt. (17)

Finally, one possible choice for W is to choose the point that realizes the maximum of the entropy η̃ for a fixed
(V,M, E):

η̃(W ) = max
D(V,M,E)

(η̃(W )), (18)

where D(V,M, E) = {W ; W ∈ H(M),
∑
i Vi = V,

∑
i Ei = E} . Since η̃ is strictly concave on H(M), this point

exists and is unique inH(M). This ensures that η̃(W ) > η̃(W ) and therefore that the mixture entropy increases.
The Gibbs relation (9) reads on D(V,M, E):

dη̃ = V
(
P1

T1
− P3

T3

)
d
(V1
V
)

+ V
(
P2

T2
− P3

T3

)
d
(V2
V
)

+M
(
µ3

T3
− µ1

T1

)
d
(M1

M
)

+M
(
µ3

T3
− µ2

T2

)
d
(M2

M
)

+E
(

1
T1
− 1

T3

)
d
(E1
E
)

+ E
(

1
T2
− 1

T3

)
d
(E2
E
)
.

(19)

When the maximum W is reached in the interior of the domain D(V,M, E), i.e. when the three phases coexist,
the derivative of the entropy with respect to Vi, Mi and Ei vanish and by the Gibbs relation (19) we get that
the pressure, the temperature and Gibbs enthalpy of all the phases are equal:

P1(V1,M1, E1) = P2(V2,M2, E2) = P3(V3,M3, E3),
T1(V1,M1, E1) = T2(V2,M2, E2) = T3(V3,M3, E3),
µ1(V1,M1, E1) = µ2(V2,M2, E2) = µ3(V3,M3, E3).

(20)

When the maximum W is not reached in the interior of D(V,M, E), the three phases do not coexist. The
maximum is then reached on a boundary of the domain and at least one phase is not present. In such a
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case, the equilibrium state may be composed of two phases, say phases i and j 6= i, such that their pressures,
temperatures and chemical potentials are equal:

Pi(Vi,Mi, Ei) = Pj(Vj ,Mj , Ej),
Ti(Vi,Mi, Ei) = Tj(Vj ,Mj , Ej),
µi(Vi,Mi, Ei) = µj(Vj ,Mj , Ej),

(21)

with Vk = 0, Mk = 0, Ek = 0 for k /∈ {i, j}. If there does not exist a couple of phases ensuring (21) and if
(20) has no solution, then the equilibrium state corresponds to a single-phase state containing the phase i that
possesses the maximum entropy ηi(V,M, E).

2.3. The first law of thermodynamics and Newton’s law

Section 2.2 describes a model for the evolution of the proportion of each phase in the element of fluid (V,M, E)
when it is isolated from the rest of the flow. We now propose to model the behavior of the flow of the element
of fluid (V,M, E) along a streamline. We adopt here a classical point of view for fluid dynamics but other
approaches are possible as the use of variational principle for instance, see among others [25, 26]. We assume
that:

(H10) all the phases present in the element (V,M, E) are convected with the same velocity U ;
(H11) the mass M is conserved;
(H12) the variation of the volume V is due to the divergence of the velocity field U ;
(H13) the variation of the velocity U follows Newton’s law;
(H14) the first law of thermodynamics applies to the energy E .

Assumption (H10) is in fact mandatory and implicitly admitted in Section 2.2 to write the Gibbs relation for
the mixture entropy. Assumption (H11) allows to define some specific quantities in Section 3. It leads to the
equation:

dM = 0. (22)

Assumption (H12) is classical and reads:

dV = V∇x · (U) dt. (23)

For the sake of simplicity, we only consider here the force due to the pressure gradient. The momentum equation
arises from (H13) and can be written:

d(MU) = −V∇x (P ) dt, (24)

where the pressure P is the same that the one defined in (11). At last, the first law of thermodynamics (H14)
states that the variation of the energy E is due to the work of the external forces and to the heat Qdt (in J)
supplied to the system by its surroundings. Since we only consider here the forces due to the pressure, the
variation of the energy is:

dE = −PdV +Qdt. (25)

2.4. The set of PDE in intensive form

The equations (14), (22), (23), (24) and (25) define the evolution of the quantities V1, M1, E1, V2, M2, E2,
V3, M3, E3 and U . The mass conservation (22) allows us to write the model using specific quantities (per unit
of mass). Therefore we define the specific volume of the mixture τ = V/M (in m3/kg), the specific energy of
the mixture e = E/M (in J/kg). The specific entropy S (in J/K/kg) is defined as the entropy per unit of mass:

∀W̃ ∈ H(M), S(W̃ ) =
η̃(W̃ )

M
. (26)
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Thanks to the properties of the entropy η̃ and the entropies ηi, we have ∀W̃ ∈ H(M):

S(W̃ ) =
η̃(W̃ )

M
= η̃(W̃/M) =

∑
i

ηi

(
Vi
M

,
Mi

M
,
Ei
M

)
=
∑
i

ηi

(
αi
V
M

, yi, zi
E
M

)
,

which for yi 6= 0 and by using the notation of Remark 1 gives:

∀W̃ ∈ H(M), S(W̃ ) =
∑
i

yi si

(
αi
yi
τ,
zi
yi
e

)
.

The volume fraction αi = Vi
V of phase i, the mass fraction yi = Mi

M of phase i and the energy fraction zi = Ei
E of

phase i play an important role in the model since they describe how the phases are mixed to compose (V,M, E).
Note that, since (Vi,Mi, Ei) belongs to (R+)3 and (V,M, E) belongs to (R∗+)3, each fraction belong to [0, 1]. In
the following, they will be respectively denoted by αi, yi and zi. The set of equations (1) implies that we have:∑

i

αi =
∑
i

yi =
∑
i

zi = 1, (27)

and ∑
i

dαi =
∑
i

dyi =
∑
i

dzi = 0. (28)

The Gibbs relation for the specific entropy S can be deduced from the Gibbs relation (9), and it is:

dS = 1
T de+ P

T dτ

+τ
(
P1

T1
− P3

T3

)
dα1 + τ

(
P2

T2
− P3

T3

)
dα2

+
(
µ3

T3
− µ1

T1

)
dy1 +

(
µ3

T3
− µ2

T2

)
dy2

+e
(

1
T1
− 1

T3

)
dz1 + e

(
1
T2
− 1

T3

)
dz2,

(29)

with the mixture temperature and the mixture pressure:

1

T
=
∑
i

(
zi

1

Ti

)
and

P

T
=
∑
i

(
αi
Pi
Ti

)
. (30)

The equations (14) on (Vi,Mi, Ei) can also be re-written using the fractions:
dαi = αi−αi

λ dt;

dyi = yi−yi
λ dt;

dzi = zi−zi
λ dt;

(31)

where the equilibrium fractions are αi = Vi/V, yi = Mi/M and zi = E i/E . At last, the equations of the
previous subsection (23), (24) and (25) read using the specific quantities:

dτ = τ∇x · (U) dt;
dU = −τ∇x (P ) dt;

de = −Pdτ + Q̃dt,
(32)

where Q̃dt = Q/Mdt is the specific heat (in J/kg) supplied to the system. In the following, we set Q̃ = 0
and a specific emphasis on the heating source term is proposed in Section 4. The derivative dφ of a variable φ
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corresponds here to the derivative along a streamline of the flow, which can also be written:

dφ =
∂

∂t
(φ) + U∇x · (φ) ,

hence, the set of equations (27), (31) and (32) can be written in conservative form:



∂

∂t
(ρY ) +∇x · (ρUY ) = ρΓY ,

∂

∂t
(ρ) +∇x · (ρU) = 0,

∂

∂t
(ρU) +∇x · (ρU ⊗ U) +∇x (P ) = 0,

∂

∂t
(ρE) +∇x · (U(ρE + P )) = 0,

(33)

where ρ = 1/τ is the mixture density, and E = e + |U |2/2 is the specific total energy of the mixture. The
fraction vector Y gathers the fractions of phase 1 and 2: Y = (α1, y1, z1, α2, y2, z2). The fractions of the third
phase are deduced from Y through the relations (27). The source-term vector ΓY is then:

ΓY =
Y − Y
λ

, where Y = (α1, y1, z1, α2, y2, z2). (34)

The temperature law and the pressure law for the mixture are given by definitions (10) and (11). By using the
specific quantities they read:

1

T (Y, τ, e)
=
∑
i

zi

Ti

(
αi
yi
τ, ziyi e

) and
P (Y, τ, e)

T (Y, τ, e)
=
∑
i

αi
Pi

(
αi
yi
τ, ziyi e

)
Ti

(
αi
yi
τ, ziyi e

) . (35)

3. Properties of the whole model

In this section, we present the main mathematical properties of the model. We focus here on the properties
that are mandatory for a model to be used in a numerical simulation process [27].

Without any loss of generality, and since the system is invariant under frame rotation, we consider here for
the sake of simplicity system (33) for a one-dimensional space variable x, that is:



∂

∂t
(ρY ) +

∂

∂x
(ρUY ) = ρΓY ,

∂

∂t
(ρ) +

∂

∂x
(ρU) = 0,

∂

∂t
(ρU) +

∂

∂x

(
ρU2 + P

)
= 0,

∂

∂t
(ρE) +

∂

∂x
(U(ρE + P )) = 0,

(36)
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with Y = (α1, y1, z1, α2, y2, z2) and E = e + U2/2. The closure relation for the pressure is given by relations
(10) and (11):

P =

∑
i

(
αi

Pi
(
zi
yi
e,
αi
yi
τ
)

Ti
(
zi
yi
e,
αi
yi
τ
))

∑
i

(
zi

Ti
(
zi
yi
e,
αi
yi
τ
)) and

1

T
=
∑
i

 zi

Ti

(
zi
yi
e, αiyi τ

)
 , (37)

where α3 = 1− (α1 +α2), y3 = 1− (y1 + y2) and z3 = 1− (z1 + z2). The phasic pressure and temperature laws
Pi and Ti must be specified by the user.

The sound speed c of system (36) is defined as:

c2 = −τ2 ∂

∂τ
(P )|e,Y + τ2P

∂

∂e
(P )|τ,Y . (38)

Using formulas (37) for the mixture pressure P and the mixture temperature T , it can be written:

− c2

Tτ2 =
∑
i

1

yi
(−αi, P zi) (d2si)

(
−αi
Pzi

)
, (39)

where d2si stands for the Hessian matrix of the phasic entropies (τi, ei) 7→ si(τi, ei):

d2si =


∂2

∂τi
2 (si) τi

∂2

∂τi
2 (si) ei

∂2

∂τi
2 (si) ei

∂2

∂ei
2 (si) ei

 . (40)

We recall that the phasic sound speeds are defined as:

− c2i
Tiτ2

i

= (−1, Pi) d2si

(
−1
Pi

)
. (41)

It must be emphasized that this mixture celerity c is, thus, not a barycenter of the phasic celerities ci. We
already know from (13) that the mixture temperature T is non-negative. Hence, if the specific phasic-entropies
(τi, ei) 7→ si(τi, ei) are strictly concave, the square of the mixture sound-speed c2 is non-negative. Assumption
(H5) on the concavity of the phasic entropies ηi, implies that the specific entropies si (see Appendix 7.3) are
also concave and thus that c2 ≥ 0. In order to enforce the strict hyperbolicity of the model, the user has to
specify strictly concave EOS (τi, ei) 7→ si(τi, ei) for each phase.

The convective part of system (36) is based on the Euler set of equations associated with a complex mixture
EOS. Hence, it inherits from the eigenstructure of the Euler system and is composed of three waves: a contact
discontinuity associated with the velocity U , and two genuinely non-linear waves U ± c. Provided that c > 0,
the fractions Y are constant across the shock waves since they are associated with the contact discontinuity
U . It can be proved (see Appendix 7.3) that the specific entropy (τ, e) 7→ S(Y, τ, e) is strictly concave, which
ensures that the shock waves associated with the genuinely non-linear waves U ± c are uniquely defined through
the Rankine-Hugoniot relations.

Concerning the equilibrium fraction Y , it has been shown in Appendix 7.3 that the specific entropy S(Y, τ, e)
is strictly concave with respect to Y on [0, 1]3. Therefore, there exists a unique equilibrium fraction Y (τ, e)
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corresponding to the maximum of S at a given (τ, e). We now recall the following classical lemma.

Lemma. Let Ω be a subset of R. Let Ψ, a, Π and U be some sufficiently regular applications, with the
following properties:

• Ψ : (Ω× [0, T ]→ R, (x, t) 7→ Ψ(x, t));
• a : (Ω× [0, T ]→ R, (x, t) 7→ a(x, t)), a ∈ L∞(Ω× [0, T ]);
• Π : (Ω× [0, T ]→ R, (x, t) 7→ Π(x, t)), Π ≥ 0;
• U : (Ω× [0, T ]→ R, (x, t) 7→ U(x, t)),

U ∈ L∞(Ω× [0, T ]) and
∂

∂x
(U) ∈ L∞(Ω× [0, T ]);

and such that:

∂

∂t
(Ψ(x, t)) + U

∂

∂x
(Ψ(x, t)) = a(x, t)Ψ(x, t) + Π(x, t). (42)

Suppose that for all xb ∈ ∂Ω, the boundary of Ω, Ψ(xb, t) ≥ 0 if (U ·n)(xb, t) ≤ 0, where n is the outward normal
of Ω. With all these assumptions, if Ψ(x, t = 0) ≥ 0 then for all 0 ≤ t ≤ T , Ψ(x, t) ≥ 0.

This lemma can be used to prove the following property.

Property. For regular solutions, and under the assumptions of the Lemma, the fraction αi, yi and zi remain
in [0, 1].

In order to prove the property above, we proceed for the volume fractions αi, and the same demonstration
holds for yi and zi. Since

∑
i αi =

∑
i αi = 1, we have from (36):

∂

∂t
(αi(x, t)) + U

∂

∂x
(αi(x, t)) = ai(x, t)αi(x, t) + Πi(x, t),

with ai = −1/λ and Πi = αi/λ. The equilibrium volume fraction αi belongs to [0, 1] and the time scale λ
must be chosen non-negative, so that we obviously have Πi ≥ 0. The lemma can be straightforward applied for
Ψ = αi which remains positive under the assumptions of the lemma. This proof can obviously be extended to
the fractions yi and zi which, thus, also remain positive.

4. The specific case of the steam explosion

The model proposed in the sections above deals with general three-phase flows. It can for example be used
to perform simulations involving the same material in liquid, vapor and solid state (for the simulation of the
sudden depressurization of CO2 pipes for instance). Relations (20) then define the triple point when the three
phases coexist in a stable manner. When only two phases coexist in a stable manner, say phase 1 and phase 2,
system (20) reduces to:

P1(V1,M1, E1) = P2(V2,M2, E2),
T1(V1,M1, E1) = T2(V2,M2, E2),
µ1(V1,M1, E1) = µ2(V2,M2, E2),

(43)

which defines the saturation curve between phase 1 and phase 2 (of course the saturation curves between phase
1 and phase 3, and between phase 2 and phase 3 are defined by permuting the indices in (43)). In this section
we propose further assumptions that allow to deal with the steam explosion [1]. We are interested here in
situations where one of the three phases represents a material, and the two others represent the same fluid in
the liquid state and in the vapour state. In the following, phase 1 stands for the liquid phase, phase 2 for the
vapour phase and phase 3 for the inert phase.
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Since the phase 3 is inert, its partial mass M3/M will remain constant:

d

(
M3

M

)
= 0.

Moreover, due to the mass transfer between the liquid phase and the vapour phase, each variation of the liquid
mass is balanced by the variation of the vapour phase, and conversely, which can be written:

d

(
M1

M

)
+ d

(
M2

M

)
= 0.

These two additional rules modify the entropy equation (19) into the following equation:

dη̃ = V
(
P1

T1
− P3

T3

)
d
(V1
V
)

+ V
(
P2

T2
− P3

T3

)
d
(V2
V
)

+M
(
µ2

T2
− µ1

T1

)
d
(M1

M
)

+E
(

1
T1
− 1

T3

)
d
(E1
E
)

+ E
(

1
T2
− 1

T3

)
d
(E2
E
)
.

(44)

Hence the Gibbs enthalpy of the inert phase µ3 does not play any role in the entropy dissipation. Nevertheless,
its pressure and its temperature are still part of the relaxation process, since the equilibrium state is now defined
as:

P1(V1,M1, E1) = P2(V2,M2, E2) = P3(V3,M3, E3),
T1(V1,M1, E1) = T2(V2,M2, E2) = T3(V3,M3, E3),
µ1(V1,M1, E1) = µ2(V2,M2, E2),

(45)

where M3 = M3 is constant along the streamlines. Therefore, the system of equations (36) and the closure
laws (37) are not modified. Nevertheless, the equilibrium fractions must be computed using the intensive form
of the relations (45), that is:

P1

(
z1
y1
e, α1

y1
τ
)

= P2

(
z2
y2
e, α2

y2
τ
)

= P3

(
z3
y3
e, α3

y3
τ
)
,

T1

(
z1
y1
e, α1

y1
τ
)

= T2

(
z2
y2
e, α2

y2
τ
)

= T3

(
z3
y3
e, α3

y3
τ
)
,

µ1

(
z1
y1
e, α1

y1
τ
)

= µ2

(
z2
y2
e, α2

y2
τ
)
,

(46)

where y3(x, t) = y3(x, t) for every point (x, t).

In order to deal with steam explosions, another mandatory ingredient for the model is to cope with external
heating source terms. In particular, some complex chemical reactions occurring in the bulk of the inert phase
may lead to an increase of its internal energy. For the sake of simplicity, these terms have been omitted in the
previous sections and they are introduced here. In the following, we first focus on the time variation of the
mixture, and without loss of generality, we set U = 0. Let us assume that the heating of the mixture is such
that:

(i) the specific volume of each phase is constant, d(τi) = 0;
(ii) the partial mass of each phase is constant, d(αiρi) = 0;
(iii) the internal energy of each phase is such that, d(αiρiei) = αiρiqidt;

(47)

where qidt is the specific heat received by phase i. Thanks to the assumptions (i) and (ii), the specific volume
of the mixture is constant d(τ) = 0, and the volume and the mass fractions of the three phases are constant:
d(αi) = 0 and d(yi) = 0. We also get from (iii) that the variation of the specific energy of the mixture
ρe = (

∑
i αiρiei) is:

d(ρe) =
∑
i

αiρiqidt = ρQ̃dt,
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where Q̃ has been introduced in Section 2.4. Then the time evolution of the energy fraction zi = (αiρiei)/(ρe)
is:

ρe d(zi) = αiρiqidt− ziρQ̃dt = ρ(yiqi − ziQ̃)dt.

Then, when introducing these external heating source terms qi in the complete description of the fluid (including
its velocity field), system of equations (36) becomes:

∂

∂t
(ραi) +

∂

∂x
(ρUαi) = ρΓαi , i = 1, 2, 3,

∂

∂t
(ρyi) +

∂

∂x
(ρUyi) = ρΓyi , i = 1, 2, 3,

∂

∂t
(ρzi) +

∂

∂x
(ρUzi) = ρΓzi + ρ

yiqi − ziQ̃
e

, i = 1, 2, 3,

∂

∂t
(ρ) +

∂

∂x
(ρU) = 0,

∂

∂t
(ρU) +

∂

∂x

(
ρU2 + P

)
= 0,

∂

∂t
(ρE) +

∂

∂x
(U(ρE + P )) = ρQ̃,

(48)

with Q̃ =
∑
i yiqi, and

∑
i αi =

∑
i yi =

∑
i zi = 1. The source terms Γαi , Γyi and Γzi are the source terms as-

sociated with the thermodynamical relaxation ΓY defined in (34). In our particular case, we recall that Γy3 = 0
since the phase 3 is inert.

Remark 3. The positivity results of Section 3 for zi still hold provided that qi/ei and Q̃/e remain bounded.
Indeed, the equation for zi of system (48) can also be written:

∂

∂t
(zi(x, t)) + U

∂

∂x
(zi(x, t)) = ai(x, t)zi(x, t) + Πi(x, t),

with ai = −1/λ+ (qi/ei − Q̃/e) and Πi = zi/λ. The lemma of Section 3 can then still be applied here.

Accounting for the phasic heating source terms represents an important feature of the model. The latter
possesses three energy equations through: the energy fraction equations and the mixture energy equation, and
this allows the user to specify how the energies of the three different phases vary according to external sources.
This is typically not the case for the classical homogeneous model [28], which is widely used for industrial
simulations.

5. An example of numerical simulation: steam explosion during a Reactivity
Induced Accident

As an illustration of the capability of the model (48), we propose in this section a simple heating test case
which may be seen as a simplified situation of RIA. A sketch of the test case has been plotted in Figure 1. We
consider that some fuel particles are released from the fuel rod which has a radius R1 = 5 10−3 m. Within
the ring delimited by R1 and R2 = 6 10−3 m, the liquid water contains fuel particles with a volume fraction
αf = 0.01, thus the liquid volume-fraction is αl = 0.99 and the steam volume-fraction αv = 0. The computa-
tional domain is the ring [R1, R3 = 2 10−2 m]. At the beginning of the simulation, t = 0, we assume that there
is no vapor in the domain, and that the liquid and the fuel particles are at the same pressure P = 155.0 bars
and at the same temperature T = 613 K. We recall that the saturation temperature for the water at 155.0 bars
is equal to 618 K. We also assume that the initial velocity is equal to zero.
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A constant heating source term qf is then applied at t = 0 to the fuel-particle phase according to system
(48). This source term arises from the chemical reactions that occur in the fuel particles. It has been arbitrarily
chosen equal to qf = 2 1010 W/kg. It should be mentioned that in a more realistic RIA situation, the heating
source term qf is negligible with respect to the heat transfer due to the initial temperature disequilibrium
between the liquid water and the fuel particles. Nevertheless, accounting for such disequilibrium requires a
realistic time scale λ. This is the case when considering pressure disequilibrium for steam-liquid configurations
as reported in [6], and this is also the case for temperature disequilibrium in the case of three-phase flows. For
the sake of simplicity, we consider here an instantaneous relaxation time scale λ = 0 which unfortunately does
not allow for strong initial temperature-disequilibrium.

The EOS for the liquid water and for the steam are based on the IAPWS 97 formulation [23], whereas the
fuel particles are modeled using a Stiffened Gas EOS [29]. The specific entropy of the fuel-particle phase then
reads:

sf (τf , ef ) = CV,f ln
(

(ef −Qf − τfΠf )τ
γf
f

)
+ s0,f ,

where CV,f , Qf , Πf , γf , and s0,f are parameters. The corresponding pressure and temperature laws are:

Pf = (γf − 1)
ef −Qf
τf

− γfΠf , and Tf =
ef −Qf − τfΠf

CV,f
.

Since there is no mass transfer involving the phase f , the parameter s0,f is useless and it has thus been set
here to zero: s0,f = 0. The other coefficients have been estimated using the data for uranium dioxide [30] at a
temperature of 623 K. The specific enthalpy of the uranium dioxide, hf = ef + Pfτf , is given as its difference
to the reference specific enthalpy at T = 298 K. Unfortunately, it seems that no information can be found on
the latter. Hence we have arbitrarily chosen the value h0 = 5.0 104 J/kg. The other data, collected in [30], are:

ρf (623 K) = 10850 kg/m3, CP,f (623 K) = 294 J/kg/K.

No information is available for the sound speed cf and we, therefore, impose a value of cf = 6000 m/s which is
an order of magnitude of the sound speed for steel. The EOS parameters are then computed using the relations:

hf = Qf + CP,fT = h0 + CP,f (T − 623) =⇒ Qf = h0 − CP,f × 623

c2f = (γf − 1)CP,fT =⇒ γf = 1 +
c2f

CP,fT

CP,f = γfCV,f =⇒ CV,f =
CP,f
γf

ρf =
P+Πf

(γf−1)CV,fT
=⇒ Πf = (γf − 1)ρfCV,fT − P

where the pressure is P = 155.0 105 Pa.

By the way of a comparison, we also perform a simulation without fuel particle (i.e. αf = yf = zf = 0).
The heating source term q′f is then applied to the vapour and to the liquid: ql = qv = q′f in the fixed domain

[R1, R2]. According to (48), the specific heat received by the mixture is then (ylql + yvqv)dt = q′f dt. In the
simulation with fuel particles, the mass of fuel is conserved and the total heat received by the mixture is linearly
increasing with time. On the other hand, in the simulation without fuel particle, the heat is received by a
fixed volume that contains a non-constant mass of mixture. Roughly speaking, the mass of fluid in the domain
[R1, R2] decreases when the time increases because the temperature increases due to the heating of the fluid.
It is thus not easy to predict the total amount of heat received by the mixture for the simulation without fuel
particle. For the comparison, we impose equivalent initial heating source terms. For the simulation involving
fuel particles, it is equal to:

αfρf qf V ∼ 0.01× 10850 qf V,
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Figure 1. Geometrical sketch of the test case of Section 5: a cylindrical fuel rod (radius
R1) releases some hot fuel particles in the neighboring liquid (radius R2). The computational
domain corresponds to the fluid domain r ∈ [R1, R3].

and for the simulation without fuel particle:

αlρl q
′
f V ∼ 1.0× 680 q′f V,

where V is the volume between R1 and R2. If we impose the two quantities to be equal, this yields q′f ∼
680/108.50 qf . We insist that the total amounts of heat injected in the domains during the whole simulations
are different. Since for the simulation without fuel particle, the specific heat is injected in a fixed domain with
a diminishing amount of mass (due to the increase of the temperature, the density decreases), the total amount
of heat injected is indeed lower than for the simulation with the fuel particles.

The numerical scheme used to obtain the approximated solutions of system (48) is classical. Since the test
case considered here is symmetric with respect to the axis r = 0, system (48) is written in axi-symmetric
formulation. The overall scheme is based on a fractional step approach [31] in which the convective part and
the source terms are treated successively. For the convective part, the numerical scheme is a finite volume
scheme [32] where the numerical fluxes are approximated by a Rusanov scheme [33]. The relaxation source
terms are then solved following the scheme described in [6]. The main difficulty concerning these source terms
is to compute the equilibrium fractions. This computation follows the idea of [6, 34] when the equilibrium is
a liquid-steam-fuel equilibrium or a liquid-steam equilibrium. When the equilibrium involves the solid phase
and only one phase among the water phases, the pressure-temperature equilibrium is solved using a classical
Broyden method with Sherman-Morrison update of the inverse of the Jacobian [35–37]. Accounting for the
heating source term is the last step of the algorithm; its is discretized using a semi-implicit Euler scheme that
preserves the positivity of the energy fractions. In the latter the heating source terms qi are explicited and the
system of ordinary differential equations associated to the heating source term is then solved analytically. In
our simulation, the source terms qi are constant so that the scheme corresponds to an exact integration of the
heating source terms for each time-step.

The overall scheme described above is then used to perform the two simulations for a mesh with 4000 cells and
with a uniform radial mesh-size. In Figure 2 the values across the time are plotted at r = (R1−R2)/2, whereas
different pressure and volume-fraction profiles along the radius r are plotted at five different instants in Figure
3. The Figure 4 shows the trajectory in time of each simulation in the pressure-temperature plane. The results
obtained for the two configurations exhibit significant differences. First of all, since the time-scale λ has been
chosen equal to zero, the thermodynamical equilibrium is achieved instantaneously. Hence, when the mixture
fractions are in ]0, 1[ the two phases have the same pressure and temperature which are on the saturation curve.
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Figure 2. Temperature (temperature : plain line, saturation temperature : dashed line),
pressure, velocity and volume fraction with respect to the time at the radius r = (R1 +R2)/2
(i.e. the center of the initial heating zone). The black curves represent the simulation without
fuel particle, and the red curves represent the results for the simulation with fuel particles.

This can be verified with the trajectories of Figure 4 and with the temperature/volume fraction curves of Figure
2. When considering the time evolution of the results in the heating zone (see Figure 2 and 4), the simulation
can be split into three periods which are:

• the heating of the liquid, which corresponds to the beginning of the simulation, until the steam volume-
fraction becomes positive;

• the vaporization of the liquid, which corresponds to the time interval for which the volume-fraction is
in ]0, 1[;

• and the heating of the steam, which corresponds to the end of the simulation, when the steam volume-
fraction is equal to 1.

In the heating zone, the maximum of the pressure magnitude arises during the second period. It can be ob-
served that the simulation with fuel particles reaches a lower pressure which then decreases slower in time. The
pressure wave that is then generated through the domain (see Figure 3) has a lower magnitude. It can also be
seen from Figure 2 that in the heating zone the apparition of steam arises at almost the same time (at time
1.86 10−5 s with fuel particles and 1.94 10−5 s without fuel particle), whereas the complete vaporization of the
liquid is achieved earlier without fuel particle (at time 4.227 10−4 s with fuel particles and 3.25 10−4 s without
fuel particle). Once the heating zone only contains steam, the temperature rapidly increases. Hence, despite
the lower amount of energy received by the fluid in the simulation without fuel particle, the associated results
seem to correspond to a slightly more important level of severity of the steam explosion.
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Figure 3. Pressure (left) en volume fraction (right) along the radius r at different times: black
at t = 2.44 10−6 s, red at t = 9.74 10−6 s, blue at t = 1.17 10−5 s, orange at t = 2.44 10−5 s,
and at green t = 3.17 10−5 s. The two upper plots correspond to the simulation without fuel
particle and the two lower plots to the simulation with fuel particles. The steam appears in
the domain at around t = 1.9 10−5 s

1,4e+07 1,5e+07 1,6e+07 1,7e+07
Pressure (Pa)

600

610

620

630

T
em

p
er

at
u
re

 (
K

)

Saturation curve
(P,T)-trajectory without fuel particles

(P,T)-trajectory with fuel particles

Stable steam region

Stable liquid region

Figure 4. Trajectories in the pressure-temperature plane along the simulation time at the
radius r = (R1 + R2)/2 (i.e. the center of the initial heating zone). The simulation without
fuel particle is plotted using red circles, and the simulation with fuel particles is plotted using
blue squares. The black plain line represents the saturation curve.

6. Conclusion

The homogeneous three-phase flow model proposed here relies on Newton’s law, the first and second laws of
thermodynamics. It accounts for the compressibility of the three phases and for the heat and the mass transfer
between the phases through the thermodynamical disequilibrium between the phases (in terms of pressure,
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temperature and Gibbs enthalpy). Since no equilibrium assumption is done, the model should not be restricted
to the representation of thermodynamical phenomenon at “large time-scale” and fine physical aspects of the
thermodynamics might be caught. This feature seems mandatory when dealing with fast transient flows induced
by the flashing of some liquid. From a mathematical point of view, the resulting model possesses very interesting
properties, which allows to build efficient numerical schemes. In Section 5, an example of the simulations of the
flashing of liquid water undergoing a violent heating has therefore been proposed to illustrate the capability of
the model to be used in an industrial configuration. Even if the relaxation time-scale used in these simulations
has been set to zero, the homogeneous model proposed in this paper allows to perform transient simulations
involving strong pressure waves. Actually, some realistic models for the relaxation time-scale should be proposed
on the basis of physical considerations in order to improve the simulations of Section 5.
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7. Appendices

7.1. Properties of the extensive mixture-entropy

In this section, we give the proofs that the intensive mixture-entropy (7) is such that:

(i) W → η(W ) is C2 on (R+)9;
(ii) W → η(W ) is concave;
(iii) ∀a ∈ R∗+, ∀W ∈ (R+)9, η(aW ) = aη(W );

where we set Wi = (Vi,Mi, Ei) and, with a small abuse of notation,

W = (W1,W2,W3) = (V1,M1, E1,V2,M2, E2,V3,M3, E3).

The mixture entropy then reads: η(W ) =
∑
i ηi(Wi).

Proof of property (i). The use of assumption (H4) gives a straightforward proof of property (i).

Proof of property (ii). Thanks to assumption (H5), we know that Wi 7→ ηi(Wi) is concave. So that we have:

∀(W̃i, W̄i) ∈ (R+)3 × (R+)3, ∀a ∈ [0, 1], ηi(aW̃i + (1− a)W̄i) ≥ aηi(W̃i) + (1− a)ηi(W̄i).

Let us choose (W̃ , W̄ ) ∈ (R+)9 × (R+)9 and a ∈ [0, 1]. We have:

η(aW̃ + (1− a)W̄ ) =
∑
i ηi(aW̃i + (1− a)W̄i)

≥
∑
i aηi(W̃i) + (1− a)ηi(W̄i) = aη(W̃ ) + (1− a)η(W̄ ),

which proves that W → η(W ) is concave on (R+)9.

Proof of property (iii). We use here assumption (H6) which states that:

∀a ∈ R∗+, ∀Wi ∈ (R+)3, ηi(aWi) = aηi(Wi).

Let us choose W ∈ (R+)9 and a > 0. Then we have:

η(aW ) =
∑
i

ηi(aWi) = a
∑
i

ηi(Wi) = aη(W ).

7.2. Concavity of the mixture entropy η̃

The entropy η̃ is the restriction of η on H(M) ⊂ (R+)9:

H(M) =

{
W ∈ (R+)9;

∑
i

Mi =M

}
.

We then have:

∀W̃ ∈ H(M), η̃(W̃ ) = η(W̃ ).

Obviously, since η fulfills properties (i)-(iii) recalled in Appendix 7.1, the entropy η̃ satisfies:

(i) W → η̃(W ) is C2 on H(M);
(ii) W → η̃(W ) is concave;
(iii) ∀a ∈ R∗+, ∀W ∈ H(M), η̃(aW ) = aη̃(W );
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The demonstration given here can be found in a more general form in [18]. The sketch of the proof is the
following. We first exhibit the degeneracy manifold of the Hessian of the entropy η. Then we prove that its
intersection with H(M) contains a single point. As a consequence, the degeneracy manifold of the Hessian of
η̃ also resumes to a single point, which proves that it is strictly concave.

Let us choose a > 0 and X ∈ (R+)9. We then set Y = aX. By deriving η(Y ) with respect to X, we get:

∇X (η(Y )) = ∇Y (η(Y )) .∇X (Y ) = a∇Y (η(Y )) .

Since we have η(Y ) = η(aX) = aη(X), and since a 6= 0, we have:

∇Y (η(Y )) = ∇X (η(X)) .

If we derive the relation above with respect to a, we find that:

0 =
∂

∂a
(∇X (η(X))) =

∂

∂a
(∇Y (η(Y ))) = ∇2

Y (η(Y ))
∂

∂a
(Y ) = ∇2

Y (η(Y )) .X,

and, thus:
∇2
Y (η(Y )) .X = 0,

which for a = 1 leads to:
∇2
Y (η(Y )) .Y = 0.

The degeneracy manifold of the Hessian of the entropy η at a point W is thus the set Dη(W ) = {bW, b ∈ R}.
This implies that the entropy η can not be strictly concave.

For any point W in H(M), we have
∑
iMi =M. Hence, for all b > 0, bW is such that

∑
i bMi = bM, and

bW is not in H(M) except if b = 1. So that we have:

∀W ∈ H(M), H(M) ∩ Dη(W ) = {W}.

This proves that the kernel of the Hessian η̃, the restriction of η to H(M), is restricted to a single point. As a
consequence, η̃ is strictly concave on H(M).

7.3. Concavity of the intensive entropies

We first demonstrate that the phasic intensive entropy si, introduced in Section 2.2:

Mi si

(
Vi
Mi

,
Ei
Mi

)
= ηi(Vi,Mi, Ei),

is concave with respect to (Vi/Mi, Ei/Mi). We choose two sets of variables

(V∗i ,M∗i , E∗i ) and (V#
i ,M

#
i , E

#
i ) in (R+)3 such that M#

i =M∗i =Mi. We then have for any a ∈ [0, 1]:

aM∗i si
(
V∗i
M∗i

,
E∗i
M∗i

)
+ (1− a)M#

i si

(
V#
i

M#
i

,
E#i
M#

i

)
=

aηi(V∗i ,M∗i , E∗i ) + (1− a)ηi(V#
i ,M

#
i , E

#
i ).

Thanks to the concavity of (Vi,Mi, Ei) 7→ ηi(Vi,Mi, Ei) (assumption (H5)), we get that:

aM∗i si
(
V∗i
M∗i

,
E∗i
M∗i

)
+ (1− a)M#

i si

(
V#
i

M#
i

,
E#i
M#

i

)
≤

ηi(aV∗i + (1− a)V#
i , aM∗i + (1− a)M#

i , aE∗i + (1− a)E#
i ).
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Hence, following the definition of the entropy si, we have:

aM∗i si
(
V∗i
M∗i

,
E∗i
M∗i

)
+ (1− a)M#

i si

(
V#
i

M#
i

,
E#i
M#

i

)
≤

(aM∗i + (1− a)M#
i )si

(
aV∗i +(1−a)V#

i

(aM∗i+(1−a)M#
i )
,

aE∗i +(1−a)E#i
(aM∗i+(1−a)M#

i )

)
.

The assumption that M#
i =M∗i =Mi allows to obtain:

asi

(
V∗i
M∗i

,
E∗i
M∗i

)
+ (1− a)si

(
V#
i

M#
i

,
E#i
M#

i

)
≤ si

(
aV∗i +(1−a)V#

i

Mi
,
aE∗i +(1−a)E#i

Mi

)
.

and we obviously have:

si

(
aV∗i +(1−a)V#

i

Mi
,
aE∗i +(1−a)E#i

Mi

)
= si

(
a
V∗i
Mi

+ (1− a)
V#
i

Mi
, a
E∗i
Mi

+ (1− a)
E#i
Mi

)
= si

(
a
V∗i
M∗i

+ (1− a)
V#
i

M#
i

, a
E∗i
M∗i

+ (1− a)
E#i
M#

i

)
,

so that we finally get

asi

(
V∗i
M∗i

,
E∗i
M∗i

)
+ (1− a)si

(
V#
i

M#
i

,
E#i
M#

i

)
≤

si

(
a
V∗i
M∗i

+ (1− a)
V#
i

M#
i

, a
E∗i
M∗i

+ (1− a)
E#i
M#

i

)
.

As a consequence, the intensive phasic-entropy

(Vi/Mi, Ei/Mi) 7→ si(Vi/Mi, Ei/Mi)

is concave with respect to (Vi/Mi, Ei/Mi).

We consider now the intensive mixture-entropy S (26) defined on H(M) by:

MS(Y, τ, e) = η̃(W ).

We set

τ =
V
M

, e =
E
M

, Y = (α1, y1, z1, α2, y2, z2, α3, y3, z3), αi =
Vi
V
, yi =

Mi

M
, zi =

Ei
E
.

We choose two points:
W ∗ = (V∗1 ,M∗1, E∗1 ,V∗2 ,M∗2, E∗2 ,V∗3 ,M∗3, E∗3 ),

and
W# = (V#

1 ,M
#
1 , E

#
1 ,V

#
2 ,M

#
2 , E

#
2 ,V

#
3 ,M

#
3 , E

#
3 ),

such that
∑
iM∗i = M∗ = M and

∑
iM

#
i = M# = M = M′. We then have (W ∗,W#) ∈ H(M) ×H(M).

For any a ∈ [0, 1], thanks to the strict concavity of η̃ on H(M), we have:

aM∗S (Y ∗, τ∗, e∗) + (1− a)M#S
(
Y #, τ#, e#

)
= aη̃ (W ∗) + (1− a)η̃

(
W#

)
< η̃

(
aW ∗ + (1− a)W#

) (49)

where
τ∗ = V∗

M∗ , e
∗ = E∗

M∗ ,

Y ∗ = (α∗1, y
∗
1 , z
∗
1 , α
∗
2, y
∗
2 , z
∗
2 , α
∗
3, y
∗
3 , z
∗
3), α∗i =

V∗i
V∗ , y

∗
i =

M∗i
M∗ , z

∗
i =

E∗i
E∗ ,

τ# = V#

M# , e
# = E#

M# ,

Y # = (α#
1 , y

#
1 , z

#
1 , α

#
2 , y

#
2 , z

#
2 , α

#
3 , y

#
3 , z

#
3 ), α#

i =
V#
i

V# , y
#
i =

M#
i

M# , z
#
i =

E#i
E# .
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The definition of the entropy S leads to:

η̃
(
aW ∗ + (1− a)W#

)
= M′S (Y ′, τ ′, e′) , (50)

with the following definitions:

M′ = aM∗ + (1− a)M# =M, τ ′ = aV∗+(1−a)V#

aM∗+(1−a)M# , e′ = aE∗+(1−a)E#
aM∗+(1−a)M# ,

α′i =
aV∗i +(1−a)V#

i

aV∗+(1−a)V# , y′i =
aM∗i+(1−a)M#

i

aM∗+(1−a)M# , z′i =
aE∗i +(1−a)E#i
aE∗+(1−a)E# .

Hence, by combining equations (49) and (50), and by using the fact that M∗ =M# =M, we finally get:

aS (Y ∗, τ∗, e∗) + (1− a)S
(
Y #, τ#, e#

)
< S (Y ′, τ ′, e′) . (51)

Since we haveM∗ =M#, the specific volumes τ ′, the specific energy e′ and the mass fraction y′i can be written:

τ ′ = aτ∗ + (1− a)τ#, e′ = ae∗ + (1− a)e# and y′i = ay∗i + (1− a)y#
i .

The volume fraction α′i and the energy fraction z′i are not specific quantities and they can thus not be written
using the same weights a. We get for the volume fraction:

α′i =
aV∗

aV∗ + (1− a)V#
α∗i +

(1− a)V#

aV∗ + (1− a)V#
α#
i ,

and for the energy fraction

z′i =
aE∗

aE∗ + (1− a)E#
z∗i +

(1− a)E#

aE∗ + (1− a)E#
z#
i .

We can now obtain easily two results of concavity for the specific mixture-entropy S.

First, if we assume that V∗ = V# = V and E∗ = E# = E , the volume fraction and the energy fraction are

α′i = aα∗i +(1−a)α#
i and z′i = az∗i +(1−a)z#

i . Moreover, the specific volume of the mixture is τ = τ ′ = τ∗ = τ#

and the specific energy of the mixture is e = e′ = e∗ = e#. Therefore, relation (51) becomes:

aS (Y ∗, τ∗, e∗) + (1− a)S
(
Y #, τ#, e#

)
< S

(
a(Y ∗, τ∗, e∗) + (1− a)(Y #, τ#, e#)

)
,

which proves that, for a given mixture specific volume τ and a given specific energy e, the specific mixture
entropy S is strictly concave:

∀(τ, e) ∈ (R∗+)2, Y 7→ S(Y, τ, e) is strictly concave.

This result is important because it ensures that for a closed system (i.e. de = dτ = 0) the equilibrium fraction
Y defining the thermodynamical equilibrium is uniquely defined.

If we now assume that α∗i = α#
i and z∗i = z#

i , we get that α′ = α∗i = α#
i and z′ = z∗i = z#

i . Relation (51)
then becomes:

aS (Y ∗, τ∗, e∗) + (1− a)S
(
Y #, τ#, e#

)
< S

(
a(Y ∗, τ∗, e∗) + (1− a)(Y #, τ#, e#)

)
,

which proves that for a given fraction Y , the specific mixture entropy S is strictly concave:

∀Y ∈ [0, 1]3, (τ, e) 7→ S(Y, τ, e) is strictly concave.
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This property allows to define in a unique manner the shock waves for system (36). Indeed, when considering
a Riemann problem for the convective part of system (36), it can be noticed that the fractions Y only vary
through the contact wave U . Hence the fractions Y are constant across a shock wave. The property above then
ensures that the specific entropy S is strictly concave through the shock waves.
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Polytechnique X (France) - Università di Trento (Italie), November 2008, https://pastel.archives-ouvertes.fr/tel-00363460.

[20] P. Helluy and N. Seguin. Relaxation models of phase transition flows. ESAIM: Mathematical Modelling and Numerical Analysis,
40(2):331–352, 2006.

[21] O. Hurisse. Application of an homogeneous model to simulate the heating of two-phase flows. International Journal on Finite
Volumes, 11:1–37, May 2014, https://hal.archives-ouvertes.fr/hal-01114808.

[22] H. B. Callen. Thermodynamics and an Introduction to Thermostatistics. Willey, 1985.

[23] W. Wagner and H.-J. Kretzschmar. IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam.
International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97, pages 7–150,

2008.

[24] H. Mathis. A thermodynamically consistent model of a liquid-vapor fluid with a gas. ESAIM: M2AN, june 2018,
https://hal.archives-ouvertes.fr/hal-01615591, DOI:10.1051/m2an/2018044.

[25] S. Gavrilyuk and R. Saurel. Mathematical and numerical modeling of two-phase compressible flows with micro-inertia. Journal

of Computational Physics, 175(1):326–360, 2002.
[26] Florence Drui, Adam Larat, Samuel Kokh, and Marc Massot. A hierarchy of simple hyperbolic two-fluid models for bubbly

flows. arXiv preprint arXiv:1607.08233, 2016.



24 ESAIM: PROCEEDINGS AND SURVEYS

[27] E. Godlewski and P.-A. Raviart. Numerical approximation of hyperbolic systems of conservation laws, volume 118. Springer
Science & Business Media, 2013.

[28] P. Downar-Zapolski, Z. Bilicki, L. Bolle, and J. Franco. The non-equilibrium relaxation model for one-dimensional flashing

liquid flow. International journal of multiphase flow, 22(3):473–483, 1996.
[29] O. Le Métayer, J. Massoni, and R. Saurel. Elaborating equations of state of a liquid and its vapor for two-phase flow models.

International Journal of Thermal Sciences, 43(3):265–276, 2004.

[30] Thermophysical properties of materials for nuclear engineering: A tutorial and collection of data. Technical report, International
Atomic Energy Agency, IAEA-THPH, 2008.
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